Search for a heavy narrow resonance decaying to $e\mu$, $e\tau$, or $\mu\tau$ with the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the LHC

ATLAS Collaboration*

1. Introduction

Neutrino oscillations show that lepton-flavour quantum numbers are not conserved in Nature. On the other hand, lepton-flavour violation (LFV) has not been observed in the charged lepton sector, where neutrino-induced LFV is predicted to be extremely small in the Standard Model (SM) [1]. The study of possible LFV processes involving charged leptons is an important topic in the search for physics beyond the SM. One possible signature is the production of a particle that decays to a pair of different flavour, opposite-sign leptons $e\pm\mu\mp$ ($e\mu$, $e\tau$, or $\mu\tau$) (referred to generically as $\ell^\pm\ell'^\mp$).

Since the ATLAS detector identifies leptons with large transverse momenta with high purity, efficiently, and with good momentum resolution, it is well suited to a search for this signature. Many new physics models allow LFV in charged lepton interactions. For example, in R-parity-violating (RPV) models of supersymmetry (SUSY) [2], a sneutrino can have LFV decays to $\ell^\pm\ell'^\mp$. Models with additional gauge symmetry can accommodate an $\ell^\pm\ell'^\mp$ signature through LFV decays of an extra gauge boson Z' [3]. This signature is also produced in the SM framework, for example, $t\tau$, WW, or $Z'/y^*\rightarrow\tau^+\tau^-$ production where the final-state particles decay to leptons of different flavour. These processes typically have small cross sections for $\ell^\pm\ell'^\mp$ pairs with invariant mass ($m_{\ell^\pm\ell'^\mp}$) in the high-mass range not already excluded for new physics signals.

This Letter reports on a search for a heavy particle decaying into the $e\mu$, $e\tau$, or $\mu\tau$ final state, where τ hadronizes. The search uses 4.6 fb$^{-1}$ of 7 TeV pp collision data taken with the ATLAS detector during 2011. The results are interpreted in terms of the production and subsequent decay of a tau sneutrino $\tilde{\nu}_\tau$ in RPV SUSY ($d\tilde{d}\rightarrow\tilde{\nu}_\tau\rightarrow\ell^\pm\ell'^\mp$). This Letter presents results that supersede previous ATLAS results from a search for a high-mass resonance decaying to $e\mu$ based on 1 fb$^{-1}$ of 2011 data [5] and extends the search to $e\tau$ and $\mu\tau$ final states. Both the CDF and D0 Collaborations at the Tevatron collider have reported searches for the RPV production and decay of a $\tilde{\nu}_\tau$ in the $e\mu$ channel [4]. The CDF Collaboration also reported searches in the $\ell^\pm\ell'^\mp$ channels [4].

Precision low-energy searches, such as μ to e conversion on nuclei, rare muon decays, and rare tau decays, place limits on supersymmetric particles and on the assumption of the dominance of certain couplings or pairs of couplings. Direct searches, such as the one here, have different dependences on masses and couplings.

2. ATLAS detector

The ATLAS experiment at the LHC employs a multipurpose particle physics detector [7] with a forward–backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector covers the pseudorapidity region $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The inner tracking detector

* E-mail address: atlas.publications@cern.ch.
is surrounded by a thin superconducting solenoid that provides a 2 T magnetic field and by a finely-segmented calorimeter with nearly full solid-angle coverage. The latter covers the pseudorapidity range \(|\eta| < 4.9\) and provides three-dimensional reconstruction of particle showers. The electromagnetic compartment uses lead absorbers with liquid argon as the active material. This is followed by a hadronic compartment, which uses scintillating tiles with iron absorbers in the central region and liquid-argon sampling with copper or tungsten absorbers for \(|\eta| > 1.7\). The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids (each with eight coils), a system of precision tracking chambers \(|\eta| < 2.7\), and detectors for triggering.

