Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An analysis of the origin of differences between measured and simulates fields produced by a 15-element ultrasound phased array

Tools
- Tools
+ Tools

Aitkenhead, Adam H., Mills, John A. and Wilson, Adrian J. (2010) An analysis of the origin of differences between measured and simulates fields produced by a 15-element ultrasound phased array. Ultrasound in Medicine & Biology, Vol.36 (No.3). pp. 410-418. doi:10.1016/j.ultrasmedbio.2009.11.010

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1016/j.ultrasmedbio.2009.11.0...

Request Changes to record.

Abstract

Modeling provides an attractive approach for the design of phased array ultrasound transducers for hyperthermia. However, measurements on physical transducers reveal differences from the idealized field profiles predicted by simulation. In this paper we report a method of analyzing the origins of these differences. The measured performance of a 15-element sparse phased array is described and compared with simulated fields calculated using the point source method. It highlighted two notable differences: First, that the focal region was located closer to the surface of the physical transducer than in the simulated fields; and second, that numerous intensity maxima were present between the surface of the transducer and the focal zone in the experimental data, but not in the simulated fields. We identified six factors that could potentially affect the field but were not taken into account by the default simulations, and we performed a sensitivity analysis on these: (i) Variation in the amplitude of the output from each element, (ii) the presence of square-wave harmonics in the drive signals, (iii) nonpistonlike vibration of elements, (iv) quantization of the applied phases, (v) errors in the spatial positioning of each element; and (vi) interelement cross-coupling. Both the independent impact of each factor and the interactions between multiple factors were analyzed by using a full-factorial experimental design composed of 64 (2(6)) simulations. The results indicated that nonpistonlike motion of elements is likely to be the primary cause of differences between the measured and modelled fields. Determination of the precise vibrational modes of elements in an array is complex and would require full finite element analysis. However, the simple vibrational mode considered within the present work, corresponding to the addition of a surface Rayleigh wave originating at the element center and propagating radially, produced simulation results that were in good agreement with the measured data. (E-mail: adam.aitkenhead@physics.cr.man.ac.uk) (C) 2010 World Federation for Ultrasound in Medicine & Biology.

Item Type: Journal Article
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
R Medicine
Divisions: Faculty of Science > Physics
Journal or Publication Title: Ultrasound in Medicine & Biology
Publisher: Elsevier Inc.
ISSN: 0301-5629
Official Date: March 2010
Dates:
DateEvent
March 2010Published
Volume: Vol.36
Number: No.3
Number of Pages: 9
Page Range: pp. 410-418
DOI: 10.1016/j.ultrasmedbio.2009.11.010
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: Engineering and Physical Sciences Research Council (EPSRC)

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us