University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/59547

This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.
Analysis of *drongo*, a new *Drosophila* zinc finger gene expressed during oogenesis and neurogenesis.

Jane Pritchard

A thesis submitted for the degree of Doctor of Philosophy

Department of Biological Sciences
University of Warwick

May 1999
PAGE NUMBERS CLOSE TO THE EDGE OF THE PAGE
SOME ARE CUT OFF
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>i</td>
</tr>
<tr>
<td>List of figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of tables</td>
<td>xii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>Declaration</td>
<td>xiv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Finding a role for drongo in Drosophila.</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Previous analysis of drongo</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Isolation of drongo: enhancer trapping.</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Characterisation of drongo.</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Neurogenesis: Genetic and cellular aspects</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Embryonic development.</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2 Nervous system development.</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.1 Formation of the ventral neuroectoderm.</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.2 Lateral inhibition and neuroblast formation.</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2.3 Neuroblast division and development.</td>
<td>19</td>
</tr>
<tr>
<td>1.4 Oogenesis in Drosophila: The formation of the egg.</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Egg chamber formation.</td>
<td>22</td>
</tr>
<tr>
<td>1.4.1.1 Oocyte specification</td>
<td>24</td>
</tr>
<tr>
<td>1.4.1.2 Enclosure of the 16 cell cyst.</td>
<td>27</td>
</tr>
<tr>
<td>1.4.1.3 Positioning of the oocyte</td>
<td>28</td>
</tr>
</tbody>
</table>
1.4.2 Egg chamber development: Establishment of the anterior/posterior and dorsoventral axes.

1.4.3 Signalling Cassettes.

1.5 Transport across the nuclear membrane.

1.5.1 Nuclear transport: The problem

1.5.2 Model systems for nuclear transport

1.6 Aims of the study.

Chapter 2 Materials and Methods.

2.1 Maintenance of fly stocks.

2.1.1 Preparation of food

2.1.1.1 Standard fly food

2.1.1.2 Grape juice agar plates.

2.1.2 Fly stocks used

2.2 DNA manipulations

2.2.1 Agarose gels.

2.2.2 L.B. agar plates and L.B. cultures

2.2.3 Small and large scale preparation of plasmid DNA.

2.2.4 Restriction digestions.

2.2.5 Ligation of DNA fragments

2.2.6 Transformation of E.coli cells with DNA.

2.3 Double stranded DNA sequencing

2.3.1 Preparation of DNA for sequencing

2.3.2 Sequencing gels.

2.4 Whole mount in situ hybridisation

2.4.1 Preparation of Dig labelled RNA probes

2.4.2 Acid hydrolysis of probes

2.4.3 In situ hybridisation of RNA probes to whole mount embryos
2.4.3.1 Embryo collection and pre-treatment 55
2.4.3.2 in situ hybridisation. 55
2.4.4 In situ hybridisation of RNA probes to wholemount Drosophila ovaries. 55
2.5 Whole mount antibody staining 56
2.5.1 Antibody staining to Drosophila embryos. 56
2.5.2 Antibody staining to ovaries 57
2.6 Overexpression of transgenes in Drosophila tissues. 58
2.6.1 Production of transgenic flies. 58
2.6.2 Mapping of inserts in transgenic stocks 58
2.6.3 Overexpression by heat shock and analysis of effects 58
2.6.3.1 Overexpression during oogenesis. 58
2.6.3.2 Overexpression during eye development 59
2.6.3.3 Overexpression during embryogenesis 59
2.6.3.4 Overexpression during late oogenesis 59
2.6.4 Overexpression of drongo by UAS-GAL4 60
2.7 Drosophila cell culture 61
2.7.1 Preparation of cell culture media 61
2.7.2 Freezing cell culture cells 62
2.7.3 Subculture of cell culture 62
2.7.4 Cloning for tissue culture 63
2.7.5 Calcium phosphate transfection of Drosophila cells. 63
2.7.6 Preparation of cell lysates 63
2.7.7 Assay for Chloramphenicol Acetyl Transferase (CAT) activity 64
2.7.8 Assay for transfection efficiency (β-galactosidase activity) in tissue culture cells. 64
2.7.9 Extraction of proteins from tissue culture cells. 64
2.7.10 Immunofluorescence to tissue culture cells 65
2.8 Ethylmethane sulphonate (EMS) mutagenesis of the 21D region 65
2.8.1 Isogenisation of wild type stocks. 66
2.8.2 Mutagenesis of WCS stocks and subsequent crosses. 66
2.8.3 Analysis of progeny 66

2.9 Fusion protein production and analysis 67
2.9.1 Expression of fusion proteins in \textit{E. coli} 67
2.9.2 Purification of fusion proteins by affinity binding 68
2.9.3 Analysis of fusion protein on SDS-PAGE electrophoresis. 69
2.9.4 Concentration of protein solutions. 69

2.10 Immunisations and preparation of serum. 70
2.10.1 Production of synthetic peptide 70
2.10.2 Isolation of GST-fusion proteins from SDS PAGE gels. 70
2.10.3 Preparation of rabbit serum 71

2.11 Analysis of serum 71
2.11.1 ELISA (Enzyme Linked Immunosorbant Assay for detecting antibodies for crude serum. 71
2.11.2 Protein A affinity purification of IgG from rabbit serum 72
2.11.3 Subcellular fractionation of \textit{Drosophila} embryos. 72
2.11.4 Protein extraction for western blotting 72
2.11.5 Western analysis 72

Chapter 3 Results and Discussion: Overexpression of \textit{drongo}. 74

3.1 Introduction 75
3.2 Results: Overexpression via heat shock 75
3.2.1 Cloning of \textit{drongo} cDNA into a heat shock inducible vector 75
3.2.2 Ectopic expression of \textit{drongo} during oogenesis 76
3.2.2.1 Further analysis of the germarium 83
3.2.3 Overexpression of \textit{drongo} during eye development 85
3.2.4 Overexpression during embryogenesis 86
3.3 Results: Overexpression via the UAS-GAL4 system

3.3.1 Cloning of \textit{drongo} into the pUASt vector

3.3.2 Overexpression of \textit{drongo} via UAS-GAL4

3.4 Discussion

Chapter 4 Results and Discussion.: Analysis of \textit{drongo} in tissue culture: A Rev activity assay.

4.1 Introduction

4.2 Co-transfection of \textit{Drosophila} cells

4.3 The Rev activity assay

4.4 Results

4.4.1 Expression of CAT in \textit{Drosophila} tissue culture cells.

4.4.1.1 Optimising the expression of CAT

4.4.3 Expression of Rev responsive CAT constructs.

4.4.4 Expression of Rev responsive plasmids under UAS control.

4.5 Discussion

Chapter 5 Results and Discussion: EMS mutagenesis

5.1 Introduction

5.2 Analysis of the 21D region

5.3 Isogenisation of the original stock

5.4 Results

5.4.1 EMS treatment

5.4.2 Analysis of the mutants

5.4.2.1 Deficiency analysis of the mutants
5.4.2.2 Complementation analysis
 5.4.2.2.1 Classification of mutants into lethal complementation groups.
 5.4.2.2.2 Complementation analysis over P-element deletions
 5.4.2.3 Phenotypic analysis of each group
 5.4.3 Rescue of potential drongo alleles

5.5 Discussion

Chapter 6 Expression of the Drongo protein

6.1 Introduction
6.2 Choosing an expression system: affinity purification
6.3. Results
 6.3.1 Production of GST-fusion proteins
 6.3.1.1 Cloning of drongo into pGEX-5X-1
 6.3.1.2 Expression of GST-Drongo fusion proteins
 6.3.2 Production of maltose binding protein (MBP) fusion proteins
 6.3.2.1 Cloning of drongo into pMAL-p2
 6.3.3.2 Expression MBP-Drongo fusion protein.
 6.3.3 Production of Drongo-6xHis tagged fusion proteins.
 6.3.3.1 Cloning of drongo into pQE-32
 6.3.3.2 Expression of Drongo-6x His tag fusion protein.
 6.3.4 Other methods of purification
 6.3.4.1 Purification of GST-Drongo fusion protein on an SDS-PAGE filtration column.
 6.3.4.2 Purification of GST-Drongo on an anti-GST/protein A column.
6.4 Discussion
Chapter 7 Results and Discussion: Production of peptide antibodies against the Drongo peptide

7.1 Introduction 160

7.2 Results: Production of anti-Drongo peptide antibody 160

7.2.1.1 Selection of a peptide sequence for Drongo antisera production. 160

7.2.1.2 Production of the antisera 162

7.3 Characterisation of the antisera 162

7.3.1 Analysis of the developmental expression of Drongo 162

7.3.2 Analysis of the expression of the Drongo protein in vivo 166

7.3.3 The subcellular localisation of Drongo. 166

7.3.3.1 Examination of subcellular fractions by western analysis 166

7.3.3.2 Analysis of the subcellular localisation in tissue culture cells 168

7.3.3.3 Is Drongo localised to the RER? 176

7.4 Discussion. 177

Chapter 8 General Discussion 182

8.1 Introduction 183

8.2 The role of drongo during development 183

8.2.1 Does drongo have a role during oogenesis and/or neurogenesis 183

8.2.2 How might the protein act? 185

8.3 Is Drongo a hRIP orthologue? 186

8.4 How do we determine a more defined role for Drongo in Drosophila 189
8.5 Concluding remarks 190

References 191

Appendix

10.1 Restriction maps and digestion checks.

10.2 Raw data from EMS screen
List of figures.

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Enhancer trapping</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Expression of drongo during development</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>drongo cDNA and predicted protein sequence</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Homology of Drongo with other proteins</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Diagrams of the developing Drosophila CNS throughout development.</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Formation of the neuroectoderm and development of neurons and glia.</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Asymmetric cell division in the CNS</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Oogenesis in Drosophila</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Oocyte determination and polarity</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Dorsoventral patterning in the embryo.</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>The nuclear pore complex</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>A model for nucleocytoplasmic transport</td>
</tr>
</tbody>
</table>

Chapter 3

Overexpression of *drongo*.

| Figure 3.1 | The effect of overexpression of *drongo* on egg chambers during oogenesis | 77 |
| Figure 3.2 | Distribution of affected egg chambers | 79 |
Figure 3.3 Distribution of cystoeytes in affected egg chambers 81
Figure 3.4 Summary of the duration of oogenesis 82
Figure 3.5 The effect of overexpression of drongo on migration of follicle cells 84

Figure 3.6 The effect of overexpression of drongo during late oogenesis on embryos. 87
Figure 3.7 UAS-drongo and deletion constructs and expression of GAL4 line p{GAL4.hsp70P}31.1/T(2;3)B3. 92

Chapter 4 Analysis of drongo function in nuclear transport: A Rev activity assay.

