Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Use of tridentate TsDPEN/pyridine ligands in ruthenium-catalysed asymmetric reduction of ketones

Moftah O. Darwish, Alistair Wallace, Guy J. Clarkson, Martin Wills
Use of tridentate TsDPEN/pyridine ligands in ruthenium-catalysed asymmetric reduction of ketones

Mofthah O. Darwish, Alistair Wallace, Guy J. Clarkson, Martin Wills*

Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.

Abstract—A series of enantiomerically pure tridentate ligands based on the 1,2-diphenyl-ethane-1,2-diamine structure, containing additional pyridine groups, was prepared and tested in asymmetric transfer hydrogenation of ketones using Ru(II) complexes as a metal source. Alcohols were formed in up to 93% ee in the best cases, and good results were obtained for substrates containing halides at the ortho-position. © 2015 Elsevier Science. All rights reserved.

Keywords
Asymmetric catalysis
Reduction
Transfer hydrogenation
Ruthenium
Alcohol

Asymmetric transfer hydrogenation (ATH) of ketones is a valuable method for the synthesis of enantiomerically pure alcohols. A large number of catalysts have been reported for this application in recent years, of which those based on enantiomerically-pure N-tosyl-1,2-diphenyl-ethane-1,2-diamine 1 in combination with a Ru/arene or Rh or Ir/pentamethylcyclopentadiene have been particularly successful. Recently, we found that an N-tosyl-1,2-diphenyl-ethane-1,2-diamine (TsDPEN) modified with a triazole donor, i.e. 2, gave good results in the reduction of ketones when used in conjunction with Ru(II) complexes. The results of the use of the triazole made us consider pyridine as an alternative donor, and the results of our study are described below.

A number of pyridine-containing ligands have been employed in ATH reactions. Early examples include Schiff base 3 (the Ir complex of which reduced acetophenone in up to 84% ee), the BINOL-derived 4 (the complex with Ru(PPh3)3Cl2 gave up to 97% ee in ATH in iPrOH), as well as 2-(2'-pyridyl)pyridines, phenanthroines and pyridines combined with phosphines in tridentate donor ligands. More recent examples include a series of Ru(II) complexes of pyridine/phosphine tridentate ligands together with phosphines, for example 5 (gave an alcohol of 93% ee from acetophenone reduction in iPrOH), reported by Yu and co-workers. The pyridine-containing catalysts, for example 6, reported by Baratta, are highly active and give products of high ee in ketone reductions in ATH using iPrOH. Also containing a chiral diphosphine, 6 gave ketone reduction products of up to 99% ee in ATH reactions in isopropanol, and is also active in ketone hydrogenation.

Pyridine-containing ligands have also been used extensively in non-asymmetric hydrogen-transfer processes, and for hydrogen-generation from organic molecules. Other applications of pyridine-containing ligands have been reported, as have their applications in highly active non-asymmetric hydrogenations of ketones. In some cases, ATH catalysts have been reported which contain a pyridine ring, but as one of a series of tosylated...
diamine (complex with Ru/η6-arene)\(^{16}\) or amino acid (complex with RhCp\(^*\))\(^{17}\) derivatives.

In view of the encouraging precedents, we elected to study tridentate ligands containing pyridine groups, with regard to their efficiency when used in a novel complex with Ru\(_2\)(CO)\(_{12}\)\(^2\). Towards this end we first prepared \((R,R)\)-pyridine-2-carboxylic acid \([(2\text{-}toluene-4-sulfonamino)-1,2\text{-}diphenyl-1,2\text{-}ethylenediamine]\)-amide 7 in 86\% yield (Scheme 1) by the reaction between pyridine-2-carboxylic acid 8 and (1R,2R)-TsDPEN 1 using ethyl chloroformate.

\[
\begin{align*}
\text{Scheme 1. Synthesis of ligands 7 and 9.}
\end{align*}
\]

In addition, the known \((R,R)\)-[2-(toluene-4-sulfonamino)-cyclohexyl] -amide 9\(^{18}\) was prepared from pyridine-2-carboxylic acid 8 and \((R,R)-(\text{--})\text{-}\text{-}N\text{-}(4\text{-}toluenesulfonyl\text{-}1,2\text{-}diaminocyclohexane} 10 (90\% yield, Scheme 1). The synthesis of the reduced analogues of compounds 7 and 9 was completed by reductive amination. \((R,R)\text{-}\text{-}N\text{-}\{1,2\text{-}Diphenyl\text{-}2\text{-}\text{-}[\text{pyridin\text{-}2-ylmethyl}]\text{-}amino\text{-}ethyl\text{-}4\text{-}methylbenzenesulfonamide} (11) was prepared by reacting \((1R,2R)\text{-}\text{-}\text{TsDPEN} 1 \text{ in CH}_2\text{Cl}_2 \text{ with 2\text{-}pyridinecarboxaldehyde} (12). The mixture was stirred overnight at r.t. to obtain the known imine \((R,R)\text{-}\text{-}N\text{-}\{1,2\text{-}diphenyl\text{-}2\text{-}\text{-}[\text{pyridin\text{-}2-ylmethylene}]\text{-}amino\text{-}ethyl\text{-}4\text{-}methylbenzenesulfonamide} (81\%)\(^{19,20}\). This was reduced using NaBH\(_4\) to afford 11 (62\% yield, Scheme 2).

\[
\begin{align*}
\text{Scheme 2. Synthesis of ligands 11 and 13.}
\end{align*}
\]

Compound 11 was found to be stable over a period of weeks and its structure was confirmed by X-ray crystallography (Figure 1).\(^{21}\)

The synthesis of \((R,R)\text{-}4\text{-}methyl-N\text{-}\{[\text{pyridin-2-ylmethyl}]\text{-}amino\text{-}cyclohexyl\text{-}1\text{-}benzenesulfonamide} (13),\(^{16}\) was likewise achieved via the corresponding imine\(^{20}\) from \((1R,2R)\text{-}\text{-}N\text{-}\text{-}p\text{-}\text{-}p\text{-}\text{-}tosyl\text{-}1,2\text{-}cyclohexanediamine (10) (Scheme 2). The synthesis of \((R,R)\text{-}\{[\text{pyridin-2-ylmethyl}]\text{-}amino\text{-}cyclohexyl\text{-}1\text{-}carbamic acid tert-buty\text{-}

ester (14) was completed by treatment of mono-Boc diamine 15\(^2\) with 2-pyridinecarboxaldehyde (12) in CH\(_2\)Cl\(_2\) to give the intermediate imine, which was reduced by NaBH\(_4\) (Scheme 3).

\[
\begin{align*}
\text{Scheme 3. Synthesis of ligand 14.}
\end{align*}
\]

To carry out the ATH of ketone substrates, the reaction was first optimised with respect to reaction time, concentration and catalyst loading using compound 11 and acetonophene as a representative ketone (Table 1). An optimum ratio of 1:3 Ru\(_2\)(CO)\(_{12}\), i.e. a 1:1 ratio of Ru:ligand. Experiments were carried out using varying concentrations and catalyst loadings for 72 hours (Table 1). In all cases, the enantiomeric excesses decreased slightly with respect to time, possibly due to slow racemisation of the products (see supplementary data for full tables of conversion and ee with respect to reaction time).

\[
\begin{align*}
\text{Table 1. A summary of initial ATH of acetophenone with ligands 11 and 13.}
\end{align*}
\]
It was found that a reaction concentration of 0.1 M combined with a catalyst loading of 2 mol% returned optimal results (Table 1 entry 4). The reaction reached completion after 48 hours, therefore the reaction was repeated using ligand 13 (Table 1), which gave a similar trend in the results. The supplementary data shows graphical comparisons of the ATH of acetoephone at different concentrations using ligand 11, and of the ee for ATH of acetoephone at different concentrations using ligand 13. The reduction of acetoephone using ligand 14 for 48 h (0.1 M concentration, 2 mol% catalyst loading) gave almost the same conversion and ee compared to compounds 11 and 13 (Table 1 entry 9).

