Original citation:

Permanent WRAP url:
http://wrap.warwick.ac.uk/56856

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution- 3.0 Unported (CC BY 3.0) license and may be reused according to the conditions of the license. For more details see http://creativecommons.org/licenses/by/3.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk
Decays of B_s^0 mesons to final states such as $D^+D^−$, $D^0\bar{D}^0$ [1] and $\pi^+\pi^−$ [2] have been recently observed by LHCb. Such decays can proceed, at short distances, by two types of amplitudes, referred to as weak exchange and penguin annihilation. Example diagrams are shown in Figs. 1(a) and 1(b). There is also a potential long-distance contribution from rescattering, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^+_s\bar{D}^-_s$ followed by the $s\bar{s}$ pair rearranging to $d\bar{d}$). Understanding rescattering effects in hadronic B meson decays is important in order to interpret various CP-violating observables.

A measurement of the branching fraction of the decay $B_s^0 \rightarrow D^{+}\pi^−$ can be used to disentangle the contributions from different decay diagrams and from rescattering [3,4]. This decay has only weak exchange contributions, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^{+}\pi^−$ is not shown.) Moreover, rescattering contributions to the $B_s^0 \rightarrow D^{(*)\pi^\mp}\pi^\pm$ decay are expected to be small [5]. Therefore, if the observed branching fraction for the decay $B_s^0 \rightarrow \pi^+\pi^−$ is explained by rescattering, a low value of $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−) = (1.2 \pm 0.2) \times 10^{-6}$ is predicted [5]. However, if short-distance amplitudes are the dominant effect in $B_s^0 \rightarrow \pi^+\pi^−$ and related decays, $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−)$ could be much larger. The measured $B_s^0 \rightarrow D\bar{D}$ [1] and $B^+ \rightarrow D_s^+\phi$ [6] rates are at the upper end of the expected range in the rescattering-based model, but further measurements are needed to establish whether long-distance processes are dominant in these hadronic B decays.

In this paper, the result of a search for the decay $B_s^0 \rightarrow D^{+}\pi^−$ is presented. No previous measurements of this decay have been made. The inclusion of charge conjugated processes is implied throughout the paper. Since

Decays of B_s^0 mesons to final states such as $D^+D^−$, $D^0\bar{D}^0$ [1] and $\pi^+\pi^−$ [2] have been recently observed by LHCb. Such decays can proceed, at short distances, by two types of amplitudes, referred to as weak exchange and penguin annihilation. Example diagrams are shown in Figs. 1(a) and 1(b). There is also a potential long-distance contribution from rescattering, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^+_s\bar{D}^-_s$ followed by the $s\bar{s}$ pair rearranging to $d\bar{d}$). Understanding rescattering effects in hadronic B meson decays is important in order to interpret various CP-violating observables.

A measurement of the branching fraction of the decay $B_s^0 \rightarrow D^{+}\pi^−$ can be used to disentangle the contributions from different decay diagrams and from rescattering [3,4]. This decay has only weak exchange contributions, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^{+}\pi^−$ is not shown.) Moreover, rescattering contributions to the $B_s^0 \rightarrow D^{(*)\pi^\mp}\pi^\pm$ decay are expected to be small [5]. Therefore, if the observed branching fraction for the decay $B_s^0 \rightarrow \pi^+\pi^−$ is explained by rescattering, a low value of $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−) = (1.2 \pm 0.2) \times 10^{-6}$ is predicted [5]. However, if short-distance amplitudes are the dominant effect in $B_s^0 \rightarrow \pi^+\pi^−$ and related decays, $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−)$ could be much larger. The measured $B_s^0 \rightarrow D\bar{D}$ [1] and $B^+ \rightarrow D_s^+\phi$ [6] rates are at the upper end of the expected range in the rescattering-based model, but further measurements are needed to establish whether long-distance processes are dominant in these hadronic B decays.

In this paper, the result of a search for the decay $B_s^0 \rightarrow D^{+}\pi^−$ is presented. No previous measurements of this decay have been made. The inclusion of charge conjugated processes is implied throughout the paper. Since

Decays of B_s^0 mesons to final states such as $D^+D^−$, $D^0\bar{D}^0$ [1] and $\pi^+\pi^−$ [2] have been recently observed by LHCb. Such decays can proceed, at short distances, by two types of amplitudes, referred to as weak exchange and penguin annihilation. Example diagrams are shown in Figs. 1(a) and 1(b). There is also a potential long-distance contribution from rescattering, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^+_s\bar{D}^-_s$ followed by the $s\bar{s}$ pair rearranging to $d\bar{d}$). Understanding rescattering effects in hadronic B meson decays is important in order to interpret various CP-violating observables.