Figure 4.1 Homology between Drongo and hRIP 101
Figure 4.2 Structure of the Rev responsive plasmid, pTk34. 102
Figure 4.3 The Rev activity assay 105
Figure 4.4 Schematic, table and histogram of control transfections in Dh33 cells 107
Figure 4.5 Schematic, table and histogram showing optimisation of the transfections in DH33 cells 109
Figure 4.6 Schematic, table and histogram showing optimisation of the transfections in S2 cells 111
Figure 4.7 Schematic, table and histogram showing Rev activity assay with pTK34 113
Figure 4.8 Schematic, table and histogram showing Rev activity assay with UAS-RRE 115

Chapter 5 EMS mutagenesis of 21D region.
Figure 5.1 Molecular map of the 21D region. 121
Figure 5.2 Crossing scheme for isogenisation of the second Chromosome 124
Figure 5.3 Crossing scheme for mutagenesis and screening of the mutants over Df(2L) ast4 126
Figure 5.4 Crossing scheme for complementation testing over Df(2L)ast6 127
Figure 5.5 Flow diagram indicating how lethal complementation analysis was performed 129
Figure 5.6 Breeding programme used to attempt rescue of mutant alleles with hs-drongo. 140

Chapter 6 Results and Discussion: Expression of the Drongo protein.
Figure 6.1 SDS PAGE analysis of the full length GST-fusion protein 150
Figure 6.2 SDS-PAGE analysis of GST-DrongoΔS fusion protein 153

Chapter 7 Production of peptide antibodies to the Drongo protein
Figure 7.1 Peptide plots of Drongo showing location of the peptide chosen to generate the antibody. 161
Figure 7.2 Western blot analysis with antiserum raised against the Drongo protein. 163
Figure 7.3 Western analysis with purified antibody throughout Development 165
Figure 7.4 Western analysis to determine the subcellular localisation of Drongo. 167
Figure 7.5 Immunostaining of S2 cells with anti-Drongo antibody
and analysis of its subcellular localisation. 170

Figure 7.6 Further characterisation of Drongo localisation. 171

Figure 7.7 Comparison of the RER and the golgi complex in mammalian and Drosophila cells. 173

Figure 7.8 Effects of colchicine on Drongo localisation 174

Figure 7.9 Western analysis of the nuclear fraction after treatment with detergent. 178

List of Tables

Table 2.1 Fly stocks used in this study 45
Table 2.2 E.coli strains used in this study 50
Table 2.3 Probes produced for in situ hybridisations 53
Table 2.4 Antibodies used for antibody staining to ovaries and embryos. 56
Table 2.5 Insect tissue culture cell lines used in this study 61
Table 2.6 Deficiencies used in defining mutations in the 21D region 65

Table 3.1 Summary of defective egg chambers 78
Table 3.2 Classification of embryo defects 89
Table 3.3 Results of overexpression of drongo via GAL4 lines 93

Table 5.1 EMS complementation groups 130
Table 5.2 Complementation analysis with P-element deletions/insertions 134
Table 5.3 First lethal phases of alleles from each complementation group 137
Table 5.4 Results of rescue of potential drongo alleles with hs-drongo 142
Acknowledgements.

Firstly I would to thank my supervisor Kevin Moffat for all of his advice and support throughout my PhD.
I would also like to thank all members of D.B for their help and encouragement, especially the fly lab people (past and present), James, Ahmet, Dylan, Marcus. Marcus Allen also performed some work on the EMS screen carried out in this study. I also would like thank Tim Hebbes and Lauren Porter for help with the protein expression work Dave Stott for loan of the computer and Liz Oliver-Jones for help with the tissue culture work.
I would like to acknowledge Brian McCabe at the Department of Genetics, University of Cambridge for coupling the Drongo peptide, Paul Fisher at the department of Pharmacological Sciences, State University of New York for the anti-Lamin antibody, and Jonathan Karn at the LMB, University of Cambridge for the Rev responsive constructs.
The XA90 cells; Oskar antibody and pNB-40/oskar construct; and pTGroE and pTtrx plasmids were porvided by Stuart Allen, Clare Hudson and Lauren Porter respectively. I also wish to thank Cahir O’Kane and Edwin Chan at the Department of Genetics, for all of their collaborative efforts.
In addition I would like to thank past and present house mates, especially Karen and Marcus.
Thankyou to the Sheffield Fertility Centre for giving me time to finish my thesis and to the embryologists for support.
Last, but not least, I would like to thank my parents, Bob and Dorothy for their constant support and encouragement.
Declaration

I hereby declare that the work presented in this thesis is my own work unless otherwise stated in the text or figure legends. This work has not been submitted to any other institution or for any previous degree. All information sources are acknowledged.

Jane Pritchard
Abstract

This thesis is an investigation into the function of the *drongo*, a novel gene with a zinc finger motif, originally isolated via enhancer trapping from its expression in the embryonic neuroectoderm. Drongo has previously been shown to be expressed during oogenesis, neurogenesis and eye development.

In this project, sequencing of a Drongo cDNA clone, shows homology to human nucleoporin protein hRIP; and a lesser extent to other proteins including the mammalian ARF-1 GTPase activating protein (ARF-1 GAP), a protein involved in vesicular transport across the cell; and family of yeast zinc finger genes GTS1/GCS1/GLO3, members of which have also recently been shown to have GAP activity.

Overexpression of *drongo* during early oogenesis results in egg chambers with supernumary nurse cells, probably as a result of a delay in follicle cell migration; a phenotype similar to that of *braniac* mutants. Overexpression during late oogenesis causes a mislocalisation of Oskar, producing embryos which lacked denticle belts and which often had posterior defects, suggesting that ectopic expression of the gene at different times in development can have different consequences.

A mutagenesis screen carried out generated a number of potential mutant alleles, although none as yet have identified a mutation in the *drongo* gene. The use of an peptide antibody to the protein on S2 cells and western blots has identified a possible localisation of the Drongo protein to the endoplasmic reticulum, suggesting a role in vesicle transport. Drongo has also been shown to be developmentally expressed and the gene appears to encode two proteins which may or may not be functionally distinct. The role of Drongo as a possible ARF GAP, are discussed.
Abbreviations.

The abbreviations used in this thesis are listed below in alphabetical order. Several classes of abbreviations have been omitted from this list these include (a) chemical formulae, (b) names of cell lines, (c) strains of animals or bacteria, accepted gene or phenotype designations, names of plasmids, and transcription factors and (d) restriction enzymes.

A - adenine (base)
ADP - Adenosine diphosphate
ARF - ADP ribosylation factor
ast - asteroid
b - base
β-Gal - beta galactosidase
BAP - Bacterial alkaline phosphatase
bHLH - basic helix loop helix
bp - basepair
BRE - Bruno response element
BSA - Bovine serum albumin
C - cytosine (base)
CAT - chloramphenicol acetyltransferase
cDNA - complementary DNA
CNS - central nervous system
Con A - concanavalin A
CyO - Curly of Oster
DAB - 3,3’ diaminobenzidine
dATP - 2’-deoxyadenosine 5’- triphosphate
DER - *Drosophila* EGF receptor

Dh33 - *Drosophila hydei* 33 (embryonic cell line)

Dig - digoxygenin

DMSO - dimethylsulphoxide

DNA - 2′-deoxyribonucleic acid

DNase - 2′ deoxyribonuclease

DSHB - developmental studies hybridoma bank

EDTA - ethylenediaminetetraacetic acid

EGF - epidermal growth factor

ELISA - enzyme linked immunoadsorbant assay

EMS - ethyl methanesulphonate

env - envelope gene (HIV-1)

EST - expressed sequence tags

et al. - *et alia*, and others

FB/CS - fetal bovine/calf serum

FG - Phenylalanine-glutamine

FITC - fluorescein isothiocyanate

g - force of gravity

G - guanine (base)

GAP - GTPase activating protein

GC - golgi complex

GMC - Ganglion mother cell

GST - glutathione-S-transferase

GTP - Guaninetriphosphate

h or hrs - hours

HEPES - N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulphonic acid]

His - histidine

HIV-1 - human immunodeficiency virus type 1

HRP - horse radish peroxidase

IgG - Immunoglobulin type G
IPTG - isopropyl β-D-thiogalactopyranoside
Kb - kilobase
kDa - kiloDalton
KLH - Keyhole limpet haemocyanin
l - litre
LB - Luria Bertani broth
lb/in² - pounds per inch
M - Molar
MBP - maltose binding protein
μCi - microcurie
MCS - multiple cloning site
μg - microgramme
μl - microlitre
ml - millilitre
mM - millimolar
mRNA - messenger RNA
MTOC - microtubule organising centre
mV - millivolts
NES - nuclear export sequence
NGS - Normal goat serum
NLS - nuclear localisation signal
NPC - nuclear pore complex
O.D. - optical density
ONPG - o-nitrophenyl-β-D-galactopyranoside
OPD - o-phenylenediamine
ORF - open reading frame
PAGE - polyacrylamide gel electrophoresis
PBS - phosphate buffered saline
PBT - phosphate buffered saline with the addition of 0.1% Triton X-100
PCR - polymerase chain reaction
PHS - post heat shock
pmole - picomole
PMSF - phenylmethlysulphonylfluoride
PNS - peripheral nervous system
RER - Rough endoplasmic reticulum
RNA - ribonucleic acid
RNase - ribonuclease
rpm - revolutions per minute
RRE - Rev response element
RT-PCR - Reverse transcriptase PCR
RTK - receptor tyrosine kinase
S2 - Schneider 2 (Drosophila melanogaster embryonic cell line)
SA - Splice acceptor
SD - Splice donor
SOP - sense organ precursor
SV40 - simian virus 40
T - thymine (base)
Tat - trans activator gene (HIV-1)
TBE - electrophoresis buffer containing Tris, boric acid and EDTA
TEMED - N, N, N', N'- Tetramethylethylenediamine
TGF - transforming growth factor
TLC - thin layer chromatography
UAS - Upstream activating sequence
UTR - Untranslated region
UV - Ultra voilet
WCS - White Canton S
For Mum, Dad and Jonathan.
Chapter 1:

Introduction.
1.1 Finding a role for *drongo* in *Drosophila*.

Identification and characterisation of new genes involved in the development of a multicellular organism is a rapidly growing subject in modern day biology. The use of genetic and molecular techniques in a variety of model animal systems has uncovered a number of genes and signalling pathways utilised throughout development. The discovery that many of these genes possess homologues involved in the development of many higher animals suggests that these model systems can be used to extrapolate information about the dynamic development of humans.

One of the most well established model systems in use today is that of the fruit fly, *Drosophila melanogaster* the organism utilised in this study.

Many of the genes identified in *Drosophila* have been found to mediate a function in multiple systems throughout development, suggesting the concept of 'signalling cassettes' (Ruohola *et al.*, 1991) in which the same signalling mechanisms are utilised in different developmental contexts with different consequences.

When this project was initiated, the overall aim was to characterise a new *Drosophila* gene called *drongo*. Previous work (Harris, 1995) involved the isolation and initial characterisation of this gene which offered clues to the gene's possible function. From the initial data, this project aimed to determine the role of *drongo* at the cellular level and in the development of the fly.

My aim in this introduction is to give an overview of the previous work on the *drongo* gene leading to a brief introduction of the recent developments in two of the processes where *drongo* is expressed, oogenesis and neurogenesis. The latter part of the introduction will then focus on an overview of nucleocytoplasmic transport and its relevance to this project, the introduction will finish with the aims of this study.