3. Data and event selection

The data used in this analysis were recorded in 2011 at a centre-of-mass energy of 7 TeV. Only data taken during stable run conditions and operational tracking, calorimetry, and muon subdetectors are used. This results in a data sample with an integrated luminosity of 4.6 fb\(^{-1}\) with an estimated uncertainty of 3.9% [8]. Events are required to satisfy a single-electron trigger for the e\(\mu\) and e\(\tau\) searches and a single-muon trigger for the \(\mu\)\(\tau\) search. The nominal transverse momentum \(p_T\) threshold for the electron trigger was 20 or 22 GeV, depending on the instantaneous luminosity, and was 18 GeV for the muon trigger. The electron (muon) trigger is 98% (89%) efficient for events that pass the selection criteria below.

Further criteria are applied offline to select electron, muon, and tau candidates. An electron candidate is required to have \(p_T > 25\) GeV and to lie in the pseudorapidity region \(|\eta| < 2.47\), excluding the transition region \((1.37 < |\eta| < 1.52)\) between the barrel and endcap calorimeters. The \(p_T\) of the electron is calculated from the calorimeter energy and the direction of the inner detector track. A set of electron identification criteria based on the calorimeter shower shape, track quality, transition radiation, and track matching with the calorimeter energy deposition, referred to as ‘tight’ in Ref. [9], is applied. These criteria correctly identify about 80% of electrons from Z decays and have a rejection factor of about 50,000 for generic jets. Two lepton isolation criteria are used to further reduce backgrounds from hadronic jets. The calorimetric isolation criterion requires that the transverse energy deposited within a cone of radius \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3\) around the electron cluster, excluding the core energy deposited by the electron, is less than 0.14 times the \(p_T\) of the candidate electron. The tracking isolation criterion requires the sum of the transverse momenta of tracks with \(p_T > 1\) GeV within a cone of radius \(\Delta R < 0.3\) around the electron track, excluding the electron track, is less than 0.13 times the \(p_T\) of the candidate.

A muon candidate must have reconstructed tracks in both the inner detector and the muon spectrometer. The inner detector track is required to have a pattern of hits consistent with a quality track. Furthermore, the muon candidate must have \(p_T > 25\) GeV and be isolated, using similar criteria as for electrons: 0.14 times \(p_T\) for calorimetric isolation and 0.15 times \(p_T\) for tracking isolation.

Jets are reconstructed from calorimeter energy depositions using the anti-\(k_t\) jet clustering algorithm [10] with a radius parameter of 0.4. Only jets with \(p_T > 20\) GeV and \(|\eta| < 2.5\) are considered. Leptons are rejected if they lie within \(\Delta R > 0.4\) of any jet. This is the only use of jets in this analysis.

For this search, tau leptons are reconstructed through their hadronic decays (\(\tau_had\)). The tau reconstruction is seeded by antik\(t\) jets [10] with cone size \(\Delta R = 0.4\) and jet \(p_T > 10\) GeV formed from calorimeter energy depositions. Tracks with \(p_T > 1\) GeV are added to the tau candidate. Corrections depending on \(p_T\) and \(\eta\) are then applied to the tau energy. Since the reconstruction efficiency for hadronic tau decays with three tracks drops significantly at large transverse momentum as the tracks become more collimated, this analysis uses only tau candidates with one track, which comprise 75% of hadronic tau decays, that is, about 50% of all tau decays. For each tau, the track and each energy deposition not associated with the track is treated as coming from a massless particle. The four-momenta of these particles are summed to give the four-momentum of the tau candidate. The tau candidates must have \(E_T > 20\) GeV and pseudorapidity in the range \(0.03 < |\eta| < 2.5\). The lower limit excludes a region where there is reduced coverage from the inner detector and calorimeters, which greatly increases misidentification of electrons as hadronic tau decays.