An investigation into the possibility of non-linear chirality transfer from ligand 11 to the product was carried out using ligand samples of varying ee from 0-100%. This did not indicate any significant effect (see supplementary data for full details), indicating a 1:1 ligand:metal ratio in the active species. A suggested mechanism of action for the ATH of an aryl ketone using compound 11 as the ligand is illustrated in Figure 2.\(^7\) Initial decomposition of Ru\(_3\)(CO)\(_{12}\) with CO release, then ligation by 11 and proton transfer forms the coordinatively saturated active species 16. Aryl ketones can be reduced by 16 via an outer sphere, concerted mechanism as shown in transition state 17.

Table 1. ATH of acetophenone at different concentrations using different ligands.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Substrate</th>
<th>x:y</th>
<th>Conv (%)</th>
<th>Ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>0.1 M</td>
<td>1:0.33</td>
<td>90</td>
<td>93 (R)</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0.2 M</td>
<td>1:0.33</td>
<td>97</td>
<td>86 (R)</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0.5 M</td>
<td>1:0.33</td>
<td>97</td>
<td>84 (R)</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>0.1 M</td>
<td>2:0.66</td>
<td>97</td>
<td>92 (R)</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>0.1 M</td>
<td>1:0.33</td>
<td>62</td>
<td>91 (R)</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0.2 M</td>
<td>1:0.33</td>
<td>96</td>
<td>88 (R)</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>0.5 M</td>
<td>1:0.33</td>
<td>94</td>
<td>87 (R)</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>0.1 M</td>
<td>2:0.66</td>
<td>97</td>
<td>90 (R)</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>0.1 M</td>
<td>2:0.66</td>
<td>96</td>
<td>88 (R)</td>
</tr>
</tbody>
</table>

\(a\) The reaction was carried out at 80 °C using acetoephone (1 mmol). \(b\) Enantioemic excess and conversion determined by chiral GC. \(c\) Configuration determined by the sign of the optical rotation of the isolated product.

Figure 2. Proposed mechanism of action of the catalyst derived from tridentate ligand 11.

The orientation of approach may be influenced by a favourable \(\pi-\pi\) interaction between the pyridine group in the ligand and the aromatic substituent on the respective ketone. Finally, hydrogen donation by the \(iPrOH\) solvent regenerates 18 to complete the catalytic cycle.

Compound 7 was employed as a ligand in the ATH of acetoephone, however no reduction product was observed after two days, as might be predicted in light of the anticipated requirement for a basic amine in the catalyst. The amide bond functionality may prevent the coordination of the corresponding nitrogen to ruthenium to form the active catalyst, as the lone pair is not available due to conjugation.

A series of ketone derivatives were then reduced by ATH using ligands 11 and 13.\(^{11}\) Clearly, substituted aryl ketones are highly compatible with this methodology. Near quantitative conversion and high enantioselectivity were achieved for the majority of the substrates tested. Most of the substituted aryl ketones gave high conversions and good enantioselectivities (Table 2). Among the substituted aryl ketones tested, it was found that the presence of a meta-methoxy substituent on the aromatic ring yielded optimal results under the ATH conditions employed (48 h, 98% conv., 94% ee). Acetoephone was reduced completely with only 88% ee compared to other substituted aryl ketones, which may indicate the effect of substitution on enhancing the ee. Trifluoromethyl- and chloro- substituted acetoephone were reduced completely with 91% ee.

