
The Library
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
Tools
Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, Ersilia , Chapman, Sandra C. and Nakamura, T. K. M. (2013) Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Physics of Plasmas, Volume 20 (Number 1). Article number 012303. doi:10.1063/1.4773205 ISSN 1070-664X.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1063/1.4773205
Abstract
An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||
Journal or Publication Title: | Physics of Plasmas | ||||
Publisher: | American Institute of Physics | ||||
ISSN: | 1070-664X | ||||
Official Date: | 2013 | ||||
Dates: |
|
||||
Volume: | Volume 20 | ||||
Number: | Number 1 | ||||
Page Range: | Article number 012303 | ||||
DOI: | 10.1063/1.4773205 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |