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ABSTRACT

For ordinary modular forms, there are two constructions of a p-adic L-

function attached to the non-unit root of the Hecke polynomial, which

are conjectured but not known to coincide. We prove this conjecture

for modular forms of CM type, by calculating the the critical-slope L-

function arising from Kato’s Euler system and comparing this with results

of Belläıche on the critical-slope L-function defined using overconvergent

modular symbols.

1. Setup

1.1. Introduction. Let f be a cuspidal new modular eigenform of weight ≥ 2,

and p a prime not dividing the level of f . It has long been known that if α is

any root of the Hecke polynomial of f at p such that vp(α) < k− 1, then there

is a p-adic L-function Lp,α(f) interpolating the critical L-values of f and its

twists by Dirichlet characters of p-power conductor; see [12, 1, 16].

If f is non-ordinary (the Hecke eigenvalue of f at p has valuation > 0) then

both roots of the Hecke polynomial satisfy this condition, but if f is ordinary,

then there is one root with valuation k − 1 (“critical slope”), to which the

classical modular symbol constructions do not apply. Two approaches exist

to rectify this injustice to the ordinary forms by constructing a critical-slope

p-adic L-function. Firstly, there is an approach using p-adic modular symbols

[15, 14, 2]. Secondly, there is an approach using Kato’s Euler system [9] and

Perrin-Riou’s p-adic regulator map [13] (cf. [4, Remarque 9.4]). Although it

is natural to conjecture that the objects arising from these two constructions

coincide (cf. [14, Remark 9.7]), and the results of [10] are strong evidence for this

conjecture, prior to the present work this was not known in a single example.

In this paper, we show that the two critical-slope L-functions coincide for

modular forms of CM type. In this case, Belläıche has shown [3] that the

“modular symbol” critical-slope p-adic L-function is related to the Katz p-adic

L-function for the corresponding imaginary quadratic field. We show here that

∗ The first author is grateful for the support of a CRM-ISM postdoctoral fellowship.
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the same relation holds for the Kato critical slope p-adic L-function, by com-

paring Kato’s Euler system with another Euler system: that arising from el-

liptic units. Using the results of [18] and [5] relating elliptic units to Katz’s

L-function, we obtain a formula (Theorem 3.2) for the Kato L-function, which

coincides with Belläıche’s formula for its modular symbol counterpart (up to

a scalar factor corresponding to the choice of periods). This establishes the

equality of the two critical-slope p-adic L-functions for ordinary eigenforms of

CM type (Theorem 3.4).

1.2. Notation. Let K be a finite extension of either Q or Qp, where p is an

odd prime. We write K∞ = K(µp∞), K for an algebraic closure of K and Kab

for the maximal abelian extension of K in K. A p-adic representation of the

absolute Galois group Gal(K/K) is a finite-dimensional Qp-vector space with

a continuous linear action of Gal(K/K).

A Galois extension L of K will be called a p-adic Lie extension if G =

Gal(L/K) is a compact p-adic Lie group of finite dimension. In this case,

we denote by Λ(G) its Iwasawa algebra; it is defined to be the completed group

ring

Λ(G) = lim←−Zp[G/U ],

where U runs over all open normal subgroups of G. We write Q(G) for the total

quotient ring of Λ(G). If R is a p-adically complete Zp-algebra, we shall write

ΛR(G) for R ⊗̂Λ(G), the Iwasawa algebra with coefficients in R.

If L is a complete discretely valued subfield of Cp, we write HL(G) for the

algebra of L-valued distributions on G (the continuous dual of the space of

locally L-analytic functions). This naturally contains ΛL(G) as a subalgebra.

When G is the cyclotomic Galois group Γ (isomorphic to Z×p ), and i ∈ Z, we

shall write `i for the element log(γ)
logχ(γ) − i of HQp(Γ) (where γ is any element of

Γ of infinite order, and χ is the cyclotomic character).

Assume now that K is a number field, and let S be a finite set of places of K

(which we shall always assume to contain the infinite places). Let KS be the

maximal extension of K which is unramified outside S, and let V be a p-adic

representation of Gal(KS/K). For an extension L of K contained in KS , write

H1
S(L, V ) for the Galois cohomology group H1(Gal(KS/L), V ). Let T be a

Gal(K/K)-stable lattice in V . If L ⊂ KS is a p-adic Lie extension of K, define

H1
Iw,S(L, T ) = lim←−H

1
S(Ln, T ),
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where Ln is a sequence of finite Galois extensions of K such that L =
⋃
n Ln

and the inverse limit is taken with respect to the corestriction maps. Note

that H1
Iw,S(L, T ) is equipped with a continuous action of G = Gal(L/K), which

extends to an action of Λ(G). We also define H1
Iw,S(L, V ) = H1

Iw,S(L, T )⊗ZpQp,
which is independent of the choice of lattice T .

Similarly, let F be a finite extension of Qp, V a p-adic representation of

Gal(F/F ) and T a Gal(F/F )-invariant lattice in V . For a p-adic Lie extension

L of F such that L =
⋃
Ln with Ln/F finite Galois, define

H1
Iw(L, T ) = lim←−H

1(Ln, T ) and H1
Iw(L, V ) = H1

Iw(L, T )⊗Zp Qp.

