
The Library
Wellposedness and regularity of solutions of an aggregation equation
Tools
Li, Dong and Rodrigo, Jose L. (2010) Wellposedness and regularity of solutions of an aggregation equation. Revista Matematica Iberoamericana, Vol.26 (No.1). pp. 261-294. ISSN 0213-2230.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://projecteuclid.org/euclid.rmi/1266330124
Abstract
We consider an aggregation equation in R-d, d >= 2 with fractional dissipation: u(t) + del. (u del K*u) = nu Lambda(gamma)u, where nu >= 0, 0 < gamma >= 2 and K(x) = e(-vertical bar x vertical bar) In the supercritical case, 0 < gamma < 1, we obtain new local wellposedness results and smoothing properties of solutions. In the critical case, gamma = 1, we prove the global wellposedness for initial data having a small L-x(1) norm. In the subcritical case, gamma > 1, we prove global wellposedness and smoothing of solutions with general L-x(1) initial data.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Journal or Publication Title: | Revista Matematica Iberoamericana | ||||
Publisher: | European Mathematical Society Publishing House | ||||
ISSN: | 0213-2230 | ||||
Official Date: | 2010 | ||||
Dates: |
|
||||
Volume: | Vol.26 | ||||
Number: | No.1 | ||||
Number of Pages: | 34 | ||||
Page Range: | pp. 261-294 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access | ||||
Funder: | Mathematics Department of the University of Iowa, National Science Foundation, Ministerio de Educacion y Ciencia (Spain) | ||||
Grant number: | DMS-0635607, DMS-0908032, MTM2005-05980 |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |