Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Harmonic mapping of spheres

Tools
- Tools
+ Tools

Smith, Roland Theodore (1972) Harmonic mapping of spheres. PhD thesis, University of Warwick.

[img]
Preview
Text
WRAP_thesis_Smith_1972.pdf - Submitted Version

Download (4Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1735991~S1

Request Changes to record.

Abstract

This thesis is addressed to the following fundamental problem: given a homotopy class of maps between compact Riemannian manifolds N and M, is there a harmonic representative of that class? Eells and Sampson have given a general existence theorem for the case that M has no positive sectional curvatures [ESJ.
Otherwise, very little is known. Certainly no counter-example has ever been established. The most important contributions of this dissertation are two: firstly, we have a direct construction technique for producing some essential harmonic maps between Euclidean spheres. Topologically, this consists simply of joining two harmonic polynomial mappings (e.g., the Hopf fibrations). Analytically, however, this method has a novel physical motivation: we study the equation of motion of an exotic pendulum driven by a gravity which chances sign. If this system has an exceptional
trajectory of the right sort, it defines a harmonic map of spheres. One consequence or our theorem is that πn(Sn) is represented by harmonic maps for n= 1,...,7. Finally, the rudiments of an equivariant theory of harmonic maps having been set out earlier, we find that our examples can also be put in this framework.
The second significant result which arose from this study is a strong candidate for a counterexample: suppose Sn is stretched to a length b in one direction to make an ellipsoid En(b). Then if n > 3 and b is large enough, there is no harmonic stretching (of degree one) of Sn onto En(b). However, if b=1 the identity is such a harmonic map, so it certainly appears that the existence of a harmonic representative in a homotopy class can depend upon the metric. We also examine here a large collection of examples of
harmonic maps of spheres which are defined by harmonic polynomials and orthogonal multiplications. The last chapter takes up the study of the Morse theory of a harmonic map: amongst
several pleasing results, we have an example of a simple map whose index and degeneracy can be made arbitrarily large by equally simple changes in the metrics.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics
Library of Congress Subject Headings (LCSH): Geometry, Riemannian, Harmonic maps
Official Date: July 1972
Institution: University of Warwick
Theses Department: Mathematics Institute
Thesis Type: PhD
Publication Status: Unpublished
Extent: iv, 127 leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us