For a finite extension K of Q, denote by AK the ring of adèles of K. If

f is an integral ideal of K, write K(f) for the ray class field modulo f. Let

K(fp∞) =
⋃
nK(fpn), and define the Galois group Gfp∞ = Gal(K(fp∞)/K).

1.3. Grössencharacters. Let K be an imaginary quadratic field. We fix an

embedding K ↪→ C. An algebraic Grössencharacter of K of infinity-type (m,n)

is a continuous homomorphism ψ : K×\A×K −→ C× whose restriction to C× is

given by z 7→ zmz̄n.

Let θ be the Artin map K̂×/K× −→ Gal(Kab/K). We choose the normal-

izations such that

θ($q) = [q]−1 mod Iq,

where $q is a uniformizer at the prime q, Iq is the inertia group and [q] is

the arithmetic Frobenius element at q. Then we have the following well-known

result:

Theorem 1.1 (Weil, [17]): Let ψ be an algebraic Grössencharacter of K, and

let L be the finite extension of Q inside C generated by ψ(K̂×). Then for any

prime λ of L, there is a (clearly unique) continuous character

ψλ : Gal(K/K) −→ L×λ

with the property that

ψλ ◦ θ = ψ|K̂× .
The character ψλ is unramified outside the primes dividing `f, where ` is the

prime of Q below λ and f is the conductor of ψ.

The choice of normalization for the Artin map implies that

ψλ([a]) = ψ(a)−1
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for each a coprime to `f. With these conventions, the Hodge–Tate weights1 of

ψλ are given as follows. Let λ be a prime of L, and µ a split prime of K, which

lie above the same prime of L ∩K. Then the decomposition groups of µ and

µ in Gal(Kab/K) are each isomorphic to Gal(Qab
p /Qp), and the Hodge–Tate

weight of ψλ is m at µ and n at µ.

2. Comparison of Euler systems

2.1. Elliptic units. As above, let K be an imaginary quadratic field, with

a fixed choice of embedding K ↪→ C. We shall fix, for the remainder of this

paper, an embedding K ↪→ C compatible with this choice. In particular, for

each integral ideal f, we regard the ray class field K(f) as a subfield of C, and

we write K(f)+ for its real subfield2.

Definition 2.1: If L is a subfield of C, a CM-pair of modulus f over L is a

pair (E,α) consisting of an elliptic curve E/L and a point α ∈ E(L)tors, such

that

• there is an isomorphism EndKL(E) ∼= OK , such that the resulting ac-

tion of EndKL(E) on coLie(E/KL) ∼= KL is the natural action of K;

• the annihilator of α in OK is exactly f;

• there is an isomorphism E(C) −→ C/f mapping α to 1.

Note that we do not assume that L ⊇ K here, hence the slightly convoluted

statement of the first condition.

Theorem 2.2: Let f be such that O×K ∩ (1 + f) = {1}, f = f, and the smallest

integer in f is ≥ 5. Then there exists a CM-pair of modulus f over K(f)+, and for

any field L containing K(f)+, this CM-pair is the unique CM-pair of modulus

f over L up to unique isomorphism.

Proof. Consider the canonical CM-pair (C/f, 1) over C. This corresponds to a

point Pf on the modular curve Y1(N)(C), where N is the smallest integer in f.

1 We adopt the convention that the cyclotomic character has Hodge–Tate weight +1; this

is, of course, the Galois character attached to the norm map A×
K −→ R×, which has

infinity-type (1, 1).
2 We stress that K(f) is not a CM field in general, so the definition of K(f)+ depends on

the choice of embedding, and in particular K(f)+ is not a totally real field.
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Since N ≥ 5 by assumption, the curve Y1(N) has a canonical model over Q
such that Y1(N)(L) parametrises elliptic curves over L with a point of order N

for each L ⊆ C. Our claim is then precisely that Pf ∈ Y1(N)(K(f)+).

It is clear that Pf ∈ Y1(N)(R), since there is a canonical isomorphism from

C/f to the elliptic curve ER = {y2 = 4x3 − g2x − g3} where g2 and g3 are the

usual weight 4 and 6 Eisenstein series, given by z 7→ (℘(z, f), ℘′(z, f)). Since

f = f̄, the coefficients g2 and g3 are real, so ER is indeed defined over R; and

as ℘(z,Λ) = ℘(z̄, Λ̄), this uniformization maps 1 ∈ C/f to a real point of ER.

Hence Pf ∈ Y1(N)(R).

On the other hand, it is well known that there exists a CM-pair of mod-

ulus f over K(f) (whether or not f̄ = f), so Pf ∈ Y1(N)(K(f)). Hence Pf ∈
Y1(N)(K(f)+).

Remark 2.3: It follows from this construction that the canonical CM pair

(E,α) over K(f)+ becomes isomorphic over R to (ER, image of 1 ∈ C). So the

complex conjugation automorphism of E(C) arising from this K(f)+-model cor-

responds to the natural complex conjugation on C/f.

We recall the theory of elliptic units, as described in [9, §15.5-6].

Theorem 2.4: For each pair (f, a) of ideals of K such that O×K ∩ (1 + f) = {1}
and a is coprime to 6f, there is a canonical element

aef ∈ K(f)×,

the elliptic unit of modulus f and twist a. If f has at least two prime factors,

aef ∈ O×K(f); and for any two ideals a, b coprime to 6f, we have

(1) (N(b)− [b]) · aef = (N(a)− [a]) · bef,

where [a] =
(

a
K(f)/K

)
∈ Gal(K(f)/K) is the arithmetic Frobenius element at a.