A measurement of the branching fraction of the decay $B_s^0 \rightarrow D^{+}\pi^−$ can be used to disentangle the contributions from different decay diagrams and from rescattering [3,4]. This decay has only weak exchange contributions, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^{+}\pi^−$ is not shown.) Moreover, rescattering contributions to the $B_s^0 \rightarrow D^{(*)\pi^\mp}\pi^\pm$ decay are expected to be small [5]. Therefore, if the observed branching fraction for the decay $B_s^0 \rightarrow \pi^+\pi^−$ is explained by rescattering, a low value of $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−) = (1.2 \pm 0.2) \times 10^{-6}$ is predicted [5]. However, if short-distance amplitudes are the dominant effect in $B_s^0 \rightarrow \pi^+\pi^−$ and related decays, $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−)$ could be much larger. The measured $B_s^0 \rightarrow D\bar{D}$ [1] and $B^+ \rightarrow D_s^+\phi$ [6] rates are at the upper end of the expected range in the rescattering-based model, but further measurements are needed to establish whether long-distance processes are dominant in these hadronic B decays.

In this paper, the result of a search for the decay $B_s^0 \rightarrow D^{+}\pi^−$ is presented. No previous measurements of this decay have been made. The inclusion of charge conjugated processes is implied throughout the paper. Since

Decays of B_s^0 mesons to final states such as $D^+D^−$, $D^0\bar{D}^0$ [1] and $\pi^+\pi^−$ [2] have been recently observed by LHCb. Such decays can proceed, at short distances, by two types of amplitudes, referred to as weak exchange and penguin annihilation. Example diagrams are shown in Figs. 1(a) and 1(b). There is also a potential long-distance contribution from rescattering, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^+_s\bar{D}^-_s$ followed by the $s\bar{s}$ pair rearranging to $d\bar{d}$). Understanding rescattering effects in hadronic B meson decays is important in order to interpret various CP-violating observables.

A measurement of the branching fraction of the decay $B_s^0 \rightarrow D^{+}\pi^−$ can be used to disentangle the contributions from different decay diagrams and from rescattering [3,4]. This decay has only weak exchange contributions, as shown in Fig. 1(c). (The suppressed diagram for $B_s^0 \rightarrow D^{+}\pi^−$ is not shown.) Moreover, rescattering contributions to the $B_s^0 \rightarrow D^{(*)\pi^\mp}\pi^\pm$ decay are expected to be small [5]. Therefore, if the observed branching fraction for the decay $B_s^0 \rightarrow \pi^+\pi^−$ is explained by rescattering, a low value of $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−) = (1.2 \pm 0.2) \times 10^{-6}$ is predicted [5]. However, if short-distance amplitudes are the dominant effect in $B_s^0 \rightarrow \pi^+\pi^−$ and related decays, $\mathcal{B}(B_s^0 \rightarrow D^{+}\pi^−)$ could be much larger. The measured $B_s^0 \rightarrow D\bar{D}$ [1] and $B^+ \rightarrow D_s^+\phi$ [6] rates are at the upper end of the expected range in the rescattering-based model, but further measurements are needed to establish whether long-distance processes are dominant in these hadronic B decays.

In this paper, the result of a search for the decay $B_s^0 \rightarrow D^{+}\pi^−$ is presented. No previous measurements of this decay have been made. The inclusion of charge conjugated processes is implied throughout the paper. Since
signatures of b-hadron decays: at least one track, with $p_T > 1.7$ GeV/c and χ^2_{IP} with respect to any primary interaction vertex (PV) greater than 16, that subsequently forms a two-, three-, or four-track secondary vertex with a high sum of the p_T of the tracks and significant displacement from the PV. The χ^2_{IP} is the difference between the χ^2 of the PV reconstruction with and without the considered track. In the offline analysis, the software trigger decision is required to be due to the candidate signal decay.