A boosted decision tree discriminator [11] efficiently selects taus while rejecting backgrounds. The variables used in the discriminator are \(\Delta R\) between the track and the tau candidate, the impact parameter significance of the track, the fraction of the \(p_T\) of the tau candidate carried by the track, the number of tracks (\(p_T > 1\) GeV) in an isolation annulus of 0.2 \(< |\Delta R| < 0.4\), the rms width of the energy deposition in the cells of the calorimeter, energy isolation for cones of \(\Delta R = 0.1\) and \(\Delta R = 0.4\), and the invariant mass associated with the energy deposition. For this analysis, ‘medium’ selection criteria as described in Ref. [11] are used. This selection is about 60% efficient at retaining taus that decay hadronically, as measured in \(Z \rightarrow \tau\tau\) decays, while accepting 1 of 20 to 1 of 50 ordinary hadronic jets misidentified as tau candidates. To retain only taus that decay hadronically, candidates consistent with being an electron or a muon are rejected.

The missing transverse energy (\(E_T^{\text{miss}}\)) is calculated from the vector sum of the transverse momenta of all high-\(p_T\) objects (electrons, muons, photons, taus, and jets) and all calorimeter energy clusters with \(|\eta| < 4.5\) not associated with those objects [12].

Events are required to have exactly two lepton candidates with opposite sign and different flavour, that is, e\(\mu\), e\(\tau\)_had, or \(\mu\)_had. In addition, each event must have at least one primary vertex with at least four tracks with \(p_T > 400\) MeV. The two leptons are chosen to be back-to-back in \(\phi\) by requiring that the azimuthal angle between them satisfies \(\Delta \phi_{\ell\ell} > 2.7\). Although the transverse momenta of the two leptons in an event are expected to be comparable, the missing neutrino reduces the measured \(E_T\) of tau candidates, so for the e\(\tau\)_had and \(\mu\)_had events, the \(p_T\) of the electron or muon is required to be greater than the \(E_T\) of the tau.

For e\(\tau\)_had and \(\mu\)_had signal events, the presence of only one tau with expected large momentum relative to the tau mass implies that the neutrino from the tau decay should point in nearly the same direction as the tau momentum and that there are no other significant sources of \(E_T^{\text{miss}}\). The transverse components of the neutrino momentum are set equal to the components of the \(E_T^{\text{miss}}\) vector and the polar angle of the neutrino momentum is set equal to the polar angle of the tau candidate’s momentum. The momentum of the tau candidate is corrected for the momentum of the neutrino in the calculation of the e\(\tau\)_had and \(\mu\)_had invariant masses. This significantly reduces the width of the invariant mass distribution for e\(\tau\)_had and \(\mu\)_had pairs in the sneutrino signal simulation and improves the search sensitivity, while making no significant changes to the shape of the \(m_{\ell\ell}\) background distribution. For dilepton masses from 400 GeV to 2000 GeV, the mass resolutions range from 2.5% to 7.5%, 2.2% to 4.3%, and 6.3% to 9.0% for the e\(\mu\), e\(\tau\)_had, and \(\mu\)_had decay modes, respectively. The mass resolutions are dominated by the resolution of the transverse momenta of the leptons. At high \(p_T\), the transverse momentum resolution is best for electrons, whose \(p_T\) measurement is based primarily on energy deposited in the electromagnetic calorimeter. It is next best for taus, whose \(p_T\) measurement is based on electromagnetic and
these processes are well understood and modelled, their con-
leptons in Hadronic tau decays are simulated with
leading order for
next-to-next-to-leading log for
diboson (\textit{herwig} functions are CTEQ6L1\cite{19} for
cross sections are calculated with
energy resolution need small adjustments in the Monte Carlo sim-
ton reconstruction and identification efficiencies, energy scale, and

given are the statistical and systematic uncertainties combined in quadrature.

<table>
<thead>
<tr>
<th>Process</th>
<th>(m_{ll} < 200 \text{ GeV})</th>
<th>(m_{ll} > 200 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z/\gamma^* \to \tau \tau)</td>
<td>1880 \pm 150</td>
<td>5300 \pm 600</td>
</tr>
<tr>
<td>(Z/\gamma^* \to ee)</td>
<td>4300 \pm 600</td>
<td>24 \pm 3</td>
</tr>
<tr>
<td>(Z/\gamma^* \to \mu \mu)</td>
<td>1050 \pm 80</td>
<td>44 \pm 3</td>
</tr>
<tr>
<td>(t \bar{t})</td>
<td>3030 \pm 290</td>
<td>29 \pm 3</td>
</tr>
<tr>
<td>Diboson</td>
<td>94 \pm 14</td>
<td>70 \pm 13</td>
</tr>
<tr>
<td>Single top quark</td>
<td>60 \pm 7</td>
<td>24 \pm 3</td>
</tr>
<tr>
<td>W + jets</td>
<td>71 \pm 8</td>
<td>8 \pm 1</td>
</tr>
<tr>
<td>Multijet</td>
<td>9 \pm 1</td>
<td>24 \pm 18</td>
</tr>
<tr>
<td>Total background</td>
<td>12400 \pm 800</td>
<td>470 \pm 110</td>
</tr>
<tr>
<td>Data</td>
<td>12121</td>
<td>650 \pm 90</td>
</tr>
</tbody>
</table>

hadronic calorimeter energy depositions. It is the worst for muons, whose \(p_T \) measurement is from tracking.

4. Backgrounds

The SM processes that can produce an \(\ell \ell' \) signature are divided into two categories: backgrounds that produce prompt-lepton pairs and jet backgrounds where one or both of the candidate leptons is from a misidentified jet. Data events with an \(\ell \ell' \) invariant mass below 200 GeV constitute a control region to verify the background estimates, and events with masses above 200 GeV comprise the signal search region.

The dominant prompt-lepton backgrounds are \(t \bar{t} \), \(Z/\gamma^* \to \ell \ell \), diboson (\(WW, ZZ, \) and \(WZ \)), and single top quark (\(Wt \)). Since these processes are well understood and modelled, their contributions are estimated using Monte Carlo samples generated at \(\sqrt{s} = 7 \text{ TeV} \) and processed with the full ATLAS GEANT4 \cite{13} simulation and reconstruction. The event generators used are \textsc{pythia} 6.421 \cite{14} (\(W \) and \(Z/\gamma^* \)), \textsc{powheg} 1.0 \cite{15} (\(t \bar{t} \)), \textsc{madgraph} 4 \cite{16} (\(W/Z + \gamma \)), \textsc{mc@nlo} 3.4 \cite{17} (single top quark) and \textsc{herwig} 6.510 \cite{18} (\(WW, WZ \) and \(ZZ \)). The parton distribution functions are CTEQ6L1 \cite{19} for \(W \) and \(Z \) production and CT10 \cite{20} for \(t \bar{t} \), single top quark, and diboson production. The Monte Carlo samples are normalised to cross sections with higher-order corrections applied. The cross section is calculated to next-to-next-to-leading order for \(W \) and \(Z/\gamma^* \) \cite{21}, next-to-leading order plus next-to-next-to-leading log for \(t \bar{t} \) \cite{22}, and next-to-leading order for \(WW, WZ \) and \(ZZ \) \cite{23}. Single top quark and \(W/Z + \gamma \) cross sections are calculated with \textsc{mc@nlo} and \textsc{madgraph}, respectively. The effects of QED radiation are generated with \textsc{photos} \cite{24}.

Hadronic tau decays are simulated with \textsc{tauola} \cite{25}. Studies of leptons in \(Z/\gamma^* \), \(W, \) and \(\ell \ell' \) events \cite{26} have shown that the lepton reconstruction and identification efficiencies, energy scale, and energy resolution need small adjustments in the Monte Carlo simulation to describe the data properly. The appropriate corrections are applied to the Monte Carlo samples to improve the modelling of the backgrounds. The effect of additional pp interactions per bunch crossing as a function of the instantaneous luminosity is modelled by overlaying simulated minimum bias events with the same distribution in number of events per bunch crossing as observed in the data.