Vital for our purposes is the following complex conjugation symmetry of the

elliptic units:

Proposition 2.5: If f satisfies the hypotheses of Theorem 2.2, then we have

aef = āef.

Proof. This follows from the construction of the elliptic units. We have

aef = aθE(α)−1



Vol. 00, XXXX CRITICAL SLOPE P -ADIC L-FUNCTIONS 7

where (E,α) is the canonical CM pair over K(f), and aθE is the element of the

function field of E constructed in [9, §15.4].

By Theorem 2.2, E admits a model over K(f)+, and it is clear that if ι is the

nontrivial element of Gal(K(f)/K(f)+) arising from complex conjugation, we

have ι(aE) = āE and hence (by the uniqueness of aθE) we have (aθE)ι = āθE .

Since α ∈ E(K(f)+), we deduce that

aef = (aθE)ι(α)−1 = āθE(α)−1 = āef

as required.

Remark 2.6: Modulo differing choices of conventions, this is the formula la-

belled “Transport of Structure” in §2.5 of [7].

2.2. Elliptic units in Iwasawa cohomology. Let p be a rational prime

which splits in K. For fixed f (which we shall assume prime to p), the ideal

g = fpn satisfies the condition O×K ∩(1+g) = {1} for all n� 0, so if (a, 6pf) = 1

we may define the elements aefpn . These are norm-compatible (c.f. [9, §15.5]),

and we may extend their definition to all n ≥ 0 using the norm maps.

Remark 2.7: Since fpn has at least two prime factors for n ≥ 1, we have

aefpn ∈ O×K(fpn).

Let S be a set of places of K containing the infinite places and the primes

above p. Then we have the Kummer maps

κL : Zp ⊗Z O×L,S
∼=- H1

S(L,Zp(1)).

Since the sequence of elements aefp∞ = (aefpn)n≥0 is a norm-compatible se-

quence of units, their images under the Kummer maps are corestriction-compatible,

so we obtain an element

aefp∞ ∈ H1
Iw,S(K(fp∞),Zp(1)) = lim←−

n

H1
S(K(fpn),Zp(1)).

Theorem 2.8: If f is Galois-stable, then we have

ι∗ (aefp∞) = āefp∞ ,

where ι∗ is the involution of H1
Iw,S(K(fp∞),Zp(1)) induced by complex conju-

gation.

Proof. Immediate from Proposition 2.5, since fpn satisfies the conditions of

Theorem 2.2 for all n� 0.
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Definition 2.9: We also define the element

efp∞ = (N(a)− [a])−1 · aefp∞ ∈ Q(Gfp∞)⊗Λ(Gfp∞ ) H
1
Iw,S(K(fp∞),Zp(1)),

where Λ(Gfp∞) is the Iwasawa algebra of Gfp∞ = Gal(K(fp∞)/K) and Q(Gfp∞)

its total ring of quotients.

Remark 2.10: The element efp∞ is independent of the choice of a, by equation

(1).

Corollary 2.11: We have ι∗(efp∞) = efp∞ .

Proof. The automorphism ι∗ of H1
Iw,S(K(fp∞),Zp(1)) is Λ(Gfp∞)-semilinear,

with the action of ι on Gfp∞ being given by conjugation in Gal(K/Q); hence ι∗

extends canonically to the tensor product with Q(Gfp∞); and since ι[a]ι = [ā],

this finishes the proof by Theorem 2.8 and Remark 2.10.

Let W be any continuous representation of Gfp∞ on a one-dimensional vector

space over some finite extension L of Qp. Then we have an isomorphism

(2) H1
Iw,S(K(fp∞),Zp(1))⊗Zp W

∼=- H1
Iw,S(K(fp∞),W (1)).

Definition 2.12: For an element w ∈W , let efp∞(w) be the image of efp∞⊗w
under (2), which is an element of

Q(Gfp∞)⊗Λ(Gfp∞ ) H
1
Iw,S(K(fp∞),W (1)).

Define

e∞(w) ∈ Q(Γ)⊗Λ(Γ) H
1
Iw,S(K∞,W (1))

to be the image of efp∞(w) under the corestriction map

H1
Iw,S(K(fp∞),W (1)) - H1

Iw,S(K∞,W (1)).

Lemma 2.13: If W has no fixed points under Gal(K(fp∞)/K∞), then we have

e∞(w) ∈ H1
Iw,S(K∞,W (1)).

Proof. Suppose Gfp∞ acts on W via the character τ : Gfp∞ −→ L×. Then we

must show that the ideal in Λ(Γ) generated by the elements

{(Na− τ([a])−1[a]) : a is an integral ideal coprime to 6f}

contains a power of p. However, if this is not the case, it must consist of elements

of Λ(Γ) which all vanish at some character η of Γ. Then χ([a])τ([a]) − η([a])
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vanishes for every a. By the Chebotarev density theorem, we must have τ =

χ−1η, which contradicts the assumption that τ does not factor through Γ.

We write ιW for the representation of Gfp∞ that acts on {ιw : w ∈ W} via

g · (ιw) = ι(ιgι) · w.

