Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Orbital periods and accretion disc structure of four AM CVn systems

Tools
- Tools
+ Tools

Kupfer, T., Groot, P. J., Levitan, D., Steeghs, D., Marsh, Tom, Rutten, R. G. M. and Nelemans, G. (2013) Orbital periods and accretion disc structure of four AM CVn systems. Monthly Notices of the Royal Astronomical Society, Volume 432 (Number 3). pp. 2048-2060. doi:10.1093/mnras/stt524 ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1093/mnras/stt524

Request Changes to record.

Abstract

Phase-resolved spectroscopy of four AM CVn systems obtained with the William Herschel Telescope and the Gran Telescopio de Canarias is presented. SDSS J120841.96+355025.2 was found to have an orbital period of 52.96 ± 0.40 min and shows the presence of a second bright spot in the accretion disc. The average spectrum contains strong Mg I and Si I/II absorption lines most likely originating in the atmosphere of the accreting white dwarf. SDSS J012940.05+384210.4 has an orbital period of 37.555 ± 0.003 min. The average spectrum shows the Stark-broadened absorption lines of the DB white dwarf accretor. The orbital period is close to the previously reported superhump period of 37.9 min. Combined, this results in a period excess ϵ = 0.0092 ± 0.0054 and a mass ratio q = 0.031 ± 0.018. SDSS J164228.06+193410.0 displays an orbital period of 54.20 ± 1.60 min with an alias at 56.35 min. The average spectrum also shows strong Mg I absorption lines, similar to SDSS J120841.96+355025.2. SDSS J152509.57+360054.50 displays a period of 44.32 ± 0.18 min. The overall shape of the average spectrum is more indicative of shorter period systems in the 20–35 min range. The accretor is still clearly visible in the pressure-broadened absorption lines most likely indicating a hot donor star and/or a high-mass accretor. Flux ratios for several helium lines were extracted from the Doppler tomograms for the disc and bright spot region, and compared with single-slab Local Thermodynamic Equilibrium (LTE) models with variable electron densities and path lengths to estimate the disc and bright spot temperature. Good agreement between data and the model in three out of four systems was found for the disc region. All three systems show similar disc temperatures of ∼10 500 K. In contrast, only weak agreement between observation and models was found for the bright spot region.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Oxford University Press
ISSN: 0035-8711
Official Date: 2013
Dates:
DateEvent
2013Published
Volume: Volume 432
Number: Number 3
Page Range: pp. 2048-2060
DOI: 10.1093/mnras/stt524
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us