Candidates that are consistent with the decay chain $B_{s}^{0} \rightarrow D^{*+} \pi^-$, $D^{*-} \rightarrow D^{0} \pi^-$, $D^{0} \rightarrow K^+ \pi^-$ are selected. The D^{0} and D^{*-} candidate invariant mass ranges are required to satisfy $1814 < m_{D^{*} \pi^-} < 1914$ MeV/c^2 and $2008.78 < m_{D^{0} \pi^-} < 2011.78$ MeV/c^2, respectively, where a D^{0} mass constraint is applied in the evaluation of $m_{D^{0} \pi^-}$. The bachelor pion, from the B_{s}^{0} decay, is required to be consistent with the pion mass hypothesis, based on particle identification (PID) information from the ring-imaging Cherenkov detectors [11]. All other selection criteria were tuned on the $B_{s}^{0} \rightarrow D^{*+} \pi^- \rightarrow D^{0} \pi^- \rightarrow K^+ \pi^- \pi^0 \nu$ control channel in a similar manner to that used in another recent LHCb publication [12]. The large yield in the normalization sample allows the selection to be based on data, though the efficiencies are determined using Monte Carlo simulated events in which pp collisions are generated using PYTHIA 6.4 [13] with a specific LHCb configuration [14]. Decays of hadronic particles are described by EVTGEN [15]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [16] as described in Ref. [17].

The selection requirements include criteria on the quality of the tracks forming the signal candidate, their p_T, p_T, and inconsistency with the hypothesis of originating from the PV (χ^2_{IP}). Requirements are also placed on the corresponding variables for candidate composite particles (χ^2_{vertex}, χ^2_{flight}, and the cosine of the angle between the momentum vector and the line joining the PV to the B_{s}^{0} vertex ($\cos \theta_{dir}$) [18].

Further discrimination between signal and background categories is achieved by calculating weights for the remaining B_{s}^{0} candidates [19]. The weights are based on a simplified fit to the B candidate invariant mass distribution, where the B_{s}^{0} region is neither examined nor included in the fit. The weights are used to train a neural network [20] in order to maximize the separation between categories.

To retain sufficient background events for the network training, the requirement on $m_{D^{*} \pi^-}$ is not applied. A total of 15 variables are used as input to the network. They include the χ^2_{IP} of the four candidate tracks, the χ^2_{vertex}, χ^2_{flight}, and $\cos \theta_{dir}$ of the D^{0} and B_{s}^{0} candidates, and the B_{s}^{0} candidate p_T. The p_T asymmetry and track multiplicity in a cone with half-angle of 1.5 units in the plane of pseudorapidity and azimuthal angle (measured in radians) [21] around the B_{s}^{0} candidate flight direction are also used. The input quantities to the neural network depend only weakly on the kinematics of the B_{s}^{0} decay. A requirement on the network output is imposed that reduces the combinatorial background by an order of magnitude while retaining about 75% of the signal. Potential biases from this data-driven method are investigated by training the neural network with different fractions of the data sample. The same results are obtained using a neural network trained on 30%, 40%, 50%, 60%, and 70% of the total data sample.

After all selection requirements are applied, approximately 50,000 candidates are selected in the invariant mass range $5150 < m_{D^{*} \pi^-} < 5600$ MeV/c^2. About 1% of events with at least one candidate also contain a second candidate. Such multiple candidates are retained and treated the same as other candidates.

In addition to combinatorial background, candidates may be formed from misidentified or partially reconstructed B_{s}^{0} decays. Contributions from partially reconstructed decays are reduced by requiring the invariant mass of the B_{s}^{0} candidate to be above 5150 MeV/c^2. The contribution from B_{s}^{0} decays to identical final states but without intermediate charmed mesons is negligible due to the requirement on the D^{*-} candidate invariant mass. A small but significant number of background events are expected from $B_{s}^{0} \rightarrow D^{*-} K^+$ decays with the K^+ misidentified as a pion. The branching fractions of $B_{s}^{0} \rightarrow D^{*-} K^+$ and $B_{s}^{0} \rightarrow D^{*-} p$ are expected to be small due to Cabibbo-Kobayashi-Maskawa suppression, so that these potential backgrounds are negligible.

Since the B_{s}^{0} decay mode is several orders of magnitude more abundant than the B_{s}^{0} decay, it is critical to understand precisely the shape of the B_{s}^{0} signal peak. The dependence of the width of the peak on different kinematic variables of the B_{s}^{0} decay was investigated. The strongest correlation was found to be with the angle between the momenta of the D^{*-} candidate and the bachelor π^+ in the lab frame.

FIG. 1. Decay diagrams for (a) $B_{s}^{0} \rightarrow D^{(*)+}D^{(*)-}$ via weak exchange, (b) $B_{s}^{0} \rightarrow D^{(*)+}D^{(*)-}$ via penguin annihilation, and (c) $B_{s}^{0} \rightarrow D^{(*)+}\pi^+$ via weak exchange.
Simulated pseudo-experiments were used to find an optimal number of bins to be used in a simultaneous fit. The outcome is that five bins are used, with ranges 0–0.046, 0.046–0.067, 0.067–0.092, 0.092–0.128, and 0.128–0.4 rad, chosen to have approximately equal numbers of B_0^0 decays in each. The peak width in the highest bin is approximately 60% of that in the lowest bin. The pseudo-experiments show that the simultaneous fit in bins of θ_{back} is approximately 20% more sensitive to a potential B_0^0 signal than the fit without binning.