Theorem 2.14: If W has no fixed points under Gal(K(fp∞)/K∞), the element

e∞(w) ∈ H1
Iw,S(K∞/K,W (1))

satisfies

ι∗(e∞(w)) = e∞(ιw)

where ι∗ is induced from the maps

H1
S(K(fpn),W (1)) - H1

S(K(fpn), (ιW )(1))

sending a cocycle τ to the cocycle g 7→ ιτ(ιgι), for each n ≥ 0.

We split the proof of the theorem into a number of steps.

Definition 2.15: Let Λ](Gfp∞)(1) denote Λ(Gfp∞)(1) endowed with the ac-

tion of Gal(KS/K) via the product of the cyclotomic character with the in-

verse of the canonical character Gal(KS/K) � Gfp∞ ↪→ Λ(Gfp∞)×, i.e. g.ω =

χ(g)ḡ−1ω for any g ∈ Gal(KS/K) and ω ∈ Λ](G). Here, ḡ denotes the image

of g in Gfp∞ .

Lemma 2.16: We have a commutative diagram

(3)

H1
Iw,S(K(fp∞),Zp(1))⊗Zp W

∼=- H1
Iw,S(K(fp∞),W (1))

H1
Iw,S(K(fp∞),Zp(1))⊗Zp ιW

ι∗ ⊗ ι

? ∼=- H1
Iw,S(K(fp∞), (ιW )(1))

ι∗

?

where the left-hand vertical map is the tensor product of the automorphism ι∗

of H1
Iw,S(K∞,Zp(1)) and the canonical map ι : W −→ ιW , and the right-hand

vertical map is as defined in the statement of Theorem 2.14.

Proof. We will deduce this isomorphism by using an alternative definition of

the Iwasawa cohomology which renders the horizontal maps in the diagram
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easier to handle. By Shapiro’s lemma, we have a canonical isomorphism of

Λ(Gfp∞)-modules

H1
Iw,S(K(fp∞),M(1)) ∼= H1

S(K,M ⊗Zp Λ]
(
Gfp∞)(1)

)
for any Gal(KS/K)-module M which is finite-rank over Zp or Qp.

Let τ be the character by which Gfp∞ acts on W , and define τ∗ : Λ](G) →
Λ](G) to be the map induced by g → τ(g)−1g. Then the natural twisting map

j : H1
S

(
K,Λ](G)(1)

)
⊗W

∼=- H1
S

(
K,Λ](G)(1)⊗W

)
,

is explicitly given as follows: if c : Gal(KS/K) → Λ](G)(1) is a cocycle and

w ∈W , define

j(c⊗ w)(g) = τ∗(c(g))⊗ w.

We check that j(c⊗ w) is a cocycle. Let h, g ∈ Gal(KS/K). Then

j(c⊗ w)(gh) = τ∗(c(gh))⊗ w

= τ∗(g.c(h))⊗ w + τ∗c(g)⊗ w

= χ(g)τ∗(g
−1c(h))⊗ w + τ∗c(g)⊗ w

= χ(g)τ(g) g−1[τ∗(c(h))]⊗ w + τ∗(c(g))⊗ w

= g.[j(c⊗ w)(h)] + j(c⊗ w)(g)

Rewrite the diagram (3) as

(4)

H1
S(K,Λ](G)(1))⊗Zp W

jW- H1
S(K,Λ](G)(1)⊗W )

H1
S(K,Λ](G)(1))⊗Zp ιW

ι∗ ⊗ ι
?

jιW- H1
S(K,Λ](G)(1)⊗ ιW )

ι∗

?

It is then immediate from the description of j that the diagram commutes,

which finishes the proof.

Proof of Theorem 2.14. By Corollary 2.11 and Lemma 2.16, we have

ι∗(efp∞(w)) = efp∞(ιw).
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The action of ι∗ is clearly compatible with corestriction, so we have a commu-

tative diagram

H1
Iw,S(K(fp∞),W (1)) - H1

Iw,S(K∞,W (1))

H1
Iw,S(K(fp∞), (ιW )(1))

ι∗

?
- H1

Iw,S(K∞, ιW (1))

ι∗

?

which implies that ι∗(e∞(w)) = e∞(ιw), completing the proof.

Lemma 2.17: Let V be any p-adic representation of Gal(KS/Q). Then the

restriction map induces an isomorphism

H1
Iw,S(Q∞, V ) - H1

Iw,S(K∞, V )Gal(K∞/Q∞).

Proof. The restriction map is induced from the restriction maps on finite level,

which fit into the exact sequence

0 - H1
(

Gal(Kn/Qn), V Gal(KS/Kn)
)
- H1

S(Qn, V )

- H1
S(Kn, V )Gal(Kn/Qn) - H2

(
Gal(Kn/Qn), V Gal(KS/Kn)

)
.

Since Qp has characteristic 0, the higher cohomology groups of any Qp-linear

representation of the cyclic group of order 2 are zero. This gives the claim at

each finite level, and hence in the inverse limit.

Let α be the unique nontrivial element of Gal(K∞/Q∞).

Lemma 2.18: We have α = δι, where δ is the unique element of Gal(K∞/K)

which acts on Q∞ as complex conjugation. In particular, δ is of order 2.

Corollary 2.19: If α is the unique nontrivial element of Gal(K∞/Q∞), then

for any w ∈W ,

α∗ (e∞(w)) = δ · e∞(ιw).

Proof. As above, write α = δι. By Lemma 2.17, we have ι∗ · e∞(w) = e∞(ιw).

Hence α∗ (e∞(w)) = δ · ι∗ (e∞(w)) = δ · e∞(ιw).

