References: |
Beck, C.: Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett., 87, doi:10.1103/PhysRevLett.87.180601, 2001. Chapman, S. C. and Watkins, M. W.: Avalanching and Self Organised Criticality: a paradigm for magnetospheric dynamics?, Space Sci. Rev., 95, 293–307, 2001. Chechkin, A. V. and Gonchar, V. Yu.: Self-Affinity of Ordinary L´evy Motion, Spurious Multi-Affinity and Pseudo-Gaussian Relations, Chaos, Solitons and Fractals, 11, 2379–2390, 2000. Consolini, G., Marcucci, M. F., and Candidi, M.: Multifractal structure of auroral electrojet index data, Phys. Rev. Lett., 76, 4082– 4085, 1996. Consolini, G. and De Michelis, P.: Non-Gaussian distribution function of AE index fluctuations: Evidence for time intermittency, Geophys. Res. Lett., 25, 4087–4090, 1998. Freeman, M. P., Watkins, N. W., and Riley, D. J.: Evidence for a solar wind origin of the power law burst lifetime distribution of the AE indices, Geophys. Res. Lett.,27, 1087–1090, 2000. Frisch U.: Turbulence, The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. Gardiner, C. W.: Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences (Springer Series in Synergetics), Springer-Verlag, 1986. Hnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., and Farrell, W. M.: Finite size scaling in the solar wind magnetic field energy density as seen by WIND, Geophys. Res. Lett., 29, 1446, doi:10.1029/2001GL014587, 2002. Hnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., and Freeman, M. P.: Scaling in long term data sets of geomagnetic indices and solar wind as seen by WIND spacecraft, Geophys. Res. Lett.,30, 2174, doi:10.1029/2003GL018209 2003a. Hnat, B., Chapman, S. C., and Rowlands, G.: Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft, Phys. Rev. E, 67, 056404–056412, 2003b. Hnat, B., Chapman, S. C., and Rowlands, G.: Scaling and a Fokker- Planck model for fluctuations in geomagnetic indices and comparison with solar wind epsilon as seen by WIND and ACE, J. Geophys. Res., in press, 2005. Horbury T. S. and Balogh, A.: Structure function measurements of the intermittent MHD turbulent cascade, Nonlin. Processes Geophys., 4, 185–199, 1997, SRef-ID: 1607-7946/npg/1997-4-185. Kov´acs, P., Carbone, V., and V¨or¨os, Z.: Wavelet-based filtering of intermittent events from geomagnetic time series, Planetary and Space Science, 49, 1219–1231, 2001. Mandelbrot, B. B.: Gaussian Self-Affinity and Fractals: Globality, The Earth, 1/f Noise and R/S, Springer-Verlag, Berlin, 2002. Mantegna, R. N. and Stanley, H. E.: Scaling Behavior in the Dynamics of an Economic Index, Nature, 376, 46–49, 1995. Mangeney, A., Salem, C., Veltri, P. L., and Cecconi, B.: in: Multipoint measurements versus theory, ESA report SP-492, 492, 2001. Nakao, H.: Multiscaling Properties of Truncated L´evy Flights, Phys. Lett. A, 266, 282–289, 2000. Peters, E. E.: Chaos and Order in the Capital Markets, John Wiley and Sons, New York, 1996. Schertzer, D., Larcheveque, M., Duan, J., Yanovsky, V. V., and Lovejoy, S.: Fractional Fokker-Planck equation for nonlinear stochastic differentisl equations driven by non-Gaussian L´evy stable noises, J. Math. Phys., 42, 200–212, 2001. Shlesinger, M. F., Zaslavsky, G. M., and Frisch, U. (eds.): L´evy flights and related topics in physics: proc. int. workshop Nice, France, 27–30 June, 1994, Lecture Notes in Physics: 450, Springer-Verlag, Berlin, 1995. Siegert, S. and Friedrich, R.: Modeling of L´evy processes by data analysis, Phys. Rev. E, 64, doi:10.1103/PhysRevE.64.041107, 2001. Sornette, D.: Critical Phenomena in Natural Sciences; Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, Springer-Verlag, Berlin, 2000. Sorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R., Antoni, V., andMartines, E.: Intermittency in plasma turbulence, Planet. Space Sci., 49, 1193–1200, 2001. Stepanova, M. V., Antonova, E. E., and Troshichev, O.: Intermittency of magnetospheric dynamics through non-Gaussian distribution function of PC-index fluctuations, Geophys. Res. Lett., 20 30, 1127, doi:10.1029/2002GL016070, 2003. Takalo, J., Timonen, J., and Koskinen, H.: Correlation dimension and affinity of AE data and bicolored noise, Geophys. Res. Lett., 20, 1527–1530, 1993. Takalo, J. and Timonen, J.: Comparison of the dynamics of the AU and PC indices, Geophys. Res. Lett., 25, 2101–2104, 1998. Tsurutani, B. T., Smith, E. J., Buti, B., Matsumoto, H., Brinca, A.: The nonlinear response of AE to the IMF Bs driver: A spectral break at 5 hours, Geophys. Res. Lett., 17, 1870–1820, 1990. Tu, C. -Y. and Marsch, E.: MHD Structures, waves and turbulence in the solar wind: Observations and theories, Space Sci. Rev. 73, 1–2, 1–210, 1995. Uritsky V. M. and Pudovkin, M. I.: Low frequency 1/f-like fluctuations of the AE index as a possible manifestation of selforganized criticality in the magnetosphere, Ann. Geophys., 16, 12, 1580–1588, 1998, SRef-ID: 1432-0576/ag/1998-16-1580. Uritsky, V. M., Klimas, A. J., and Vassiliadis, D.: Comparative study of dynamical critical scaling in the auroral electrojet index versus solar wind fluctuations, Geophys. Res. Lett., 28, 3809– 3812, 2001. Vo¨ro¨s, Z., Kova´cs, P., Juha´sz, A´ ., Ko¨rmendi, A., and Green, A. W.: Scaling laws from geomagnetic time series, J. Geophys. Res., 25, 2621–2624, 1998. V¨or¨os, Z., Jankoviˇcov´a, D., and Kov´acs, P.: Scaling and singularity characteristics of solar wind and magnetospheric fluctuations, Nonlin. Processes Geophys., 9, 2, 149–162, 2002, SRef-ID: 1607-7946/npg/2002-9-149. Watkins, N. W., Freeman, M. P., Rhodes, C. S., and Rowlands, G.: Ambiguities in determination of self-affinity in the AE index time series, Fractals, 9, 471–479, 2001. Weigel, R. S. and Baker, D. N.: Probability distribution invariance of 1−minute auroral-zone geomagnetic field fluctuations, Geophys. Res. Lett., 20 30, 23, 2193, doi:10.1029/2003GL018470, 2003a. Wilson, K. G.: Problems in physics with many scales of length, Scientific American, 241, 140, 158–179, 1979. Yannacopoulos, A. N. and Rowlands, G.: Local transport coefficients for chaotic systems, J. Phys. A Math. Gen. 30, 1503–1525, 1997. Zaslavsky, G. M.: From L´evy flights to the Fractional Kinetic Equation for dynamical chaos, 216, p. in: L´evy flights and related topics in physics: proc. int. workshop Nice, France, 27–30 June, 1994, edited by: Shlesinger, M. F., Zaslavsky, G. M., and Frisch, J., Lecture Notes in Physics, 450, Springer-Verlag, Berlin, 1995. |