1.2 Previous analysis of *drongo*.

1.2.1 Isolation of *drongo*: Enhancer trapping.

The *drongo* gene was isolated and cloned using the method of enhancer trapping. The classical approach to identify developmental genes is to perform large
scale mutagenesis screens such as those performed by Nüsslein-Volhard and Wieschaus (1980) and Nüsslein-Volhard et al. (1984). Whilst these screens are still in use, the enhancer trap technique, first demonstrated by O’Kane and Gehring (1987) has proved useful as an additional way to identify genes, particularly where there is a partial redundancy of function, or when the mutant phenotype is too subtle to screen for easily.

The enhancer-trap technique (figure 1.1) utilises a modified *Drosophila* transposon, or P-element, which contains a β-galactosidase (*lacZ*) reporter gene fused to a weak promoter. A P-element is a specialised DNA structure in *Drosophila* which is able to move or ‘transpose’ from one place in the genome to another. There are many P-elements dispersed throughout the genome of many wild type strains and they contain inverted terminal repeats and a source of transposase, which are important for efficient transposition (For a review of P-elements, isolation and techniques, see: http://www.wisc.edu/genetics/CATG/engels/Pelements/Pt.html).

P-element enhancer constructs transformed into the *Drosophila* genome lead to transcription from the weak P-element promoter which can only be initiated upon insertion near an endogenous enhancer (figure 1.1). Expression of the *lacZ* gene often reflects all (or at least part) of the temporal and spatial expression of an endogenous gene, upon which the enhancer primarily acts. Genes are subsequently cloned on their expression pattern rather than via a mutant phenotype (Wilson et al., 1989).

Enhancer-traps contain sequences which allow flanking genomic DNA from the insertion point to be cloned by plasmid rescue exploiting Bluescript sequences at the 3’ end of the enhancer trap. Plasmid rescue (Wilson et al., 1989) is a technique whereby the genomic DNA from transformed flies can be digested, recircularised and transformed into *E.coli* cells. The flanking genomic DNA can then be analysed.
Figure 1.1
Enhancer Trapping

The basic enhancer-trap principle where an endogenous gene can be isolated via analysis of the expression of the *E.coli lac* Z gene. An enhancer trap is a modified P-element, which contains a weak promoter and a *lac* Z reporter gene, can be transformed into the genome. The endogenous enhancer which normally acts on a nearby gene can also influence expression of the enhancer-trap. The *lac* Z expression pattern often resembles that of the endogenous gene controlled by the same enhancer. In addition, the enhancer-trap contains sequences which allow flanking DNA to be cloned (Diagram from Wilson *et al.*, 1989).
The enhancer trap B75.1M2 (a p[larB] line) was recovered in a screen for embryonic lacZ expression patterns (Harris, 1995; Wilson et al., 1989). It was primarily of interest after lacZ expression was observed in the neurogenic ectoderm, the region of ectoderm patterned to become nervous system in the embryo (see section 1.3). lacZ expression was also seen during oogenesis and eye development. The B75.1M2 insert was mapped cytologically to 21D on the second chromosome and DNA flanking the enhancer trap was cloned (plasmid rescue for the enhancer trap line was carried out by Harris, 1995). This clone was then hybridised to the genomic walk used to isolate the ninaA gene (Schneuwly et al., 1989), situated between the breakpoints of two deficiencies in the area Df(2L)ast4 and Df(2L)ast6 (deletions in the DNA created by gamma ray irradiation of the second chromosome) (Roberts et al., 1985). Data from previous work initially suggested that there were four essential genes between the deficiency breakpoints (Roberts et al., 1985). Stocks containing mutations of these genes are no longer available.

Four transcribed regions were primarily identified near the B75.1M2 insert by reverse northern analysis (DeLorenzi et al., 1988) Fragments from the transcribed regions were used to screen a 4 to 8 hour old embryonic cDNA library and one transcript, designated drongo, was expressed in a pattern similar, although not, identical to that of the B75.1M2 reporter construct (Harris, 1995).

The drongo transcript was expressed during embryogenesis, initially as a set of ectodermal stripes (figure 1.2A) and then later expression was seen in ventral ectoderm (figure 1.2B; and see section 1.3), expression also was observed in neuroblasts delaminating from this region (figure 1.2C). During later stages of neurogenesis (see section 1.3), expression was seen in what appeared to be a peripheral nervous system (PNS) precursor cell and precursors of the longitudinal glia (figure 1.2D). At stage 11 expression was observed in two clusters, probably the progeny of single neuroblasts. By stage 15 expression was confined mainly to the PNS and the longitudinal glia (figure 1.2E and F).

Expression of the drongo transcript was also observed during oogenesis (see section 1.4). Using a DNA probe expression was seen in the germarium, probably in the precursors of the follicle cells and in the oocyte, which both express drongo
Expression of *drongo* during development

In situ hybridisation with the *drongo* cDNA.

A-F expression of *drongo* during embryogenesis.

(A). At cellularisation of the embryo, *drongo* was expressed in six stripes across the trunk of the embryo

(B) Upon germ band extension, *drongo* expression was observed in the ventral ectoderm (arrow)

(C) *drongo* is then expressed in delaminating neuroblasts at stage 8 and 9

(D) During stage 10 expression was seen in a single cell per hemisegment these are probably PNS precursor cells.

(E and F). During early stage 11 *drongo* is expressed in the progeny of a single neuroblast and was confined to the PNS and the longitudinal glia (Ig)

G-I expression during oogenesis.

(G) *drongo* was expressed in the germarium, although the cells were not identified. expression was seen in the follicle cells (open arrow) from stage 2 to stage 7 expression was also seen in the oocyte (small black arrow).

(II) From stage 9 *drongo* was localised to the anterior of the oocyte and nurse cell (large black arrow) expression of *drongo* continued until stage 12

(I) Expression of the gene continued until nurse cell dumping into the oocyte occurred.

J expression of *drongo* in the eye imaginal disc

Expression of *drongo* was seen immediately behind the morphogenetic furrow (arrow) and was concentrated in a number of cells in each ommatidium. Expression of *drongo* was also observed in other groups of cells in third instar discs which are probably CNS precursors.

Key: Ve: ventral ectoderm; e: ectoderm; n: neuroblast; p: PNS; lg: longitudinal glia; n: nurse cells; o: oocyte; f: follicle cells; a: anterior; p: posterior; g: germarium. Numbers refer to stage of egg chambers.

Figure from Harris, 1995.
subsequently (figure 1.2 G). Expression was seen in the follicle cells from stage 2 to about stage 7 of oogenesis and in one of the cystocytes (probably the oocyte) until about stage 9, with weak expression in the nurse cells (figure 1.2 H). At stage 9, expression increased in the nurse cells and decreased in the oocyte until transfer of the nurse cell contents occurred at stage 12 (figure 1.2 I).

drongo expression was also analysed during eye development. Expression of *drongo* in the third instar eye-antennal imaginal disc began behind the morphogenic furrow and there appeared to be expression in a number of cells in each ommatidium (figure 1.2 J).

The *drongo* cDNA was transcribed from right to left on the chromosome and the B75.1M2 insertion was found 82bp into the transcription unit (Harris, 1995). Northern analysis detected two major transcripts of 3.7kb and 3.2kb, the smaller of which was abundant only in 0-2 hour old embryos and adult females, indicating the 3.2kb transcript was probably a maternally expressed mRNA. Sequencing of *drongo* revealed a cDNA of 3495bp, which was close to the size of the 3.7kb transcript (the transcript which predominated at the stages of embryogenesis used to make the cDNA library). It is not clear whether these transcripts were the result of alternate splicing, initiation or termination.

1.2.2 Characterisation of *drongo*.

Following analysis of the expression pattern, investigations were carried out to determine the type of protein encoded by the *drongo* gene in an attempt to identify a function.

The cDNA contained an open reading frame (ORF) that encoded a protein containing a single zinc finger motif and other short motifs including numerous repeats of the dipeptide phenylalanine glycine (FG) and Opa (poly-glutamine) repeat sequences (figure 1.3; Harris, 1995).

In vitro translation of the protein in both plant and animal systems, identified two possible translational start sites, producing proteins of 84kDa and 61kDa. A series of deletions from the 5' end of the cDNA transcribed and translated *in vitro*,
The DNA sequence is in lower case. Protein translated from ATT (605) or from GTG (613) is in upper case, and the protein translated from ATG (958) is in upper case and bold. Numbers on the left refer to DNA sequence and on the right to protein sequence. The position of the B75.1M2 insertion is indicated by a triangle with an arrow showing the direction of transcription of the lac Z gene. The putative polyadenylation signal is boxed and the final (a) indicates the position of the poly A tail.

In the protein sequence, the green box indicates the position of the zinc finger motif, grey boxes show phenylalanine-glycine (FG) repeats and pink boxes indicate positions of the polyglutamine (Poly Q, Opa) repeats.

cDNA sequence from Harris (1995) with corrections to the 3' end done in this work (section 2.3.1).
3200 gtcgagatagattgctagctcagctcgcgagtcaagcctcttttggttgcacctcaccacagcagacatgtgatatatctgtctga
3280 ttgtaacgctcttgtaataactctccattacaccactcccccaccacccccatccatcgaaccccagaatccatgactcaattc
3360 actgtcacatgtccatgcgccccagataaagagaagaaatttttcttttcaatagcattaacgtgtcaacattatcga
3440 agctttaaagtttatatatataaaaaactacgaatatttcaatataaaaaaactataagacgtatct(a)
suggested that the smaller product was initiated from the first AUG (position 959) whilst the larger product was possibly initiated from a non-AUG codon (either 613 (GUG) or 605 (AUU)). It was not clear whether the same codons were also utilised in vivo as recorded for other eukaryotic proteins (Acland et al., 1990; Imataka et al., 1997) or were an in vitro artifact (Kozak, 1989).

Homology searches with Drongo (figure 1.4) of protein sequence databases (using FASTA and BLAST search tools) initially revealed similarity (about 30-40% over the most highly conserved 50 amino acids) to a family of zinc finger proteins (Figure 1.4). Members of this family include the yeast GCS1/GTS1/GLO3 family, mutations of which suggest these proteins have a role in controlling cell cycle progression (Ireland et al., 1994; Mitsui et al., 1994). The gene was hence initially named Drosophila neural GTS1-like ORF, or drongo. Other more distantly related homologues were a mammalian and a Drosophila GTPase-activating protein (GAP) which act on the small GTPase ARF1 (Cukierman et al., 1995) and which may regulate vesicle traffic from the Golgi complex. ARF-1(ADP ribosylation factor-1) is a monomeric GTP binding protein which plays a crucial role in the assembly and disassembly of coatamer and clathrin coated vesicle coats. ARF-1 requires a GTP exchange factor (GEF) for activation and vesicle coating and a GTPase activating protein (ARF1-GAP) to hydrolyse GTP and allow vesicle release (Vitale et al., 1998).

