The Library
Unstable attractors in manifolds
Tools
SánchezGabites, J. J.. (2010) Unstable attractors in manifolds. Transactions of the American Mathematical Society, Vol.362 (No.7). pp. 35633589. ISSN 00029947

PDF
WRAP_SanchezGabites_unstable_attractors.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (356Kb) 


PDF (Cover sheet)
WRAP_coversheet_SánchezGabites.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (39Kb) 
Official URL: http://www.ams.org/journals/tran/201036207/S0002...
Abstract
Assume that K is a compact attractor with basin of attraction A(K) for some continuous flow phi in a space M. Stable attractors are very well known, but otherwise (without the stability assumption) the situation can be extremely wild. In this paper we consider the class of attractors with no external explosions, where a mild form of instability is allowed. After obtaining a simple description of the trajectories in A(K)  K we study how K sits in A(K) by performing an analysis of the Poincare polynomial of the pair (A(K), K). In case M is a surface we obtain a nice geometric characterization of attractors with no external explosions, as well as a converse to the well known fact that the inclusion of a stable attractor in its basin of attraction is a shape equivalence. Finally, we explore the strong relations which exist between the shape (in the sense of Borsuk) of K and the shape (in the intuitive sense) of the whole phase space M, much in the spirit of the MorseConley theory.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Attractors (Mathematics), Manifolds (Mathematics) 
Journal or Publication Title:  Transactions of the American Mathematical Society 
Publisher:  American Mathematical Society 
ISSN:  00029947 
Date:  July 2010 
Volume:  Vol.362 
Number:  No.7 
Number of Pages:  27 
Page Range:  pp. 35633589 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Open Access 
Funder:  Spain. Dirección General de Investigación Científica y Técnica (DGICYT) 
References:  1. K. Athanassopoulos, Explosions near isolated unstable attractors, Pacific J. Math. 210 (2003), no. 2, 201–214. MR1988531 (2004c:37030) 2. , Remarks on the region of attraction of an isolated invariant set, Colloq. Math. 104 (2006), 157–167. MR2197074 (2006i:37033) 3. A. Beck, On invariant sets, Ann. of Math. 67 (1958), no. 1, 99–103. MR0092106 (19:1064c) 4. N. P. Bhatia and G. P. Szeg¨o, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer–Verlag, 1970. MR0289890 (44:7077) 5. S. A. Bogaty˘ı and V. I. Gutsu, On the structure of attracting compacta, Differentsialnye Uravneniya 25 (1989), no. 5, 907–909, 920. MR1003051 (90j:58076) 6. K. Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Pa´nstwowe Wydawnictwo Naukowe, 1967. MR0216473 (35:7306) 7. , Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223–254. MR0229237 (37:4811) 8. , Theory of shape, Monografie Matematyczne, Tom 59, Pa´nstwowe Wydawnictwo Naukowe, 1975. MR0418088 (54:6132) 9. G. E. Bredon, Wilder manifolds are locally orientable, Proc. N. A. S. 63 (1969), no. 4, 1079– 1081. MR0286109 (44:3325) 10. M. Brown and H. Gluck, Stable structures on manifolds. I. Homeomorphisms of Sn, Ann. of Math. (2) 79 (1964), 1–17. MR0158383 (28:1608a) 11. R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Diff. Eq. 12 (1972), 330–352. MR0336763 (49:1536) 12. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, 1978. MR511133 (80c:58009) 13. C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35–61. MR0279830 (43:5551) 14. J. Dydak and J. Segal, Shape theory. An introduction, Lecture Notes in Mathematics, 688, Springer, 1978. MR520227 (80h:54020) 15. R. D. Edwards, The solution of the 4dimensional annulus conjecture (after Frank Quinn), Fourmanifold theory (C. Gordon and R. Kirby, eds.), Contemp. Math., vol. 35, Amer. Math. Soc., 1984, pp. 211–264. MR780581 (86j:57006) 16. A. Giraldo, M. A. Mor´on, F. R. Ruiz del Portal, and J. M. R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), no. 5, 837–847. MR2113160 (2006k:37024) 17. B. G¨unther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), no. 1, 321–329. MR1170545 (93k:54044) 18. C. Guti´errez, Smoothing continuous flows on twomanifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 17–44. MR837974 (87k:58222) 19. H. M. Hastings, A higherdimensional Poincar´eBendixson theorem, Glas. Mat. Ser. III 14(34) (1979), no. 2, 263–268. MR646352 (83e:34041) 20. A. Hatcher, Algebraic topology, Cambridge University Press, 2002. MR1867354 (2002k:55001) 21. M. W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, SpringerVerlag, 1976. MR0448362 (56:6669) 22. S. Hu, Theory of retracts, Wayne State University Press, 1965. MR0181977 (31:6202) 23. L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors, Comm. Pure Appl. Math. 53 (2000), no. 2, 218–242. MR1721374 (2000h:37019) 24. R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969), 575–582. MR0242165 (39:3499) 25. S. Mardeˇsi´c and J. Segal, Shape theory. The inverse system approach, North–Holland Mathematical Library, 26, North–Holland Publishing Co., 1982. MR676973 (84b:55020) 26. C. K. McCord, On the Hopf index and the Conley index, Trans. Amer. Math. Soc. 313 (1989), no. 2, 853–860. MR961594 (90a:58151) 27. M. A. Mor´on, J. J. S´anchezGabites, and J. M. R. Sanjurjo, Topology and dynamics of unstable attractors, Fund. Math. 197 (2007), 239–252. MR2365890 (2008j:37032) 28. F. Quinn, Ends of maps. III. Dimensions 4 and 5, J. Diff. Geom 17 (1982), no. 3, 503–521. MR679069 (84j:57012) 29. F. Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7–21. MR0120638 (22:11388) 30. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR797044 (87e:58182) 31. J. W. Robbin and D. Salamon, Dynamical systems and shape theory, Ergod. Th. and Dynam. Sys. 8* (1988), 375–393. MR967645 (89h:58094) 32. J. M. R. Sanjurjo, Multihomotopy, ˇ Cech spaces of loops and shape groups, Proc. London Math. Soc. (3) 69 (1994), no. 2, 330–344. MR1281968 (95h:55011) 33. , On the structure of uniform attractors, J. Math. Anal. Appl. 192 (1995), no. 2, 519–528. MR1332224 (96c:58109) 34. , Morse equations and unstable manifolds of isolated invariant sets, Nonlinearity 16 (2003), 1435–1448. MR1986304 (2004d:37022) 35. E. H. Spanier, Algebraic topology, McGraw–Hill Book Co., 1966. MR0210112 (35:1007) 36. R. Thom, Quelques propri´et´es globales des vari´et´es diff´erentiables, Comment. Math. Helv. 28 (1954), 17–86. MR0061823 (15:890a) 37. R. L. Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, vol. 32, American Mathematical Society, 1949. MR0029491 (10:614c) 
URI:  http://wrap.warwick.ac.uk/id/eprint/5699 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 