The processes \(W/Z + \gamma, W/Z + \text{jets}, \) and multijet production give rise to backgrounds from jets misidentified as leptons, electrons from photon conversions, and leptons from hadron decays (including b- and c-hadron decays). The dominant component of these backgrounds is from events with one prompt lepton and one jet misidentified as a lepton. There is an additional, small contribution from events with two misidentified jets. These backgrounds are estimated using data. The background component coming from prompt photons is estimated from Monte Carlo samples and found to be negligible.

The jet backgrounds, including semileptonic decays in bottom and charm jets, are greatly reduced by the lepton isolation and high-\(p_T \) requirements but are still significant. The dominant jet background is due to \(W + \text{jets} \) production, whose contribution is estimated using data from a subsample selected with the same criteria as signal events but with the additional requirement \(E_{\text{T}}^{\text{miss}} > 30 \text{ GeV} \). This subsample is enriched in \(W + \text{jets} \) events, whose contribution is about 60%, while the multijet background is reduced to about 3% and the prompt-lepton background to about 37%. The potential effect of the multijet contribution is included in the systematic uncertainty. There could be signal events in this subsample, but from examination of the \(p_T \) spectra of the leptons, \(E_{\text{T}}^{\text{miss}} \) distributions, and, for the \(\tau \) and \(\mu \tau \) modes, distributions of the difference in azimuthal angle between the tau direction and the \(E_{\text{T}}^{\text{miss}} \) vector, this contamination must be significantly less than 1%. The contribution from prompt-lepton backgrounds in the subsample is determined from Monte Carlo simulation and is subtracted to give the number of \(W + \text{jets} \) events. This number is extrapolated to the number in the full data sample without the \(E_{\text{T}}^{\text{miss}} \) criterion using the \(W + \text{jets} \) Monte Carlo samples. The shapes of the \(W + \text{jets} \) background in various kinematic variables, including \(m_{ll} \), are taken from \(W + \text{jets} \) Monte Carlo samples.

Studies of event samples dominated by multijet events show that the probability that a jet is misidentified as a lepton is independent of its charge \cite{27}, with a 10% uncertainty. A same-sign sample is selected using the same criteria as for the signal sample but with the sign requirement reversed. The multijet background in the opposite-sign sample is taken to be equal to its contribution in the same-sign sample. Prompt-lepton backgrounds produce more opposite-sign than same-sign events, so the same-sign sample is enriched in multijet background. Contributions to the same-sign sample by the prompt-lepton backgrounds are determined from Monte Carlo simulation. The \(W + \text{jets} \) contamination of the same-sign sample is determined by selecting only same-sign events with \(E_{\text{T}}^{\text{miss}} > 30 \text{ GeV} \) and then extrapolating to the full same-sign sample using Monte Carlo simulation. The prompt-lepton background and \(W + \text{jets} \) contributions are subtracted from the observed same-sign sample to give the expected distribution and normalisation of the multijet background in the opposite-sign sample.

Table 1 shows the number of events selected in data and the estimated background contributions with their uncertainties (statistical and systematic combined in quadrature). The expected number of events in the control region agrees well with the observed number of events for all three signatures (\(e\mu, \ eT_{\text{had}}, \) and \(\mu T_{\text{had}} \)).
The largest backgrounds in the signal region ($m_{\ell\ell} > 200$ GeV) are $W + \text{jets}$ events, arising primarily from the leptonic decay of the W and the misidentification of a jet as a lepton, and $\ell \ell$ events, arising primarily from semileptonic decays of both the t and \bar{t}. For the e_{had} mode, there is a significant contribution from multijet events where two jets are misidentified as leptons. There is also a significant contribution to the $e\mu$ mode from WW diboson production where one W decays to an electron and the other to a muon. Blank entries indicate an insignificant contribution to the background.

The dominant sources of systematic uncertainty for the background predictions arise from the statistical uncertainty on the $W + \text{jets}$ and multijet background determinations from data, a 10% uncertainty on extrapolation from the subsample to the full sample in the calculation of the $W + \text{jets}$ backgrounds, theoretical uncertainties on the cross sections of the prompt-lepton background processes (5% to 10%), and the integrated luminosity uncertainty (3.9%). Other systematic uncertainties from the lepton uncertainties on the cross sections of the prompt-lepton back-

6. Results

The $\ell\ell$ invariant mass distributions in the signal region are presented in Fig. 1 for data, SM background contributions, and a ν_τ with $m_{\nu_\tau} = 500$ GeV and with couplings $\lambda_{311} = 0.11$ and $\lambda_{33k} = 0.07$.