More recent searches however have identified substantial similarity (77% identity over 73 amino acids) to a human protein hRIP/Rab (Rev interacting protein/Rev activation domain binding protein), which has been shown to bind the HIV-1 Rev protein and implicated in transport of HIV RNA from the nucleus to the cytoplasm (section 1.5) (Bogerd et al., 1995; Fritz et al., 1995). Nuclear export of intron containing HIV-1 transcripts is critically dependent on Rev function, hRIP is thought to bind to Rev and enhance its function. Homology with hRIP/Rab was observed around the zinc finger and also included other short motifs such as a number of the FG repeats and a sequence DRYAALKLDLD (found once in the drongo cDNA, a similar sequence was found twice in the hRIP cDNA) (Figure 1.4).
Figure 1.4.

Homology of Drongo with other proteins.

The Drongo protein sequence aligned with the yeast zinc finger proteins GTS1, GCS1 and Glo3; the human nucleoporin protein hRIP and the rat and Drosophila ARF1 GAPs. Sequences were aligned and similarity assessed using the University of Wisconsin GCG sequence analysis software. For determining similarity, amino acids were grouped as follows (L, I, V, M, F, W, P, C, G, A) (D, E) (K, R, H) (S, T, N, Q, Y). Sequence similarity is shown if 5 or more have amino acids from the same group at that position. Sequence identity is shown if sequence similarity criteria are met and at least 6 of the sequences are identical.

Dark shading indicates a region containing similarity at least 6 sequences, light shading indicates sequence similarity. Numbers indicate positions of amino acids from the predicted start of translation; for drongo this was taken to be ATG (958) and dashes indicate no amino acids in a particular position. Amino acid sequences of rat and Drosophila ARF1-GAPs; yeast genes GTS1, GCS1, Glo3; and hRIP were taken from Genbank.
In view of the interesting nature of this gene and the exciting prospect of identifying a function for \textit{drongo} in \textit{Drosophila}, initial attempts were made to produce a mutation in the \textit{drongo} gene from which a mutant phenotype could be analysed. The P-element, B75.1M2, had inserted into the 5' end of the \textit{drongo} gene (as sequencing of the flanking DNA started at + 82 of the \textit{drongo} cDNA and extended upstream of this). The insert was located on a CyO balancer chromosome and none of the chromosomes recovered were lethal over the deficiency Df(2L)ast4. It is possible to mobilise a P-element by using an additional defective P-element transposon that expresses high levels of a transposase enzyme, but cannot move itself. The enzyme can thus work in \textit{trans} and mobilise the enhancer trap element. Attempts were made to produce "jump-start" males, containing both the B75.1M2 insert and the source of transposase (Δ2-3).

These jump-start flies were recovered at very low frequency (3 out of 3,000 screened) however and northern analysis showed that \textit{drongo} was still expressed in these flies (Pers. Comm. K. Moffat).

This was the starting point of my study. I would now like to review some of the present work in neurogenesis and oogenesis and introduce the area of nuclear transport.

1.3 Neurogenesis: Genetic and Cellular aspects.

Development of the central nervous system (CNS) in \textit{Drosophila} is a multistep process whereby a two dimensional ectodermal sheet is transformed into an organised three dimensional array of different types of neurons and glia (Hartenstein, 1993). Due to the growing interest in this field and the recent expansion of genes identified in \textit{Drosophila}, this organism represents a good model system in which to study this highly regulated process.

This review of recent literature will concentrate on early neurogenesis as it is most relevant to this project. Axon guidance and brain development during larval and pupal life have been reviewed extensively elsewhere (Theranios \textit{et al.}, 1995).
1.3.1 Embryonic development.

After fertilisation of the egg, a *Drosophila* embryo passes through 17 characteristic stages, which last approximately 18-24 hours (Campos-Ortega and Hartenstein, 1985; Hartenstein, 1993). Briefly, the main landmarks points are as follows: Stage 1 syncytial embryos form a cellular blastoderm at around stage 5. Neurogenesis is initiated at stage 9 (according to Campos-Ortega and Hartenstein, 1985), shortly after gastrulation (the process in which the germ layers are formed in the embryo, this occurs around stage 6-7). The nervous system continues to develop throughout embryogenesis until germ band retraction at stage 12. Dorsal closure and head involution occur at around stage 14 (Campos-Ortega and Hartenstein, 1985).

The CNS is derived from the ventral neurogenic ectoderm and this process occurs in three stages (figure 1.5). In the first step, all cells within the neuroectodermal portion of the embryo primarily acquire a neural fate (figure 1.5; stage 5-8). Only about 25% of these cells develop into neural progenitors or neuroblasts (nb). They do this in a sequential manner by segregation in three "waves" (SI-SIII) from the ectoderm to create three separate groups of neuroblasts forming a layer situated between the ectoderm and the mesoderm (figure 1.5; stage 9). In the third step the neuroblasts undergo a number of divisions to form intermediate precursors called ganglion mother cells (GMC; figure 1.5; stage 11), which will then give rise to sibling postmitotic neurons and glia (Hartenstein, 1993; figure 1.5; stage 13-17).

1.3.2 Nervous system development

1.3.2.1 Formation of the ventral neuroectoderm.

Early cell ablation experiments in the grasshopper, as well as cell transplantation experiments in *Drosophila*, indicated that cell-cell interactions are
The neuroblasts are the precursors of the nervous system derived from the neurogenic ectoderm. This is apparent in 2 regions: the ventral neurogenic (VNE) and the procephalic neurogenic region (PNE) - Stages 5 and 8. The mesectoderm (mec) is a single row of cells that gives rise to some neuronal precursors. The optic lobe anlage (ol) develops differently to the rest of the PNE. The first 2 waves of neuroblast delamination, starting at stage 9, are shown forming 3 rows of neuroblasts (S1 and S2). Procephalic neuroblasts also delaminate in a cluster (pnb). The neuroblasts (nb) divide asymmetrically to produce ganglion mother cells (gmc) that then produce the neurons. The mitosis taking place in stage 9 to 11 produce a nerve cord that is the length of the germ band extended embryo. This then retracts at stage 13, condensing until the end of embryogenesis producing a compact and complex nervous system, with features such as connectives (cn), commissures (co) and fascicles (af/pf) in the ventral ganglia (vg). The optic lobe precursors (op) form a vesicle (ol) attached to the basal surfaces of the brain hemispheres (br).

The morphogenetic changes can be seen as the CNS develops further in the third larval instar (L3) and pupa. Neuroblast divisions produce new neurons whilst cell death trims away the elements of the CNS that were used in the larva but are not required for the adult. The CNS resulting differs greatly from the larval form with a distinct head region (with supraesophageal ganglion (seg), subesophageal ganglion (sub) and optic lobes (ol)), connected to the large thoracic ganglia (tha) located in the thorax by a connective (cn).

From Hartenstein (1993).
important in the decision between neural and non-neural cell fates (Doe and Goodman, 1985; Techau and Campos-Ortega, 1987).

In the prospective neuroectoderm of the embryo, a gradient of the transcription factor Dorsal activates genes (such as *decapentaplegic* (dpp), *short gastrulation* (sog) *snail* (sna), and *twist* (twi)) which promote dorsoventral differentiation (figure 1.6a; Doe and Skeath, 1990). The dorsoventral side of the neuroectoderm is then subdivided into three domains: lateral, medial and intermediate (figure 1.6b). This dorsoventral subdivision is apparent at stage 5 (3 hours of development) when expression of genes such as *muscle specific homeodomain* (msh) and *ventral nervous system defective* (*vnd*) are expressed in the lateral and medial column, respectively, and *escargot* (*esg*) is expressed in both the medial and lateral columns (reviewed in Yagi *et al.*, 1998) (figure 1.6b).

Recent experiments, using transplantation and molecular markers for downstream genes in the EGF (epidermal growth factor) receptor signalling pathway, have shown a role for the *Drosophila* EGF receptor (DER) in promoting the formation, patterning and individual fate of early neuroblasts along the D/V axis (Udolph *et al.*, 1998).

DER mutants show defects in formation of intermediate and medial column neuroblast formation, although lateral neuroblasts form normally (Udolph *et al.*, 1998; Skeath, 1998). There thus appears to be DER-dependent and DER-independent regulatory pathways (Udolph *et al.*, 1998). *vnd*, encoding a homeobox protein, may be a good candidate for a DER independent ventral patterning gene. Along the dorsoventral axis, ventral cells express *vnd* (*Vnd* is thought to interact with DER and counteract DER mediated repression of *esg* and *scout* (*sc*)); expression of *intermediate neuroblasts defective* (*ind*) is required for intermediate column development, and the dorsal cells express *msh* (Chu *et al.*, 1998; Weiss *et al.*, 1998; McDonald *et al.*, 1998). These expression patterns are tightly regulated to establish the diversification of cells along the dorsoventral axis.

The CNS can be separated into two ventral halves connected by a special set of cells found at the CNS midline. The *Drosophila* midline comprises of a set of about 20 cells per neuromere. The development of the midline cells is dependent of
Figure 1.6

Formation of the neuroectoderm and development of neurons and glia

A: Establishment of the neuroectoderm. A hemisegment of the embryo becomes competent to produce neural precursors and a nuclear gradient of dorsal activates genes such as twist (twi), snail (sna), short gastrulation (sog) and decapentaplegic (dpp) which promote dorsal-ventral (D/V) differentiation.

B: Subdivision of the neuroectoderm along the dorsventral axis. In the stage 5 embryo, genes are expressed (see A) that promote D/V differentiation, which subdivides the neuroectoderm into lateral, intermediate and medial section. rhomboid (rho) determines the activation domain of the Drosophila EGF receptor (DER) and MAPK. Figure from Udolph et al. (1998).

C: Development of neuroblasts, Ganglion mother cells (GMCs) and neurons. Neuroblast formation requires the expression of one or more proneural genes which encode basic helix-loop-helix (bHLH) factors. All neuroblasts then divide asymmetrically to bud off smaller GMCs. GMC-specific localisation and expression is observed from genes such as prospero and numb. Although there is no known specific master regulatory gene for neuronal identity, a large number of genes are thought to be involved in neuronal cell type acquisition. Genes such as glia cell missing (gcm) and reversed potential (repo) can specify glial cell development.

The genes expressed in each cell type are listed on the right. Ectoderm: grey; dark grey: neuroectoderm (and neuroblast, GMC, neuron and glia). (Figures A and C from Doe and Skeath, 1996)

Key: AS: aminoserosa; v: ventral; d: dorsal.
A specific, cell-type-dependent set of genes is expressed in the neural plate, which inform cells of the likely fate of the neurons and glia that will form (Doe and Skeath, 1996). Specific genes are required for the identity and function of neurons and glia (Figure 1). Each set of genes will be discussed further in the context of their role in the development of neurons and glia. One of the groups of genes that will be discussed is the proneural and proneural-related genes. This group includes the proneural genes and the proneural-related genes. The proneural genes are expressed in the most dorsal parts of the neural plate and are required for the specification of neurons.
the function of a master regulatory gene called *single minded (sim)*, which encodes a transcription factor of the bHLH family. Transplantation experiments by Menne *et al.* (1997) indicated that the CNS midline had a role in differentiation or maintenance of the lateral CNS cortex.