2.3. The two-variable L-function of K. We recall the construction (orig-

inally due to Yager [18]) of a two-variable p-adic L-function from the elliptic

units.
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Let p be one of the two primes of K above p. We choose an embedding

K ↪→ Qp inducing the p-adic valuation on K. Then for any finite extension

L/K, and any Gal(K/K)-module M , we may define

Z1
p(L,M) =

⊕
q|p

H1(Lq,M) = H1(Kp, IndKL M).

which is a Gal(L/K)-module. We also define

Z1
Iw,p(K(fp∞),M) = lim←−

L

Z1
p(L,M)

where the limit is taken over finite extensions L/K contained in K(fp∞).

We now recall the theory of two-variable Coleman series, as introduced, under

certain additional hypotheses, by Yager [18], and generalized to the semi-local

situation here by de Shalit [5, §II.4.6]. Let ζ = (ζpn)n≥0 be a compatible

system of p-power roots of unity in K; and let F̂∞ be the completion of K(fp̄∞)

with respect to the prime P of K above p induced by our choice of embedding

K ↪→ Qp, and Ô∞ the ring of integers of F̂∞. (Thus Ô∞ is a complete discrete

valuation ring with maximal ideal generated by p, and its residue field is a finite

extension of the unique Zp-extension of Fp.)

Proposition 2.20: There is a unique morphism of Λ(Gfp∞)-modules

Colζ : Z1
Iw,p(K(fp∞),Zp(1)) −→ ΛÔ∞(Gfp∞)

with the following property:

For each finite-order character η of Gfp∞ which is not unramified at p, we

have

Colζ(u)(η) = τ(η, ζ)−1η(ϕ̃)n

 ∑
σ∈Gfpm

η(σ)−1 logP(uσm)

 .

Here ϕ̃ is the unique lifting of the arithmetic Frobenius of Gal(K(fp̄∞)/K) to

Gal(K(fp∞)/K∞), m is any integer such that η factors through the quotient

Gfpm = Gal(K(fpm)/K), logP is the logarithm map

O×K(fpn),P
- K(fpn)P,

and

τ(η, ζ) =
∑

σ∈Gal(K(fp̄∞)(µpn )/K(fp̄∞))

ω(σ)−1ζσpn ,

where n is the exact power of p dividing the conductor of η.
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Definition 2.21: We let

Lfp∞ = Colζ(efp∞) ∈ Ô∞ ⊗̂Zp Q(Gfp∞).

Proposition 2.22: The element Lfp∞ lies in ΛÔ∞(Gfp∞), and it coincides with

the measure µ(fp̄∞) in [5, Theorem II.4.14].

Proof. We have (Na − [a]) · Lfp∞ ∈ ΛÔ∞(Gfp∞) for all a. Since the ideal

generated by Na − [a] for all integral ideals a coprime to 6f has height 2, this

implies that Lfp∞ ∈ ΛÔ∞(Gfp∞) (cf. [5, §II.4.12]).

To show that the resulting measure coincides with de Shalit’s µ(fp̄∞), we

compare the defining property of the map Col above with [5, Theorem II.5.2].

For a finite-order character η of Gfpn , whose conductor g is divisible by p and

satisfies O×K ∩ (1 + g) = {1}, de Shalit shows that

η(µ(fp̄∞)) =
−1

12g
G(η)

∑
c∈Cl(g)

η−1([c]) log φg(c),

where g is the smallest rational integer in g, φg(c) is Robert’s invariant and the

quantity G(η) coincides with what we have called τ(η, ζ)−1η(ϕ̃)n. Since

(N(a)− [a])φg(c) = [c] · (aeg)
−12g

,

this shows that the two measures coincide at every finite-order character, and

hence they are equal in ΛÔ∞(Gfp∞).

Remark 2.23: If one identifies G(fp∞) with the ray class group modulo fp∞

via the Artin map, normalized as in §1.3 above, then this measure coincides

with the pullback of the Katz two-variable L-function of K (cf. [8, §4]) up to a

difference of signs. This remark will be important in the proof of Theorem 3.4

below.

2.4. Kato’s zeta element. Let f =
∑
anq

n be a modular form of CM type,

corresponding to a Grössencharacter ψ of K with infinity-type (1− k, 0) where

k is the weight of f . It is clear that the coefficient field F = Q(an : n ≥ 1) of f

is contained in the finite extension L/K contained in C generated by ψ(K̂×).

Following [9, §6.3], we write S(f) and V (f) for the subspaces of the de Rham

and Betti cohomology of the Kuga–Sato variety attached to f . Note that both

of these are F -vector spaces, and S(f) is 1-dimensional over F while V (f) is

2-dimensional. For a commutative ring A over F , define SA(f) = S(f) ⊗F A
and VA(f) = V (f)⊗F A. If λ is a place of F above p, we may identify VFλ(f)
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with the p-adic representation associated to f of Deligne [6] and SFλ(f) may

be identified with Fil1 Dcris(VFλ(f)).

Definition 2.24: Let χ be a Dirichlet character of conductor pn. We define

the maps θ±χ,f by

θ±χ,f : S(f)⊗Q Q(µpn) −→ VC(f)±

x⊗ y 7−→
∑
σ∈Gn χ(σ)σ(y) perf (x)±

where Gn = Gal(Q(µpn)/Q), perf : S(f) - VC(f) is the period map as de-

fined in [9, §6.3] and γ 7→ γ± is the projection from VC(f) to its (1-dimensional)

±1-eigenspace for the complex conjugation.