The signal yields are obtained from a maximum likelihood fit to the $D^{*-} \pi^+$ invariant mass distribution in the range 5150–5600 MeV/c^2. The fit is performed simultaneously in the five θ_{back} bins. The fit includes double Gaussian shapes, where the two Gaussian functions share a common mean, for B_0^0 and B_0^0 signals, together with an exponential component for the partially reconstructed background, a linear component for the combinatorial background and a nonparametric function, derived from simulation, for $B_0^0 \rightarrow D^{*-} K^+$ decays. The probability density function (PDF) for the $B_0^0 \rightarrow D^{*-} K^+$ background is shifted by the mass difference between data and simulation for each bin of θ_{back}.

The parameters of the double Gaussian shapes are constrained to be identical for B_0^0 and B_s^0 signals, with...
an offset in their mean values fixed to the known $B^0 s$-$B^0 s$ mass difference [8]. Additionally, the relative normalization of the two Gaussian functions and the ratio of their widths are constrained within uncertainties to the value obtained in simulation. A total of 33 parameters are allowed to vary in the fit: the ratio of yields $N(B^0 s)/N(B^0)$, the linear slope of the combinatorial background and the exponential parameter of the partially reconstructed background, plus separate parameters in each of the $\theta_{b}\theta_{c}$ bins to describe the peak position and core Gaussian width of the signal PDF, and the yields of the B^0 peak, the combinatorial background, the partially reconstructed background, and the background from $B^0 \rightarrow D^{*+} K^+$.

The results of the fit are shown in Fig. 2. The total number of $B^0 \rightarrow D^{*+} \pi^- \pi^+$ decays is found to be 29400 ± 400, and the ratio of yields determined is $N(B^0 s)/N(B^0) = (1.4 \pm 3.5) \times 10^{-4}$, where the uncertainty is statistical only. The number of $B^0 \rightarrow D^{*-} K^+$ decays found is 1200 ± 200, with a correlation of 7% to the ratio of signal yields.

The ratio of yields is converted to a branching fraction following

$$\mathcal{B}(B^0 s \rightarrow D^{*+} \pi^- \pi^+) = \frac{N(B^0 s)}{N(B^0)} \times \frac{\epsilon(B^0 s)}{\epsilon(B^0)} \times \frac{f_d}{f_s} \times \mathcal{B}(B^0 \rightarrow D^{*-} \pi^- \pi^+),$$

(1)

where $\epsilon(B^0)$ and $\epsilon(B^0 s)$ are the efficiencies for the B^0 and $B^0 s$ decay modes respectively, while f_d (f_s) is the probability that a b quark produced in the acceptance results in a B^0 ($B^0 s$) meson. Their ratio has been determined to be $f_d/f_s = 0.256 \pm 0.020$ [22].

The total efficiencies are $(0.165 \pm 0.002)\%$ and $(0.162 \pm 0.002)\%$ for the B^0 and $B^0 s$ decay modes, respectively, including contributions from detector acceptance, selection criteria, PID and trigger effects. The ratio is consistent with unity, as expected. The PID efficiency is measured using a control sample of $D^{*-} \rightarrow \bar{D}^0 \pi^- \pi^+$. The kinematic properties of the tracks in signal decays are obtained from simulation, allowing the PID efficiency for each event to be obtained from the tables. Note: This calibration sample is dominated by promptly produced D^{*} mesons. The remaining contributions to the total efficiency are determined from simulation and validated using data.