The activity of anterior/posterior and dorsoventral-axis patterning genes are thought to establish the pattern of ‘proneural clusters’ (where all cells have the potential for neural fate) in the neuroectoderm, which in turn dictates where and when neuroblasts will form (Doe and Skeath, 1996). Specific genes are required for the establishment of competent neuroectoderm, for neural precursors to form and for the specification of neurons and glia (figure 1.6c). Each set of genes will be discussed in turn.

Neural determination in *Drosophila* and the specification of postmitotic neurons are controlled by the antagonistic activities of two separate groups of transcriptional regulators containing the basic helix-loop helix (bHLH) domain (Jan and Jan, 1993). One of these groups is a set of transcriptional activators known as the proneural genes as they positively regulate neurogenesis (figure 1.6c). Well characterised proneural genes in *Drosophila* are *achaete (ac), scute (sc), lethal of scute (l'sc) and asense (ase)* (Skeath and Doe, 1996; which are members of the achaete-scute complex (AS-C)); *daughterless (da) and atonal (ato)*. (Campuzano *et al.*, 1985; Caudy *et al.*, 1988; Jarman *et al.*, 1993). The second group of bHLH proteins act as transcriptional repressors, performing anti-neuralising activities by negatively regulating the proneural genes. This group includes Hairy and the related proteins of the Enhancer of Split complex (E(spl)-C) (reviewed in Campuzo and Modolell, 1992).

All proneural genes are thought to be redundant, in that any one can replace the function of another, although experimental evidence shows that different proneural genes show different capacities to specify particular CNS lineages (Parras *et al.*, 1996; for neuroblast lineage maps see http://www.life.uiuc.edu/doelab/nbintro.html) and will compete for the same targets.
Proneural genes also function in the PNS for sense organ specification. *Drosophila* has a relatively simple PNS and much of the epidermis is innervated by two major subtypes of sense organ. The external sense organs are mechanoreceptors and chemoreceptors that are usually associated with external cuticular structures such as bristles, whilst the chordotonal structures are internal proprioceptors and vibration sensors whose dendrites are associated with internal scolopale structures. Both subtypes are derived from single ectodermal precursor cells called the sense organ precursors (SOPs). In the case of the PNS, the proneural genes have a more specific role, for example, *ato* expression in the SOPs specifies chordotonal organs, whereas *sc* specifies the sense organs.

Interestingly, proneural genes have also been found in many vertebrate organisms, including *cash4*, an *achaete-scute (AS-C)* homologue in chick. This has been shown to function as a proneural gene during chick neurogenesis and also displays a proneural function when heterologously expressed in *Drosophila* (Henrique *et al.*, 1997). Homologues of *AS-C* genes have also been identified in other vertebrates. These include *xash3* and *mash1*, in *Xenopus* and mouse respectively (reviewed in Henrique *et al.*, 1997).

1.3.2.2 Lateral Inhibition and neuroblast formation.

Only one cell from each proneural cluster of about five neuroectodermal cells will develop into a neuroblast/SOP by cell interactions mediated by the ligands Delta (Dl) or Serrate (Ser) and the receptor Notch (N) (Fehon *et al.*, 1990; Fleming *et al.*, 1997; Lendahl 1998). Proneural genes induce the expression of these neurogenic genes throughout the proneural cluster by the process of lateral inhibition. Lateral inhibition enables a cell to become committed to a neural fate by inhibiting its neighbours from becoming neural. All cells initially express both N and Dl and slight differences in the level of either will establish either a neural or ectodermal fate (Fleming *et al.*, 1997). *N* and *Dl* encode transmembrane proteins at the cell surface. The extracellular domain of *N* contains a number of EGF-like repeats to which Dl and Ser have been
shown to bind. Intracellularly, N contains six ankyrin-like repeats which bind to Deltex (Dx), a positive regulator of N signalling (Fleming et al., 1997).

In the absence of N or DI, there is a fivefold increase in the formation of neuroblasts (Fleming et al., 1997; Skeath and Carrol, 1992). In the majority of cases in the CNS and PNS, N function requires downstream nuclear proteins Mastermind (Mam), Suppressor of Hairless (Su(H)), Neuralised, and E(spl) (Reviewed in Artavanis-Tsakonas et al., 1995). DI and Ser are thought to be functionally interchangeable ligands which act in trans or cis with the N receptor (Jacobsen et al., 1998).

The mechanism of N activation and subsequent activity has been come under much analysis recently and there are currently two theories as to how N acts in vivo.

In the first theory, three cleavage events of the N protein occur. The first being ligand dependent and results in an active N receptor at the cell surface. The second induces a cleavage in the extracellular domain of the N receptor (Lecoutois and Schweisguth, 1998). The third cleavage (which is thought to be ligand independent) results in production of a soluble N intracellular domain (NICD) which subsequently moves to the nucleus and binds to Su(H) (Kopan and Turner, 1996; Lecoutois and Schweisguth, 1998; Lewis, 1998; Rooke et al., 1996). Su(H) in turn activates targets such as the E(spl)-C genes. E(spl)-C genes act as transcriptional repressors by repressing the AS-C complex of genes (Campuzano and Modolell, 1992).

The ADAM metalloproteinase Kuzbanian (Kuz), was thought to be involved in the third cleavage producing the NICD. Subsequent studies show, however, that Kuz may not be the principal protease. Mutations in kuz have less severe phenotypes than N mutations, suggesting other proteases are involved. It may also be involved in cleavage of the DI protein, suggesting an alternative theory that DI may act as a soluble ligand. (Qi et al., 1999; Lewis, 1998; Nye, 1997).

As part of a feedback loop, Hairless (H) and Fringe (Fng) modulate N signalling. H binds to Su(H) antagonising transduction of the N signal whereas Fng is thought to antagonise the function of the Ser ligand (Fleming et al., 1997; Panin et
1997) and possibly the transmission of the DI signal (Panin et al., 1997; Jacobsen et al., 1998).

The second model suggests that N is associated with Su(H) in the cytoplasm of the cell. Ligand binding to N releases Su(H) from the cytoplasmic tail of N. Su(H) alone then enters the nucleus and acts as a transcription factor which subsequently activates the \(E(spl)-C \) ((Bailey and Posakony, 1995).

Researchers have been unable to directly demonstrate localisation of N protein in the nucleus by immunostaining, although other evidence demonstrates N NICD activity (and therefore localisation) in the nucleus. This evidence also suggests that only minimal amounts of N are required for an effect (Struhl and Adachi, 1998; Weinmaster, 1998).

Lateral inhibition via the N pathway thus singles out neuroblasts from the neuroectoderm, these then move medially and divide or 'delaminate'.

1.3.2.3 Neuroblast division and development.

Once the neuroblasts have been specified, the next step is the repeated asymmetric division of the neuroblasts to bud off ganglion mother cells (GMCs). Within each neuroblast, the Inscuteable protein co-ordinates the mitotic spindle orientation with asymmetric protein and RNA localisation so that when a neuroblast divides a set of gene products (figure 1.7 A and B) asymmetrically segregate into the GMC (Knoblich et al., 1999; Jan and Jan, 1998). These gene products include Numb, Miranda, Staufen (Stau), Prospero (Pros) proteins and pros RNA (Broadus et al., 1998). Stau is an RNA binding domain which has been shown to localise pros (Broadus et al., 1998). Pros is a transcription factor necessary to establish GMC-specific gene expression, as a wide crescent to the basal cortex of mitotic neuroblasts. Pros protein segregates exclusively into the GMC which buds off from the basal side of the neuroblast, where upon Pros translocates into the nucleus establishing differential gene expression between sibling cells (Ikeshima-Kataoka et al., 1997; figure 1.7) Recent evidence suggests that Pros undergoes a cycle of phosphorylation and dephosphorylation as a requirement for (or a consequence of)
Figure 1.7

Asymmetric cell division in the CNS

A Two daughter cells are produced from the asymmetric division of a neural precursor. The inscuteable protein forms a crescent at one side of the neural precursor cell during interphase. Inscuteable is then required for the Numb protein to form a crescent at the opposite side of the cell during metaphase. After division one of the daughter cells inherits Numb and determines a cell fate different from its sibling.

B The apical basal polarity laid down during embryogenesis directs the apical localisation of Inscuteable seen in A. This is necessary for spindle orientation along the apical axis and the asymmetric localisation of Numb. Prospero protein and RNA are localised by Miranda and Staufen to the basal side of the neuroblast.

Diagrams from Jan and Jan, 1998
A

Interphase → Metaphase → Telophase

- Insuteable
- Numb

B

Apical/basal polarity

Inscuteable (apical)

Spindle orientation

X

Miranda → Staufen

Numb

Prospero Protein localisation (basal)

prospero RNA localisation (basal)
localisation to the cortex and subsequent localisation to the nucleus (Srinivasan et al., 1998).

Miranda co-localises with Pros protein and acts to partition both Pros protein and RNA. Miranda has also been shown to localise Stau and Pros to the basal cortex of dividing epithelial cells (Matsuzaki et al., 1998). Miranda contains a coiled-coil structure and two leucine zipper motifs. Mutational analysis suggests that the ability of Miranda to bind Pros may be regulated by PKC sites in the C-terminus of the protein (Ikeshima-Kataoka et al., 1997). Mutations in any of these genes result in incorrect neuronal determination and defects in axon tract formation later in neural development. In stau and pros deficient embryos, Miranda localisation is normal. It is thought that Miranda is localised via cytoskeletal elements as its localisation has been shown to be actin dependent (Matsuzaki et al., 1998).

The last step of neurogenesis involves the division of the GMCs to produce a pair of post mitotic neurons (or glia), where the sibling neurons, in most cases, differ in gene expression and axon projections (Theranios et al., 1995).

In summary, neural specification in Drosophila is a progressive process. Proneural genes are expressed in clusters of ectodermal cells and confer these cells with the competence to become neural precursors. Interactions between the cells via neurogenic genes ensure that only one cell from each cluster becomes a neural cell, which subsequently expresses neural-specific genes conferring neural identity.

1.4 Oogenesis in Drosophila: The formation of the egg.

Expression of the drongo gene has also been identified and analysed during oogenesis, the process in which the Drosophila egg is produced and develops in the female ovary. As I have further analysed the possible functions of drongo during oogenesis in this study, I will give a brief overview of the recent advances in this field.

This section concentrates on the genetic and cellular interactions that occur in the adult ovary, particularly during the early stages of oogenesis, rather than the
hormonal control or the structure of the ovary which is described elsewhere (King, 1970).

1.4.1 Egg chamber formation.

Each *Drosophila* ovary contains an average of 16 long thin structures called ovarioles (Spradling, 1993). Each ovariole consists of two main parts, the germarium, where the precursor of the mature oocyte, the egg chamber is produced; and the vitellarium, where each egg chamber passes through 14 characteristic developmental stages to form a mature egg (figure 1.8a).

In *Drosophila*, female gametes develop within small clusters or cysts of germline derived cells. Oogenesis begins in the most anterior structure of the ovary, the germarium. The germarium consists of 4 regions, 1, 2a, 2b, and 3 in which characteristic events at the start of oogenesis occur (figure 1.8b) (Spradling, 1993).