Table 2. ATH of ketones with ligands 11 and 13 in conjunction with Ru\(_3\)(CO)\(_{12}\).\(^a\)
The reaction was carried out at 80 °C using acetophenone (1 mmol), iPrOH (10 cm³). Enantiomeric excess and conversion determined by chiral GC. Determined by the sign of optical rotation of isolated product.

The bicyclic compounds 19 and 25 were reduced in 84 and 95% conversion with 93 and 91% ee respectively. Also the long chain high molecular weight compound 24 was reduced in 85% conversion with 90% ee. Acetylcyclohexane was reduced at lower rates compared to aryl ketones, however the enantiomeric excess was significantly lower. The reversed enantioselectivity for acetylcyclohexane reduction, relative to acetyophenone derivatives, suggest that weaker steric factors were directing the reaction, rather than electronic ones. The supplementary data contains tables and graphs of the observed conversion and ee for ketone reduction.

An investigation was carried out into the reduction of ortho-substituted aryl ketones (Table 3). Most of the substrates were reduced with near quantitative conversion and high enantioselectivity and are highly compatible with this methodology. Conversion improved with smaller electron-withdrawing groups (fluorine and chlorine) compared to unsubstituted acetophenone. Among the reduced substituents, lower conversion was obtained for large substituents such as iodide and trifluoromethyl groups. In these cases, it is likely that that the substituents cause an unfavourable orthogonal orientation of the arene group, which will subsequently disrupt the proposed π-π interaction (Figure 2). Among the substrates reduced, 2′-methylacetophenone yielded optimal results after 48 hours, achieving almost quantitative conversion and an ee of 93.8%. The electron-donating effect of the methyl substituent may encourage more favourable π-π interactions in the transition state, whilst sterically it appears to be of optimum size to encourage high conversion without preventing approach to the catalyst. The supplementary data features further information on conversion and ee against time for these reductions.

Table 3: ATH of aryl ketones containing a substituent at the ortho position.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ketone</th>
<th>Ligand</th>
<th>Conv (%)b</th>
<th>Ee (%)bcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>13</td>
<td>26</td>
<td>86 (R)</td>
</tr>
<tr>
<td>2</td>
<td>p-20</td>
<td>13</td>
<td>68</td>
<td>88 (R)</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>13</td>
<td>100</td>
<td>86 (R)</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>13</td>
<td>86</td>
<td>17 (S)</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>11</td>
<td>84</td>
<td>93 (R)</td>
</tr>
<tr>
<td>6</td>
<td>o-20</td>
<td>11</td>
<td>99</td>
<td>89 (R)</td>
</tr>
<tr>
<td>7</td>
<td>m-20</td>
<td>11</td>
<td>98</td>
<td>94 (R)</td>
</tr>
<tr>
<td>8</td>
<td>p-20</td>
<td>11</td>
<td>90</td>
<td>92 (R)</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>11</td>
<td>99</td>
<td>91 (R)</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>11</td>
<td>99</td>
<td>91 (R)</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>11</td>
<td>85</td>
<td>90 (R)</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>11</td>
<td>95</td>
<td>91 (R)</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>11</td>
<td>88</td>
<td>19 (S)</td>
</tr>
</tbody>
</table>

* The reaction was carried out using substrate (1 mmol) in iPrOH (10 cm³). Enantiomeric excess and conversion determined by chiral GC. Determined by the sign of optical rotation of isolated product.

In conclusion, we have described the synthesis of an effective tridentate ligand for incorporation into an active asymmetric transfer hydrogenation catalyst upon combination with Ru₃(CO)₁₂. We are currently investigating further applications of this system.

Acknowledgments

We thank the Libyan Ministry for Higher Education and Scientific Research for financial support (to M.O.D.), and Warwick University for support of A.W. The X-ray diffractometer was funded through the Advantage West Midlands Science City Advanced Materials project and ERDF support.

Supplementary data

General experimental details, graphs of experimental results, ¹H and ¹³C-NMR spectra of all new compounds and chiral GC/HPLC spectra.

References