Systematic uncertainties on $\mathcal{B}(B^0 s \rightarrow D^{*+} \pi^- \pi^+)$ are assigned due to the following sources, given in units of 1×10^{-6}, summarized in Table I. Event selection efficiencies for both modes are found to be consistent in simulation to within 2%, yielding a systematic uncertainty of 0.02. The fit model is varied by replacing the double Gaussian signal shapes with double Crystal Ball [23] functions (with both upper and lower tails), changing the linear combinatorial background shape to quadratic and including a possible contribution from $B^0 s \rightarrow D^{*-} K^+$. The nonparametric function for the $B^0 \rightarrow D^{*-} K^+$ background was scaled in each bin to account for the change in the width of the B^0 signal. Combined in quadrature these sources contribute 1.44 to the systematic uncertainty. Possible biases in the determination of the fit parameters are investigated by simulated pseudo-experiments, leading to an uncertainty of 0.12. Events with multiple candidates are investigated by performing a fit, having chosen one candidate at random. This fit is performed 100 times, with different seeds, and the spread of the results, 0.22, is taken as the systematic uncertainty. The uncertainty on the quantity f_d/f_s contributes 0.12, while that on $\mathcal{B}(B^0 \rightarrow D^{*+} \pi^- \pi^+)$ gives 0.08. Combining all sources in quadrature, the total absolute systematic uncertainty is 1.47×10^{-6}, and the $B^0 s$ branching fraction is determined to be $\mathcal{B}(B^0 s \rightarrow D^{*+} \pi^- \pi^+) = (1.5 \pm 3.8 \pm 1.5) \times 10^{-6}$, where the first uncertainty is statistical and the second is systematic.

A number of cross-checks are performed to test the stability of the result. Candidates are divided based upon the hardware trigger decision into three groups: events in which a particle from the signal decay created a large enough cluster in the calorimeter to fire the trigger, events that were triggered independently of the signal decay and those events that were triggered by both the signal decay and the rest of the event. The neural network and PID requirements are tightened and loosened. The nonparametric function used to describe the background from $B^0 \rightarrow D^{*-} K^+$ decays is smoothed to reduce potential statistical fluctuations. All cross-checks give consistent results.

Since no significant signal is observed, upper limits are set, at both 90% and 95% confidence level (CL), using a Bayesian approach. The statistical likelihood curve from the fit is convolved with a Gaussian function of width given by the systematic uncertainty, and the upper limits are taken as the values containing 90% (95%) of the integral of the likelihood in the physical region. The obtained limits are

$$\mathcal{B}(B^0 s \rightarrow D^{*+} \pi^- \pi^+) < 6.1(7.8) \times 10^{-6} \text{ at } 90\%(95\%) \text{ CL}.$$
of a detectable signal indicates that rescattering effects may make significant contributions to other hadronic decays, such as $B^0_s \rightarrow \pi^+ \pi^-$ and $B^0 \rightarrow D D$, as recently suggested [5].

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge support from the ERC under FP7. The Tier1 computing centers are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), and GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages on which we depend.

SEARCH FOR THE DECAY $B^0_s \to D^{+}\pi^-$

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Padova, Padova, Italy
22Sezione INFN di Pisa, Pisa, Italy
23Sezione INFN di Roma Tor Vergata, Roma, Italy
24Sezione INFN di Roma La Sapienza, Roma, Italy
25Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26AGH University of Science and Technology, Kraków, Poland
27National Center for Nuclear Research (NCBJ), Warsaw, Poland
28Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
29Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

071101-7
33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
34 Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
37 European Organization for Nuclear Research (CERN), Geneva, Switzerland
38 Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universitat Zurich, Zurich, Switzerland
40 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
41 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
42 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
43 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
44 University of Birmingham, Birmingham, United Kingdom
45 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
46 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
47 Department of Physics, University of Warwick, Coventry, United Kingdom
48 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
49 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
51 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
52 Imperial College London, London, United Kingdom
53 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
54 Department of Physics, University of Oxford, Oxford, United Kingdom
55 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
56 Syracuse University, Syracuse, New York, USA
57 Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
58 Institut fur Physik, Universitat Rostock, Rostock, Germany (associated to Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany)
59 University of Cincinnati, Cincinnati, Ohio, USA (associated to Syracuse University, Syracuse, New York, USA)

a Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
b Also at Università di Bari, Bari, Italy.
c Also at Università di Bologna, Bologna, Italy.
d Also at Università di Cagliari, Cagliari, Italy.
e Also at Università di Ferrara, Ferrara, Italy.
f Also at Università di Firenze, Firenze, Italy.
g Also at Università di Urbino, Urbino, Italy.
h Also at Università di Modena e Reggio Emilia, Modena, Italy.
i Also at Università di Genova, Genova, Italy.
j Also at Università di Milano Bicocca, Milano, Italy.
k Also at Università di Roma Tor Vergata, Roma, Italy.
l Also at Università di Roma La Sapienza, Roma, Italy.
m Also at Università della Basilicata, Potenza, Italy.

n Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
o Also at IFIC, Universitat de Valencia-CSIC, Valencia, Spain.
p Also at Hanoi University of Science, Hanoi, Vietnam.
q Also at Università di Padova, Padova, Italy.
r Also at Università di Pisa, Pisa, Italy.
s Also at Scuola Normale Superiore, Pisa, Italy.