In region 1, a germline stem cell divides to produce a cystoblast and a daughter stem cell, which will proceed into another division (Spradling, 1993; figure 1.8b)). The cystoblast then undergoes four incomplete mitoses to produce a set of 16 cystocytes which are connected by cytoplasmic structures called ring canals. Within each set of 16 cystocytes, one of the cystocytes with the most ring canals (figure 1.9) will maintain meiotic arrest, become an oocyte and the chromatin in its nucleus will later condense to form a karyosome (a sphere of tightly packed chromatin). The other fifteen cystocytes will halt mitosis, enter meiosis and form supportive structures called nurse cells (Gonzalez-Reyes *et al*., 1997). These nurse cells utilise the ring canals to supply nutrients to the oocyte, whose nucleus is transcriptionally inactive (Spradling, 1993). Mutants in the *encore* (*enc*) gene, show a disruption in these germ line divisions and egg chambers subsequently contain supernumerary nurse cells. In a germarium from an *enc* mutant mother, the stem cell undergoes an extra division in the germ line to produce a final number of 32 rather than 16 cystocytes (Hawkins *et al*., 1996).
Figure 1.8
Oogenesis in *Drosophila*

A: Schematic of a wild type ovariole.
Oogenesis begins in the anterior tip of the germarium (see part B), where a 16 cell germline cyst is produced. This is surrounded by a layer of follicle cells to form a stage one egg chamber (ST1) at which point the oocyte and nurse cells are defined. This passes through 14 characteristic stages (Stage 2, 5, 7, 9 and 11 are shown) to form a mature egg.
Key: tf: terminal filament; fc: follicle cells; st: stem cells; sc: stalk cells; oc: oocyte; nc: nurse cells; bc: border cells. Anterior (Ant) is left, posterior (post) is right. Figure from Peifer *et al.*, 1993.

B: Schematic of the germarium.
The germarium is divided into three regions. In region 1 a germline stem cell (GSC) divides asymmetrically to produce a cystoblast (CB) which further divides to form a 16 cell interconnected cyst. The stem cells are located basal to the terminal filament.
In region 2a, differentiation of the 16 cystocytes (CC) into 15 nurse cells (NC) and one oocyte (O) occurs by transport of certain RNAs and proteins. The cyst is enveloped in region 3 by a layer of somatic follicle cells (FC) (these are the progeny of the somatic stem cells (SSC) to form a stage one egg chamber. Figure from Deng and Lin, 1997.
1.4.1.1 Oocyte Specification.

The way in which the oocyte is determined is highly controversial, although recent detailed examination of this process offers us a number of theories on how the oocyte may be specified in a set of cystocytes. The 'induction model' (Rübsam et al., 1998), suggests that oocyte specification occurs after cyst mitoses are complete. In this model, both cells with four ring canals (figure 1.9A) become 'pro-oocytes' but only one is chosen by expression of specific genes, to become the oocyte; the other reverts to a nurse cell fate (González-Reyes et al., 1997; Rübsam et al., 1998).

Mutations in a group of genes called the spindle (spn) genes cause a delay in determination of the pro-oocyte (González-Reyes et al., 1997). The five spn genes, spn-A, spn-B, spn-C, spn-D and spn-E, were originally identified in a screen for maternal effect mutants as the females lay ventralised eggs. The function of the spn genes was found to be required in the germline (González-Reyes et al., 1997). Spn B and C interact with Okra (a homologue of the yeast Rad52 DNA repair enzyme) and are thought to be involved in meiotic checkpoints in the 16 cell cysts (Ghabrial et al., 1998). A null mutant in any of these genes does not block the choice between the two pro-oocytes, however, suggesting that there is an initial asymmetry and that the determination of the oocyte is just delayed by a mutation in these genes (Gonzalez-Reyes et al., 1997).

A second mechanism suggested by de Cuevas and Spradling (1997), the 'Mosaic model' by Rübsam et al. (1998), suggests the cystocytes are asymmetric and the oocyte is specified at the first cystoblast division by the creation of a polarity that is maintained in subsequent divisions. Their data suggests the presence of a cytoplasmic structure called a spectrosome which begins as a spherical structure in the oocyte and branches out through the ring canals to every cell in the cyst (figure 1.9a) forming a fusome. Fusomes consist of the membrane skeletal proteins α-spectrin (Lee et al., 1997), β-spectrin, ankyrin and the adducin-like molecule Hu-li tai shao (Hts) (Yue and Spradling, 1992, Lin et al., 1994). Mutants in any of these
Figure 1.9

Oocyte determination and polarity

A: The fusome and polarisation of a microtubule network.

The fusome and its putative precursor, the spectrosome have been implicated in asymmetric germ cell division in the germarium. The spherical spectrosome has been observed in germ line stem cells, first observed in the oocyte, it develops into the large cytoplasmic fusome structure connecting individual cystocytes through ring canals. Fusomes and spectrosomes contain membrane skeletal proteins, like α and β spectrin, and are thought to be essential for proper cyst formation and oocyte determination. It is hypothesised that the fusome may act as a polarised cue to form a microtubule network for intracyst transport. Figure from Deng and Lin, 1997.

B: Polarisation and establishment of the A/P and D/V axes.

The A/P and the D/V axes become polarised due to a series of asymmetrical steps during oogenesis. (1) One cell in the 16 cell cyst is selected to become an oocyte (yellow shading). (2) By way of a microtubule network in the cyst, the oocyte moves to a posterior position. (3) A/P polarity is established when the oocyte nucleus signals via the gurken/EGFR pathway (white arrows) to establish the posterior follicle cells (red) which then directs movement of the oocyte nucleus to the anterior dorsal side of the oocyte. Gurken signals (white arrows) from the oocyte then induce dorsal follicle cell fate (green), polarising the D/V axis (4). Figure from González-Reyes et al., 1997.
B

(1) selection of the oocyte

(2) Posterior positioning of the oocyte

(3) Polarisation of the AP axis of the follicle cell layer

(4) Polarisation of the DV axis of the follicle cell layer
genes produce cysts which lack oocytes. In developing cysts, the spectrosome segregates asymmetrically with one daughter cell of each pair (Deng and Lin, 1997).

At the end of the four mitoses, the spectrosome then remains asymmetrically distributed within the cyst, with one of the two cells with four ring canals retaining a larger piece of the fusome than any of the other cells (figure 1.9A). Other published data supports this theory of oocyte specification (de Cuevas et al., 1997, Deng and Lin, 1997; Lin and Spradling, 1997).

A third model for oocyte specification has also been proposed. After formation of the 16 cell cyst when the cyst moves into region 2a of the germarium (figure 1.8 B), a number of genes are thought to be required in the oocyte in order to maintain its fate. Bicaudal-D (Bic-D), egalitarian (egl) cappucino (Cup) and Ovarian RNA binding protein (Orb) are genes that have been shown to be expressed specifically in the oocyte at early stages (reviewed in Gonzalez-Reyes et al., 1997; Wharton and Struhl, 1989). Bic-D and egl are thought to play a central role in the determination of oocyte and for the formation within the oocyte of an microtubule organising centre (MTOC). The MTOC assembles a microtubule network that extends to the other 15 cells and this polarised cytoskeleton later directs the accumulation of specific transcripts in the oocyte (reviewed in Mach an Lehman, 1997; Swan and Suter, 1996). Egl and Bic-D proteins form a complex which is thought to be required for transport of factors promoting oocyte differentiation (Mach and Lehman, 1997) and then later in oogenesis for establishing the anterior-posterior and dorsoventral axes of the embryo (section 1.4.2). This has been referred to as the ‘transport’ model where polarised transport into one of two central cluster cells in region 2 is thought to be crucial for oocyte differentiation.

Although it is well accepted that the anterior/posterior asymmetry in the oocyte is established by formation of a MTOC at its posterior pole neither the mosaic model (where one cell, the oocyte, possess factors different to the other 15 cells) or the transport model (described above) are compatible with mutants of the gene egghead (egh), egh encodes a putative transmembrane protein, thought to be involved in germ cell-follicle interaction (Rübsam et al., 1998). Presumptive nurse
cells can be seen to differentiate into an oocyte in certain *egh* alleles with no effect on spectrosome formation or on branching within each cyst. This suggests that neither model of oocyte specification is yet complete.

1.4.1.2 Enclosure of the 16 cell cyst.

At the same time the oocyte is beginning to differentiate, a layer of somatic follicle cells surrounds the germline cyst in region 2b of the germarium (Figure 1.8b; King 1970). The coordination of this migration depends upon communication between the germline and the somatic cells as well as between the somatic cells themselves. Genetic analysis has identified a number of genes which are involved in the development of the follicular epithelium. Two neurogenic genes, *brainiac (brn)* and *egh* are required in the germline (Goode *et al.*, 1992 and 1996; Rubsam *et al.*, 1998). *brn* acts in the germline to signal to the DER (encoded by the *torpedo (top)* locus) and this signal is required to establish and maintain a continuous follicle cell monolayer around each oocyte/nurse cell complex (Goode *et al.*, 1992). Bm also functions in the establishment of dorsal/ventral polarity by interacting with the TGFα homologue, Gurken (Grk), in the germline and with the DER in the somatic cells (Goode *et al.*, 1992, 1996). These functions are separable genetically. The product of the *egh* gene is also required for follicle cell migration and in *egh* mutant ovaries, pre-follicular cells do not build a continuous epithelium around each cystocyte cluster. Both *egh* and *brn* are not redundant and show an enhanced phenotype when double mutant with *top* alleles. This indicates a common role for both genes in DER signalling in the follicle cells which is required for correct egg chamber formation to occur (Rübsam *et al.*, 1998).

The proneural gene *da*, and the neurogenic genes *N, Dl* and *mastermind (mam)* are also required in the somatic cells for the enclosure of the germline cyst (Ruohola *et al.*, 1991). N, Dl and Da are all expressed in the prefollicular cells including the stalk cells, the collection of 4-6 cells which interleaf between each egg chamber in order to separate it from the previous one, indeed the N/Dl mutant displays defects in stalk cell formation (Xu *et al.*, 1992). It is thought that *N, Dl* and
da maintain the somatic cells in an uncommitted state and they are induced by
signals such as the hedgehog (hh) gene or a signal from the germline cells, such as
brn or egh (Ruohola et al., 1991).

Another recently cloned coiled-coil protein, Toucan (Tuc), is also required in
the germline and has been shown to be part of the signalling pathway controlling
somatic cell migration (Grammont et al., 1997). tuc has been genetically shown to
interact with da, N and Dl in the formation of egg chambers. A P-element insertion
mutant of tuc shows a decrease in the number of cells adopting the stalk cell fate and
a delay in migration of follicle cells towards the oocyte later in oogenesis, the exact
opposite of of the phenotype observed in brn and egh mutant ovaries. One model
proposed by Grammont et al. (1997) is that Tuc negatively regulates the activities of
Brn and Egh proteins, although no dominant interaction has been shown between tuc
and brn mutants.