The invariant mass spectra above 400 GeV are examined for the presence of an RPV sneutrino. No significant excess of events above the SM expectation is observed, and limits are placed on the production cross section times branching ratio. For each sneutrino mass, the search region is defined to be within $\pm 3\sigma_m$ of the sneutrino mass, where σ_m is the mass resolution, except for m_{ν_τ} above 800 GeV, where all events with $m_{\ell\ell} > 800$ GeV are used. The probability of observing a number of events as a function of the cross section times branching ratio, efficiency, luminosity, and background expectation is constructed from a Poisson distribution. The systematic uncertainties are included by convolving Gaussian distributions, one for each source, with the Poisson distribution. The expected and observed 95% confidence level (CL) upper limits on $\sigma(pp \rightarrow \nu_\tau) \times BR(\nu_\tau \rightarrow \ell\ell)$ are calculated as a function of m_{ν_τ} using a Bayesian method [29] with a flat prior for the signal cross section times branching ratio and integrating over the nuisance parameters. Fig. 2 shows the expected and observed limits as a function of m_{ν_τ}, together with the ± 1 and ± 2 standard deviation uncertainty bands. The expected exclusion limits are determined using simulated pseudo-experiments containing only SM processes by evaluating the 95% CL upper limits for each pseudo-experiment at each value of m_{ν_τ}, including systematic uncertainties. The expected limit is calculated as the median of the distribution of limits. The ensemble of limits is also used to find the 1σ and 2σ envelopes of the expected limits as a function of m_{ν_τ}. For a sneutrino mass of 500 (2000) GeV, the observed limits on the production cross section times branching ratio are 3.2 (1.4) fb, 42 (17) fb, and 40 (18) fb for the $e\mu$, $e\tau$, and $\mu\tau$ modes, respectively. The $e\tau$ and $\mu\tau$ limits are weaker because (1) the 1-track tau hadronic branching ratio is about 50%, (2) the tau reconstruction efficiency is lower due to criteria needed to reduce jet backgrounds, and (3) the jet backgrounds are significantly larger than for the $e\mu$ mode.

In order to extract mass and coupling limits, it is assumed that only $d\bar{d}$ and $e\ell\ell$ couple to the sneutrino. The theoretical cross sections times branching ratios for $\lambda_{311} = 0.11$, $\lambda_{33k} = 0.07$ and $\lambda_{311} = 0.10$, $\lambda_{33k} = 0.05$ are also shown in Fig. 2. The branching ratio (in lowest order) for each $\ell\ell$ mode is $2|\lambda_{31k}|^2 / (2|\lambda_{31k}|^2 + N_c|\lambda_{311}|^2)$, where $N_c = 3$ is the number of colours and the factor of 2 is for the two charge states ($\ell^+\ell^-$). This gives branching ratios of 21% for $\lambda_{311} = 0.11$, $\lambda_{33k} = 0.07$ and 14% for $\lambda_{311} = 0.10$, $\lambda_{33k} = 0.05$. The uncertainties on the theoretical cross sections are evaluated by varying the factorisation and renormalisation scales (set equal to each other) from $m_{\nu_\tau}/2$ to $2m_{\nu_\tau}$ and varying the parton distribution functions. These uncertainties are indicated as bands in Fig. 2 and are small (only slightly larger than the width of the central line). For couplings $\lambda_{311} = 0.10$, $\lambda_{33k} = 0.05$, the lower limits on the m_{ν_τ} mass are 1610 GeV, 1110 GeV, and 1100 GeV for $e\mu$, $e\tau$, and $\mu\tau$ respectively. These lower limits are a factor of two to three times the best limits from the Tevatron for the same couplings [4].