Theorem 2.25 ([9, Theorem 12.5(1)]): We have a Lλ-linear map

VLλ(f) −→ H1
Iw,S(Q∞, Vλ(f))

γ 7−→ zKato
γ

which satisfies the following. Let χ be a Dirichlet character of conductor pn,

γ ∈ VL(f) and 1 ≤ r ≤ k − 1, then

θ±χ,f ◦ exp∗
(
zKato
γ ⊗ (ζpn)⊗(k−r)

)
= (2πi)k−r−1L{p}(f

∗, χ, r) · γ±

where ± = (−1)k−r−1χ(−1).

Let f be an ideal of OK satisfying the conditions in Theorem 2.2 which is

contained in the conductor of ψ. Let (E,α) be the canonical CM-pair over K(f).

Following [9, §15.8], we define VL(ψ) = H1(E(C),Q)⊗(k−1) ⊗K L and S(ψ) =

H0(Gal(K(f)/K), coLie(E)⊗(k−1) ⊗K L), where the action of Gal(K(f)/K) on

the space coLie(E)⊗(k−1) ⊗K L is as described in op.cit.. Both of these are

1-dimensional L-vector spaces. For any commutative ring A over L, we write

VA(ψ) = VL(ψ) ⊗L A and SA(ψ) = S(ψ) ⊗L A. The Galois group Gal(K/K)

acts on VL(ψ)⊗L Lλ via ψλ, and there exists a period map

perψ : S(ψ) - VC(ψ)

induced by passing to the (k− 1)-st tensor power from the comparison isomor-

phism per∞ described above.

We now recall Kato’s results on the relation between this zeta element and

the elliptic units.
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Lemma 2.26 ([9, Lemma 15.11]): Fix a choice of isomorphism of L-vector spaces

s : S(ψ)
∼- SL(f).

(a) There exists a unique isomorphism of representations of Gal(Q/Q) over

Lλ

ṼLλ(ψ) - VLλ(f)

such that the isomorphism SLλ(ψ) - SLλ(f) induced by the functo-

riality of DdR is compatible with s.

(b) There exists a unique isomorphism of representations of Gal(C/R) over

L

ṼL(ψ) - VL(f)

for which the diagram

S(ψ)
perψ- ṼC(ψ)

SL(f)
? perf- VC(f)

?

commutes.

Note that the isomorphism of part (b) implies an isomorphism VLλ(ψ)
∼=−→

VLλ(f) on extending scalars to Lλ, but one does not know that this coincides

with the isomorphism of part (a), as remarked in [9, §15.11].

Definition 2.27: We write Φψ,f for the canonical map

H1
Iw,S(K(fp∞), VLλ(ψ)) - H1

Iw,S(Q∞, VLλ(f))

as defined in [9, (15.12.1)].

Concretely, this map can be defined as follows:

H1
Iw,S(K(fp∞), VLλ(ψ)) - H1

S(K,Λ](Γ)⊗ VLλ(ψ)) -

H1
S(Q, IndQ

K

(
Λ](Γ)⊗ VLλ(ψ)

)
)
∼=- H1

S(Q,Λ](Γ)⊗ VLλ(f)).

Theorem 2.28: Let γ ∈ VL(ψ) and write γ′ for its image in VL(f) under the

map given by Lemma 2.26(b). Then we have

Φψ,f

(
e∞(γ)⊗ (ζpn)⊗(−1)

)
= zKato

γ′ .
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Proof. This is [9, (15.16.1)]; it is immediate from a comparison the interpolating

properties of the two zeta elements, since an element of H1
Iw(Q∞/Q, VLλ(f)) is

uniquely determined by its images under the dual exponential maps at each

finite level in the tower Q∞/Q.

Proposition 2.29: We have a commutative diagram

H1
Iw,S(K∞, VLλ(ψ))

Φψ,f- H1
Iw,S(Q∞, VLλ(f))

H1
Iw,S(K∞, VLλ(ψ)⊕ ιVLλ(ψ))α=1

? �

∼=

where the left-hand vertical map sends x to x ⊕ δ · ι∗(x), and the diagonal

isomorphism is given by restriction.

Proof. Clear.

3. Critical-slope L-functions

Let f be a modular form of CM type, as above, and ψ the corresponding

Grössencharacter. We choose a basis γ of VL(ψ), and let γ′ be its image in

VL(f) under the isomorphism of Lemma 2.26(b).

We fix an embedding K ↪→ Qp which induces the λ-adic valuation on L. This

gives an embedding Gal(Qp/Qp) ↪→ Gal(K/Q), whose image is contained in the

subgroup Gal(K/K). This gives a localization map

locp : H1
Iw,S(Q∞,M) - H1

Iw(Qp,∞,M)

for each Gal(KS/Q)-module M . Moreover, we have a map

locp : H1
Iw,S(K∞,M) - H1

Iw(Qp,∞,M)

for each Gal(KS/K)-module M , and we clearly have locp = locp ◦ resK/Q.