The 16 cell cyst is surrounded by a layer of about 80 somatic follicle cells
(Spradling, 1993). These begin to divide until there are approximately 1000 follicle
cells, the cells then cease divisions and become polyploid. Subsequently, the oocyte
associated cells (or stretch cells), at the posterior, then become columnar while the
more anterior cells become squamous (Spradling, 1993; Lee and Montell, 1997).

1.4.1.3 Positioning of the oocyte.

As the cyst moves through the germarium into region 3 (figure 1.8B) to
become a stage one egg chamber, the oocyte moves to achieve a posterior position,
this is maintained throughout oogenesis (figure 1.9B). Positioning of the oocyte
requires the function of the spn genes (section 1.4.1.1) as the oocyte in spn mutants
can often be located at random positions in the cyst. The egh gene product is also
required for correct positioning of the oocyte (Rübsam et al., 1998). Cell adhesion is
also important for oocyte positioning as mutations in armadillo (arm), an
invertebrate homologue of the adhesive junction components plakoglobin and β-
catenin, result in defects including disruption of the posterior positioning of the
oocyte. Experiments suggests that certain mutations in arm affect follicle cell-germ
cell adhesion, resulting in a block in oogenesis producing small eggs which are never laid (Peifer et al., 1993).

Consistent with this theory of cell adhesion positioning the oocyte, mosaic analysis has shown that the homophilic adhesion molecule, DE-cadherin, is required in both germline and somatic cells for correct oocyte localisation (Godt and Tepass, 1998). The oocyte selectively attaches itself to a set of DE-cadherin expressing follicle cells in a cell sorting process which depend on differential adhesion mediated by DE-cadherin (Godt and Tepass, 1998).

1.4.2 Egg Chamber development: Establishment of the Anterior/Posterior and Dorsal/Ventral axes.

Once the stage one egg chamber has been formed in the germarium. The egg chamber then undergoes further development in the vitellarium of the ovary. The two main body axes of the embryo, anteroposterior (A/P) and dorsoventral (D/V), are determined prior to fertilisation by the localisation of three main mRNAs, oskar (osk), bicoid (bcd), and grk to discrete localisation within the oocyte (reviewed in Morris and Lehmann, 1999). These are localised via a set of intercellular signals passed between the oocyte and follicle cells.

As it is well accepted as having a central role to play during oogenesis, the DER signalling pathway, can be seen as a focal point on which the two axes are set up. Sapir et al. (1998) suggest five different phases of DER activation which establishes the A/P and D/V axes through egg chamber development.

(A) Phase One of DER activation has a role in the early stages of oogenesis (section 1.4.1.2)

(B) Phase two occurs between stage 5-7 triggered by Grk, which is likely to be a ligand for the DER (Goode et al., 1996; Neuman-Silberberg and Schüpbach, 1993 and 1996; Wasserman and Freeman, 1998; Twombly et al., 1996). grk transcript is expressed at a position between the oocyte nucleus (positioned near the oocyte posterior) and the posterior of the oocyte (figure 1.9 B). DER, however, is expressed in all follicle cells but only activated in the posterior in a grk dependent
manner where it is responsible for the induction of posterior follicle cells, which then become distinct from the default anterior state maintained in all other follicle cells. The posterior follicle cells then signal back to the oocyte, where a reorganisation of a microtubule/microfilament system of the oocyte then ensues (Theurkauf et al., 1992). This signal requires the activity of the mago nashi (mago) gene. Mago mutants display defects in the organisation of the microtubule cytoskeleton in the oocyte, although Grk localisation at the posterior is normal, and therefore fail to form the two body axes and cannot assemble pole plasm (Newmark et al., 1997).

After repolarisation of the microtubule network in the oocyte the localisation of mRNAs, for example bcd and osk, along the A/P axes occurs (Grunet and St. Johnston, 1996; González-Reyes et al., 1995; Roth et al., 1995; Berlef et al., 1988; Lehman and Nusslein-Volhard, 1986). Osk is an RNA binding protein involved in a signalling pathway which ultimately activates Nanos (Nos), a protein implicated in pole cell formation (Grunet and St. Johnston, 1996). The vasa (vas) locus, which encodes for a protein belonging to a family of a DEAD box RNA helicases (Tomancack et al., 1997; Hay et al., 1988) is thought to be involved in pole plasm assembly by regulating translation of osk and nos mRNAs (Lehman and Nusslein-Volhard, 1991). osk translation is also thought to be controlled by the Bruno (Bru) and Aubergine (Aub) proteins. Bruno response elements (BRE) have been identified in the 3'UTR of the osk transcript and are thought to provide a means of repressing osk translation until the transcript has been correctly localised (Webster et al., 1997). Localisation of mRNAs into the oocyte is promoted by cis acting sequences in the 3'untranslated region (UTR) (Kim-Ha et al., 1995; St Johnston, 1995) and in a number of cases such as Bcd and K10, it has been shown that RNA secondary structures present on the 3'UTR account for its action (St. Johnston, 1995). More recent work, however, indicates that the 5' coding sequence and not the 3'UTR, at least in some mRNAs, is involved in this microtubule-dependent transport and distribution of the RNA (Capri et al., 1997). Vas has also recently been found to regulate grk translation during early oogenesis affecting A/P patterning (Styhler et al., 1998). Interestingly, at least one BRE has been identified in the vas transcript,
that has been shown to bind Bru (Kim-Ha et al., 1995). Vas and Bru may co-operate in the translational regulation of grk mRNA. The oocyte microtubular network also directs the migration of the oocyte nucleus to the anterior/dorsal cortex of the oocyte which is completed by stage 8-9 (figure 1.9 B).

(C) In the third cycle of DER activation, during stage 10 of oogenesis, grk expression at the oocyte nucleus this time induces a dorsal follicle cell fate (figure 1.9 B; Neuman-Silberberg, 1996). Levels of grk protein regulating D/V patterning are thought to be regulated by the Squid and K10 proteins (Tomancak et al., 1998).

(D) In the fourth phase, these dorsal follicle cells then express rhomboid (rho) which appears essential for normal patterning of these cells (Ruohola-Baker et al., 1993; Sapir et al., 1998). Mutants of the spitz group (which include spitz and star) confirm the requirement of these genes in the follicle cells to generate a dorsalising signal. Rho is thought to process/activate the Spitz and the Argos proteins, then alters this signalling profile.

Cells which assume the default ventral state generate a ventralising signal mediated by the products of the pipe (pip), windbeutel (wbl) and nudel (nd) genes (Ray and Schüpbach, 1996) in restricting the domain in which Spätzle (Spz) is cleaved, in order to produce an active ligand of Toll (TI). The current understanding of how the D/V pathway is established is shown in figure 1.10.
The central component of the dorsoventral pathway is the transmembrane protein Toll (Tl). Toll is expressed throughout the embryo but only activated at the ventral side. Activated Toll triggers the formation of a nuclear concentration gradient of the NF-κB/Rel-like transcription factor Dorsal (Dl). Dorsal regulates a number of zygotic genes which specify cell fates along the D/V axis.

Activated Toll ligand is produced by cleavage from the protease Spätzle (Spz). Spz is activated by a cascade of proteases including Easter (Ea), Snake (Snk) and Gastulation defective (Gd). Gastrulation defective has been shown to function upstream of Snake and Easter and may provide a link between clues in the follicle cells and the activation of these proteases. The Nudel protein (Nd) undergoes autoactivation and proteolytically cleaves Gd. The other two somatic components, Pipe (Pip) and Windbeutel (Wbl) act in parallel with Nudel in the cascade.

Data for this figure is taken from Ray and Schüpbach, 1996.
At stage 10B, a cytoplasmic streaming occurs which disrupts the microtubular network. The final phase of DER activation occurs at stage 11-14. Once rho is induced, DER activation no longer requires accessibility to grk and the cells expressing rho from the cells of the dorsal appendages which continue to activate the DER pathway until dorsal appendage morphogenesis is complete.

Thus, there appears to be temporal separation between early Grk-mediated activation of the pathway and subsequent Rho-mediated activation (Sapir et al., 1998).

In summary, an asymmetry established at the beginning of oogenesis defines the oocyte from a set of 16 germline cells in the germarium, the oocyte then accumulates specific factors necessary for its development. Enclosure of the cyst with a layer of somatic follicle cells (induced by interaction of germline factors such as Brm and Grk in the somatic cells) and positioning of the oocyte by cell adhesion molecules at the posterior, creates a stage one egg chamber. This progresses through the vitellarium, where the anterior/posterior and dorsoventral axes of the embryo are established mainly by components of the DER signalling pathway directing localisation of transcripts at the respective poles.

1.4.3 Signalling Cassettes

Two way cell-cell communication is a common theme in both neurogenesis and oogenesis, two systems in which cells must interact in a co-ordinate manner to produce different fates. This suggests the idea of signalling cassettes, where the same genes/signalling pathways can exist in different systems and have quite different results. For example, Notch is expressed both during oogenesis and neurogenesis, and functions as regulator of cell fate in both systems. A mutation can have a deleterious effect on neurogenesis, resulting in the conversion of too many cells to the neuroblast fate. An egg chamber from a N female, displays defects in stalk cell formation, suggesting N/ DI has a role in maintaining somatic cells in an
uncommitted state and they are later induced by signals such as *hedgehog* to differentiate. N therefore has different consequences in both developmental system but a common theme of controlling cell fate.

The proneural gene *daughterless* has also demonstrated a function during neurogenesis and oogenesis as well as many other systems (e.g. eye development) and can have different consequences in each (Bouzada *et al.*, 1996).

1.5 Transport across the nuclear membrane.

Homology searches using the Drongo amino acid sequence identified a number of homologues within different species. One of these proteins, the human hRIP/Rab, showed high degree of identity to the Drongo protein. hRIP/Rab has previously been implicated in the transport of molecules across the nuclear membrane and as a possible co-factor of the HIV-1 Rev regulatory protein. This indicates a potential role for the *drongo* gene. The co-factors of Rev have not yet been identified in human or in *Drosophila* where Rev has been shown to function (Ivey Hoyle and Rosenberg, 1990). The homology between hRIP and Drongo provides an appropriate reason to analyse whether Drongo is involved in interactions with Rev in *Drosophila* and in transport across the nuclear membrane.

The next section, therefore, is a review of the latest ideas in the field of nuclear transport. As this field covers an extensive amount of experimental work and because the homologues of Drongo are thought to be involved in RNA export from the nucleus, I will concentrate on this particular area. There will also be a short discussion about protein export from the nucleus as this is tightly linked with RNA export.

1.5.1 Nuclear transport: The problem.

In eukaryotic cells replication and transcription take place in the nucleus of the cell and translation takes place in the cytoplasm. This means proteins needed for nuclear functions must be imported back following translation and RNA/protein
complexes must also be shuttled out into the cytoplasm. The nuclear envelope, however, acts as a barrier to this transport. The envelope consists of an inner membrane component which is adjacent to the filamentous nuclear lamina structure and an outer membrane component continuous with the endoplasmic reticulum. Molecules of less than 90Å in diameter can cross the envelope by passive diffusion, but often molecules up to the size of 250Å have to enter the nucleus (Heese-peck and Räikhel, 1998).