The limits on the cross section times branching ratio are converted to limits on the couplings under the assumption that there are no other significant couplings that contribute to the decay of the ν_τ. In this case, the dependence of the cross section times branching ratio on the couplings is $|\lambda_{311}|^2 |\lambda_{33k}|^2 / (N_c |\lambda_{311}|^2$ +
Fig. 1. Observed and predicted $\ell\ell'$ invariant mass distributions for $e\mu$ (top), $e\tau_{\text{had}}$ (middle), and $\mu\tau_{\text{had}}$ (bottom). Signal simulations are shown for $m_{\tilde{\nu}\tau} = 500$ GeV ($\lambda'_{311} = 0.11, \lambda_{13k} = 0.07$). The region with $m_{\ell\ell'} < 200$ GeV is used to verify the background estimation. The lower plot for each decay mode shows the ratio of the data to the SM backgrounds. The red hatching represents the uncertainty on the total background in all plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. The 95% CL upper limit on the production cross section times branching ratio as a function of sneutrino mass for $e\mu$ (top), $e\tau_{\text{had}}$ (middle), and $\mu\tau_{\text{had}}$ (bottom) modes. The red dotted curve is the expected limit, the black solid curve is the observed limit, and the yellow and green bands give ±1 and ±2 standard deviations in the expected limit. The expected theoretical curves for $\lambda'_{311} = 0.11, \lambda_{13k} = 0.07$ (light blue dot-dashed) and $\lambda'_{311} = 0.10, \lambda_{13k} = 0.05$ (light magenta dashed) are also plotted with their uncertainties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 3 shows contours of the limit on λ'_{311} as a function of the sneutrino mass for various values of λ_{13k}. For each curve, the area above the curve is excluded. The previous limit from ATLAS for the $e\mu$ mode, based on 1 fb$^{-1}$ of 7 TeV data [5], is also shown.

7. Summary

A search has been performed for a narrow heavy particle decaying to $e\mu$, $e\tau_{\text{had}}$, or $\mu\tau_{\text{had}}$ final states using 4.6 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV recorded by the ATLAS detector at the LHC. The

$$2|\alpha_{13k}|^2,$$

where the $|\alpha_{13k}|^2$ in the numerator is from the production and the rest is from the branching ratio. The factor $N_c = 3$ is from colour, and the 2 in the denominator comes from accepting both charge states, that is, $\ell^+\ell^-$ and $\ell^-\ell^+$. The factor $2|\alpha_{13k}|^2$ in the numerator is from the production and the rest is from the branching ratio. The factor $N_c = 3$ is from colour, and the 2 in the denominator comes from accepting both charge states, that is, $\ell^+\ell^-$ and $\ell^-\ell^+$. The factor $2|\alpha_{13k}|^2$ in the numerator is from the production and the rest is from the branching ratio. The factor $N_c = 3$ is from colour, and the 2 in the denominator comes from accepting
Fig. 3. The 95% CL limits on λ_{311}' as a function of sneutrino mass for assumed values of λ_{jk} for the $e\mu$ (top), $e\tau$ (middle), and $\mu\tau$ (bottom) modes. For the $e\mu$ mode, the black solid curve is the previous ATLAS result based on 1 fb$^{-1}$ of data at 7 TeV.

data are found to be consistent with SM predictions. Limits are placed on the cross section times branching ratio for an RPV SUSY sneutrino. These results considerably extend previous constraints from ATLAS [5] and the Tevatron experiments [4].

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; M NiSW, Poland; GRICES and FCT, Portugal; M E R S (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; D ST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogaş University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INNE Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal et CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 ACH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 Il Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, United States
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyushu University, Fukuoka, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INNE Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Józef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysika instituuton, Ludwig Maximilians Universität, München, Bayern, Germany
80 Physics Department, University of Massachusetts, Amherst, MA, United States
81 Department of Physics, McGill University, Montreal, QC, Canada
82 School of Physics, University of Melbourne, Victoria, Australia
83 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
84 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States