Via the isomorphism of Lemma 2.26(a), the space VLλ(f) is isomorphic as

a representation of Gal(Qp/Qp) to VLλ(ψ) ⊕ ι (VLλ(ψ)). Note that ι does not

normalize the image of Gal(Qp/Qp), so the two factors are non-isomorphic;

indeed VLλ(ψ) has Hodge–Tate weight 1− k, while ι (VLλ(ψ)) has Hodge–Tate

weight 0. Hence we have

locp(z
Kato
γ′ ) ∈ H1

Iw(Qp,∞, VLλ(ψ))⊕H1
Iw(Qp,∞, ι(VLλ(ψ))).
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Let us write pr1 and pr2 for the projections to the two direct summands

above. By Corollary 2.28, the projection pr1 locp(z
Kato
γ′ ) to H1

Iw(Qp,∞, VLλ(ψ))

is

locp

(
e∞(γ)⊗ (ζpn)⊗(−1)

)
.

By Proposition 2.29, we see that the projection of locp(z
Kato
γ′ ) to the other direct

summand is

δ · locp

[
ι∗

(
e∞(γ)⊗ (ζpn)⊗(−1)

)]
= [δ · locp (ι∗(e∞(γ)))]⊗ (ζpn)⊗(−1).

We have

ι∗ (e∞(γ)) = e∞(ιγ),

so this simplifies to

pr2

(
locp z

Kato
γ′

)
= δ · [locp (e∞(ιγ))]⊗ (ζpn)⊗(−1).

Definition 3.1: Let Lγp,1 ∈ Λ(Γ)⊗ZpDcris(VLλ(ψ)(k−1)) and Lγp,2 ∈ Λ(Γ)⊗Zp
Dcris(ιVLλ(ψ)(k − 1)) be the unique elements such that

LΓ
VLλ (f)(k−1)

(
zKato
γ′ ⊗ (ζpn)⊗(k−1)

)
= Lγp,1 ⊕ L

γ
p,2.

We shall see below that if g = f̄ is the complex conjugate of f , then Lγp,1
will be the ordinary p-adic L-function of g, and Lγp,2 is the critical-slope p-adic

L-function of g.

Theorem 3.2: For every character η of Γ, we have

Lγp,1(η) = Lfp∞(η
(
ψλχ

k−2
)−1

) · tk−1γ,

and

Lγp,2(η) = (`0 . . . `k−2δLfp∞) (η
(
ψιλχ

k−2
)−1

) · ιγ.

Proof. For brevity, we shall write ej for (ζpn)⊗j , considered as a basis vector of

Qp(j).
It is easy to see that if ξ is a character of Gfp∞ of the form χjτ , where τ is

unramified and j ≥ 0, and V is any crystalline representation with non-negative

Hodge-Tate weights, then for any x ∈ H1
Iw(K(fp∞), V ) and any choice of basis

eξ of Qp(ξ) we have

LGfp∞

V (ξ) (x⊗ eξ)(η) = (`0 . . . `j−1)(η) · LGfp∞

V (x)(ηξ−1)⊗ t−jeξ.

Note that if ξ takes values in the finite extension L/Qp, this is an equality

of two elements of L ⊗ F̂∞ ⊗ Dcris(V (ξ)): the element t−jeξ ∈ Bcris ⊗Qp L(ξ)
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transforms via τ under GQp , and hence lies in F̂∞⊗Dcris(L(ξ)), since the periods

of unramified characters lie in F̂∞ ⊆ Bcris.

We apply this result with V = Qp (the trivial representation), x = efp∞⊗e−1,

and various values of ξ. Firstly, taking ξ to be the cyclotomic character, we have

Lfp∞ = `−1
0 L

Gfp∞

Qp(1) (efp∞),

and thus

(5) Lfp∞(η) = LGfp∞

Qp (efp∞ ⊗ e−1)(χ−1η)⊗ t−1e1.

On the other hand we have

Lγp,1(η) = LΓ
VLλ (ψ)(k−1)

(
pr1(zKato

γ′ )⊗ ek−1)
)

(η)

= LGfp∞

VLλ (ψ)(k−1) (e∞(γ)⊗ ek−2) (η)

The group GQp acts on VLλ(ψ)(k − 1) via the unramified character χk−1ψλ, so

this is

Lγp,1(η) = LGfp∞

Qp (e∞ ⊗ e−1)
(
(χk−1ψλ)−1η

)
⊗ (tk−1γ)⊗ (t1−kek−1).

Comparing this with (5), we deduce that

Lγp,1(η) = Lfp∞
(
(χk−2ψλ)−1η

)
⊗ (tk−1γ)⊗ (t2−kek−2).

If we identify Dcris(Qp(k − 2)) with Qp in the usual way, t2−kek−2 is sent to

1. As remarked above, the element tk−1γ ∈ Bcris ⊗Qp VLλ(ψ) lies in F̂∞ ⊗Qp
Dcris(VLλ(ψ)). So if ω is a K-basis of S(ψ), then the image of ω under the

crystalline comparison isomorphism is a basis of Dcris(VLλ(ψ)), and if we define

Ωp = (γ ⊗ e1−k)/ω, this will lie in F̂∞ and our result becomes

Lγp,1(η) = Lfp∞
(
(χk−2ψλ)−1η

)
· Ωpω.

