Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly

Tools
- Tools
+ Tools

Sun, Liang, Petzetakis, Nikos, Pitto-Barry, Anaïs, Schiller, Tara L., Kirby, Nigel, Keddie, Daniel J., Boyd, Ben J., O’Reilly, Rachel K. and Dove, Andrew P. (2013) Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules, Volumes 46 (Number 22). pp. 9074-9082. doi:10.1021/ma401634s

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1021/ma401634s

Request Changes to record.

Abstract

A series of poly(l-lactide)-b-poly(acrylic acid) (PLLA-b-PAA) diblock copolymers with a range of hydrophobic or hydrophilic block lengths were designed in order to tune the size of the resultant cylindrical micelles using a crystallization-driven self-assembly (CDSA) approach. The precursor poly(l-lactide)-b-poly(tetrahydropyran acrylate) (PLLA-b-PTHPA) was synthesized by a combination of ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The CDSA process was carried out in a tetrahydrofuran/water (THF/H2O) mixture during the hydrolysis of PTHPA block at 65 °C using an evaporation method. A majority of PLLA-b-PAA diblock copolymers resulted in the formation of cylindrical micelles with narrow size distributions (Lw/Ln < 1.30) as determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Furthermore, the length of PLLA block was found to control the length of the resultant cylindrical micelles while the length of PAA block governed their widths. Synchrotron small-angle X-ray scattering (SAXS) further proved that the length increase of these cylinders was a consequence of the decreasing PLLA block lengths. The crystalline core nature of these cylinders was characterized by wide-angle X-ray diffraction (WAXD), and the relative core crystallinity was calculated to compare different samples. Both the hydrophobic weight fraction and the relative core crystallinity were found to determine the geometry of the formed PLLA-b-PAA cylindrical micelles. Finally, changing the pH conditions of the CDSA process was found to have no significant effect on tuning the resultant dimensions of the cylinders.

Item Type: Journal Article
Divisions: Faculty of Science > Chemistry
Journal or Publication Title: Macromolecules
Publisher: American Chemical Society
ISSN: 0024-9297
Official Date: 2013
Dates:
DateEvent
2013Published
Volume: Volumes 46
Number: Number 22
Page Range: pp. 9074-9082
DOI: 10.1021/ma401634s
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us