Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Poc1A and Poc1B act together in human cells to ensure centriole integrity

Tools
- Tools
+ Tools

Venoux, M., Tait, X., Hames, R. S., Straatman, K. R., Woodland, Hugh R. and Fry, A. M. (2013) Poc1A and Poc1B act together in human cells to ensure centriole integrity. Journal of Cell Science, Volume 126 (Number 1). pp. 163-175. doi:10.1242/jcs.111203

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1242/jcs.111203

Request Changes to record.

Abstract

Proteomic studies in unicellular eukaryotes identified a set of centriolar proteins that included proteome of centriole 1 (Poc1). Functional studies in these organisms implicated Poc1 in centriole duplication and length control, as well as ciliogenesis. Using isoform-specific antibodies and RNAi depletion, we have examined the function of the two related human proteins, Poc1A and Poc1B. We find that Poc1A and Poc1B each localize to centrioles and spindle poles, but do so independently and with different dynamics. However, although loss of one or other Poc1 protein does not obviously disrupt mitosis, depletion of both proteins leads to defects in spindle organization with the generation of unequal or monopolar spindles. Our data indicate that, once incorporated, a fraction of Poc1A and Poc1B remains stably associated with parental centrioles, but that depletion prevents incorporation into nascent centrioles. Nascent centrioles lacking both Poc1A and Poc1B exhibit loss of integrity and maturation, and fail to undergo duplication. Thus, when Poc1A and Poc1B are co-depleted, new centrosomes capable of maturation cannot assemble and unequal spindles result. Interestingly, Poc1B, but not Poc1A, is phosphorylated in mitosis, and depletion of Poc1B alone was sufficient to perturb cell proliferation. Hence, Poc1A and Poc1B play redundant, but essential, roles in generation of stable centrioles, but Poc1B may have additional independent functions during cell cycle progression.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Journal of Cell Science
Publisher: The Company of Biologists Ltd.
ISSN: 0021-9533
Official Date: 2013
Dates:
DateEvent
2013Published
Volume: Volume 126
Number: Number 1
Page Range: pp. 163-175
DOI: 10.1242/jcs.111203
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us