We now turn to Lγp,2. We have

Lγp,2(η) = LΓ
ι(VLλ (ψ))(k−1)

(
pr2(zKato

γ′ )⊗ ek−1

)
(η)

= LGfp∞

ι(VLλ (ψ))(k−1) ((δ · e∞(ιγ))⊗ ek−2) (η)

= (−1)k−2η(δ)LGfp∞

ι(VLλ (ψ))(k−1) (e∞(ιγ)⊗ ek−2) (η).
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The group GQp acts on ι(VLλ(ψ)) by the character ψιλ, which is unramified; so

this is

Lγp,2(η) = (−1)k−2η(δ)(`0 . . . `k−2)(η) · LGfp∞

Qp (e∞ ⊗ e−1) ((χk−1ψιλ)−1η)

⊗ t1−kek−1 ⊗ ιγ.

= (−1)k−2η(δ)(`0 . . . `k−2)(η) · Lfp∞
(
(χk−2ψιλ)−1η

)
⊗ t2−kek−2 ⊗ ιγ.

As above, we identify t2−kek−2 ∈ Dcris(Qp(k − 2)) with 1 ∈ Qp; and if ω is a

basis of SL(ψ), the image of ιω under the comparison isomorphism is a basis of

Dcris(ι(VLλ(ψ))), so if we define Ωιp = (ιγ)/(ιω) this becomes

Lγp,2(η) = (−1)k−2η(δ)(`0 . . . `k−2)(η) · Lfp∞
(
(χk−2ψιλ)−1η

)
· Ωιpιω.

Definition 3.3: Let ω be a basis of SL(ψ) as above, let g = f̄ , and let Lp,α(g)

and Lp,β(g) be the elements of HLλ(Γ) defined by

Lγp,1 = Lp,α(g) · ω

and

Lγp,2 = Lp,β(g) · ιω.

Then Lp,α and Lp,β are the p-adic L-functions attached to g, where α and β

are respectively the unit and non-unit roots of the Hecke polynomial of g.

As shown in [9, §16], this is consistent with the classical Amice–Velu–Vishik

construction of the ordinary p-adic L-function Lp,α(g), and thus it is natural to

regard Lp,β(g) as a candidate for a critical-slope p-adic L-function. This is the

definition of the Kato critical-slope L-function used in [11].

Theorem 3.4: Up to multiplication by two nonzero scalars, one for each sign,

Lp,β(g) coincides with the modular symbol critical-slope L-function LMS
p,β(g)

attached to the non-ordinary p-stabilization of g in [3].

Proof. This follows by comparing the formulae of Theorem 3.2 with Theorem

2 of [3]. Note that Belläıche shows that if ρ1 and ρ2 are the two characters by

which Gal(K/K) acts on V ∗g , thenLp,α(g)(η) = Lfp∞(ρ2η
−1) · (constant±),

LMS
p,β(g)(η) = (`0 · · · `k−2)(η) · Lfp∞(ρ1η

−1) · (constant±).
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Here constant± indicates an equality of distributions on Γ up to multiplication

by two nonzero constants (one for each sign). On the other hand, since V ∗g =

Vf (k− 1), we have {ρ1, ρ2} = {χk−1ψλ, χ
k−1ψιλ} and the result of Theorem 3.2

shows thatLp,α(g)(η) = Lfp∞(χρ−1
1 η) · (constant),

Lp,β(g)(η) = (`0 · · · `k−2)(η) · Lfp∞(χρ−1
2 η) · (constant).

To reconcile these formulae, we note that the p-adic L-function Lfp∞ satisfies a

functional equation [5, §II.6]

Lfp∞(ι(η)) = C(η) · Lfp∞(χη−1),

for a function C(η) (involving a p-adic root number and various other correction

terms) which depends only on the coset of η modulo characters factoring through

Gal(Q+
∞/Q). Since ι(ρ1) = ρ2 and vice versa, we deduce that

Lp,β(g) = LMS
p,β(g) · (constant±).

Since the modular symbol L-function is only defined up to scalars, this com-

pletes the proof.

Remark 3.5: Both Kato’s and Belläıche’s critical-slope p-adic L-functions are

only defined up to multiplication by a nonzero constant for characters of each

sign; in Kato’s construction these constants correspond to the choice of γ, whose

projection to each of the ± eigenspaces of complex conjugation must be non-

zero. It seems natural to ask whether one can choose normalizations for both in

a compatible fashion so Theorem 3.4 holds exactly, but the present authors do

not feel sufficiently familiar with the modular symbol construction to comment

further.

Remark 3.6: Since the Hodge–Tate weights of ψλ at p and p̄ are (1− k, 0), we

see that if η is a character of Γ whose single Hodge–Tate weight is t, the Hodge–

Tate weights of η
(
ψλχ

k−2
)−1

and η
(
ψιλχ

k−2
)−1

are respectively (t+1, t+2−k)

and (t + 2 − k, t + 1). Since the range of interpolation for the Katz p-adic L-

function consists of those characters whose Hodge–Tate weights are (r, s) with

r ≥ 1 and s ≤ 0 ([5, Corollary II.6.7]), the line (t+ 1, t+ 2− k) contains k − 1

lattice points inside this range, but the line (t+ 2− k, t+ 1) misses the range of

interpolation entirely. The first statement corresponds to the well-known fact

that Lp,α(g)(η) corresponds to a complex L-value for 0 ≤ t ≤ k − 2; but the
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second shows that, sadly, none of the values of Lp,β(g)(η), nor its derivatives at

the points where it is forced to vanish, correspond to a classical L-value for any

value of η. In particular, we cannot rule out the possibility that Lp,β(g) is zero.
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