Kinetic experiments have shown that macromolecular exchange occurs via nuclear pore complexes (NPCs). NPCs are large elaborate structures, composed of more than 100 different proteins and have an estimated molecular mass of about 125 million kDa. Extending from the outer surface are cytoplasmic filaments and from the inner surface, the nuclear basket. (Figure 1.11). The nuclear pore has previously been difficult to preserve for electron microscopy studies so 3D structures have been proposed from gold and dye labelling experiments (Heese-Peck and Raikhel, 1998; Feldherr and Akin, 1997; Grote et al., 1995). More recently, field emission in lens scanning electron microscopy (FEISEM) has been used to complement and expand the current understanding of nuclear pore formation (Gant et al., 1998). The role of the NPC in nuclear transport has subsequently been proposed.

Studies in *Xenopus* oocytes (Feldherr and Akin, 1997) have shown macromolecules enter the NPC via signal mediated transport through a 'central transporter' which contains a 'gate' that restricts passive diffusion. The opening of the NPC translocation channel involves a large conformational change to expand to a diameter greater than 25nm. Signal mediated transport through this central transporter involves several steps (1) initial binding of the transport substrate (cargo) to the cytoplasmic receptor on the pore, (2) association with the pore complex, and (3) translocation through the pore.
Figure 1.10
The nuclear pore complex.

The membrane spanning part of the nuclear pore complex consists of symmetrical arrangement of spoke structures. These form a ring which contains a central plug through which active transport occurs. Rings are a set of annular structures present on the cytoplasmic and nuclear side of the pore. The cytoplasmic ring extends 8 cytoplasmic filaments and the nuclear ring supports 8 fibres joined by a terminal ring, forming the nuclear basket. Although many studies has been carried out on this structure, it remains to be seen which aspects of the NPC are functionally important. Figure taken from Ohno et al., 1998.
1.5.2 Model systems for nuclear transport.

In comparison to our knowledge on nuclear import, less is known at present about the mechanisms of export of macromolecules from the nucleus. The main approaches which have identified the components and the mechanism of nuclear transport are the retroviruses (often with the use of microinjection into *Xenopus* oocytes), and the yeast *Saccharomyces cerevisiae* (Cole and Hammel, 1998).

Retroviral replication requires the nuclear export and cytoplasmic translation of both incompletely spliced and fully spliced forms of the viral transcript (Cullen, 1998). For example the human immunodeficiency virus type 1 (HIV-1) encodes a set of "early" transcripts, the regulatory proteins Rev, Tat and Nef. These are encoded by fully spliced 2kb RNAs. The Rev protein is required then for expression of the "late" unspliced transcripts encoding the Gag and Pol proteins, and the singly spliced transcript encoding the structural glycoprotein Env.

The cellular machinery involved in transcription and translation, however repress the export of RNAs from the nucleus until they have been properly spliced by splicing factors residing in the nucleus, which recognise and define intronic sequences. The Rev protein has been shown to activate export of the viral mRNAs by either creating an alternative pathway or affecting the cellular splicing machinery. Recent experiments have disclosed many of the factors to which Rev binds and the possible mechanisms of how Rev functions (Pollard and Malim, 1998). These data in addition to studies of yeast mutants defective in transport of RNAs/import of proteins have suggested a number of models for nuclear transport, I will now discuss this work and the models put forward.

Rev was found to be a sequence specific nuclear RNA export factor following overexpression experiments in *Xenopus* oocytes (Fischer *et al.*, 1995). The sequence specificity is mediated by a *cis*-acting viral RNA stem-loop structure called the Rev Response Element (RRE), located in the *env* gene (Heaphy *et al.*, 1991; Jan and Belasco, 1996). Mutational studies suggest that Rev interacts via an arginine rich binding domain which also acts as an nuclear localisation signal (NLS). Rev is then thought to recruit other Rev molecules resulting in the formation of a
ribonucleoprotein complex (Pollard and Malim, 1998; Malim and Cullen, 1993). Further experiments revealed that Rev also contains a leucine rich nuclear export sequence (NES) (Fischer et al., 1995) that can induce the efficient export of a linked substrate. The Rev NES is a prototype of leucine rich NESs, many of which have recently been observed in other viral and cellular proteins (Tiley et al., 1991). Efforts to isolate a cellular cofactor that may mediate Rev activity by observing interactions of proteins in the yeast two hybrid assay, led to the identification of a human zinc finger protein hRIP/Rab (Bogerd et al., 1995; Fritz et al., 1995). RIP/Rab bears the hallmarks of a nucleoporin protein, a member of the class of proteins that make up the nuclear pore complex. The majority of nucleoporins contain a number of characteristic repeat sequences, GLFG and FXFG (where X is any amino acid) (Heese-Peck and Raikhel, 1998). Studies have shown these FG repeats are essential for the function of many nucleoporins and the repeats are likely to be involved in protein-protein interactions (Heese-Peck and Raikhel, 1998; Kasper et al., 1999; Zolotukhin and Felber, 1999).

Overexpression of RIP/Rab can enhance (albeit modestly) Rev function in vitro (Fritz et al., 1995). Two findings, however, shed doubt that RIP/Rab is the direct target for the Rev NES. Firstly, several other proteins have been subsequently found to interact with Rev NES with the same specificity as RIP/Rab (Fritz and Green, 1996; Stutz et al., 1995) thus the interaction with RIP/Rab is not unique. Secondly, it proved difficult to observe an interaction between purified recombinant Rev and RIP proteins in vitro.

These findings suggested that the interaction between Rev and the nucleoporin may exist but are probably indirect and linked by other proteins. Two NES receptors have recently been identified. Crm1p/Exportin (chromosomal region maintenance protein), a highly conserved protein in yeast and human cells (Neville et al., 1997; Stade et al., 1997; Fornerod et al., 1997) and CAS1 (reviewed in Ohno et al., 1998). These proteins belong to the importin β group of nucleoplasmic transport factors, that are known to bind to nucleoporins. Crm1p mediates the export of proteins such as Rev and PKI (protein kinase A inhibitor) that contain leucine rich
NESs and CAS1 exports importin α, whose NES remains to be identified (Nakielny and Dreyfuss, 1997).

The activity of importinβ, Crm1p and related proteins is thought to be regulated by the small monomeric GTPase Ran (Ras related nuclear protein), and in particular the GTP bound form of Ran (Dahlberg and Lund 1998; Moore and Blobel, 1993, 1994). The soluble transport factor p10/NFT2 has also been found to be required for import and also binds to Ran-GDP (Moore and Blobel, 1994; Paschal and Gerace, 1995). There is a high concentration of Ran-GTP inside the nucleus due to the cytoplasmic compartmentalisation of the Ran GTPase activating protein (Ran-GAP) and it's cofactor RanGAP binding protein 1 (RanBP1), conversely there is little RAN-GDP in the nucleus due to the nuclear compartmentalisation of Ran specific guanine nucleotide exchange factor (RCC1) (Mattaj and Englmeier, 1998; Shannon Moore, 1998). Receptor-cargo association is thought to be dictated by Ran during import of proteins and export of RNA (figure 1.12)

Although Ran does hydrolyse GTP via Ran GAP, it is thought contrary to earlier studies, that GTP hydrolysis is not required for import per se. It is more likely that the energy is used for recycling import components (Schwoebel et al., 1998; Englmeier et al., 1998; Nakielny and Dreyfuss, 1997).
1. Protein import

Cytoplasm

NLS protein

Importin α

Importin β

Ran GDP

NPC

FG

Nucleus

NES-protein/RNP or RNA

Exportin/Crm1p

GDP

GTP

Import and export are controlled by the small GTPase Ran.

1: Import complexes form when Ran is in a GDP bound form (most of the Ran in the cytoplasm), cargo associates with importin, the complexes bind to importin β and is shuttled through the nuclear pore by sequential interaction of importin β (a family of transport factors of which the yeast Crm1p is a member) with several nucleoporins. After translocation, Ran converts GDP to GTP, the complex is released from the pore and dissociates.

2: Export receptor-cargo complexes are formed in the nucleus via association with Ran-GTP. A typical example of the cargo may be the HIV-1 Rev protein and associated RRE-RNA. This is then transported through the pore and is thought to be dissociated by hydrolysis of GTP, releasing the cargo into the cytoplasm and allowing the receptor to shuttle back to the nucleus. Signals for RNA export are thought to reside within the associated proteins.

Diagram based on one from Cole and Hammel (1998).
The overall mechanism of Rev action (and thus the export of many NES-containing proteins) is thought to be as follows. In step one, after translation of Rev and import into the nucleus, multiple Rev molecules assemble onto the RRE and recruit several Ran-GTP bound Crm1p molecules to the RRE. In step two, Crm1p targets the ribonucleoprotein complex to the nuclear pore by interaction with the nucleoporins (probably including RIP/Rab). Translocation is thought to occur by the sequential interaction of Crm1p with several nucleoporins. Once the complex enters the cytoplasm, Ran GTP is hydrolysed to Ran-GDP by Ran GAP/RanBP1, releasing Crm1p from the Rev NES (step three). In step four, the HIV-1 incompletely spliced mRNA is then available for translation, while Crm1p and Rev are recycled back to the nucleus (reviewed by Cullen, 1998).

Import complexes are formed when Ran is absent or primarily in the GDP bound form (i.e. cytoplasmically located). The cargo binds to an importin α molecule (also known as Karyopherin α), this complex then binds to importin β (also known as Karyopherin β) and is shuttled through the nuclear pore via receptor interactions involving Ran. After translocation the complexes are dissociated by the conversion of Ran-GDP to Ran-GTP. Importin β is then recycled back to the cytoplasm by association with Ran GTP (Cole and Hammel, 1998).

Experimental evidence suggests there are 4 distinct pathways for the export of mRNA, tRNA, large ribosomal RNA, and 5S RNA/ U-rich small nuclear RNA (UsnRNA). Overexpression of Rev in Xenopus oocytes inhibits 5S RNA and small nuclear RNA (snRNA) export but not mRNA export (Fischer et al., 1994) suggesting that the nuclear export pathway accessed by Rev is distinct from the cellular mRNA export pathway. Indeed, Fornerod et al. (1997) showed that a specific inhibitor of Crmp1, the drug leptomycin β, inhibits Rev but not mRNA export in eukaryotic cells.
In summary, the nuclear pore complex can be considered to represent the transporter which allows bidirectional traffic to occur between the nucleus and the cytoplasm. Both import and export involves the importin proteins (e.g Crm1p in yeast), the transport cargo (e.g mRNA/Rev protein) and the small GTPase Ran. Models have been compiled from studies such as the HIV-1 Rev dependent transport of unspliced and partially spliced viral mRNA transcripts and studies of mRNA export and protein import in the yeast *S. Cerevisae*. These studies have defined many of the transport mechanisms involved in these systems yet there are still many protein factors to be be discovered.

1.6 Aims of the study.

1) To overexpress the gene in a number of developmental systems and analyse any abnormal phenotype.

drongo has been shown to be expressed during neurogenesis, oogenesis and early eye development. At the onset of this work, I did not have a mutant of the *drongo* gene and so I was unable to analyse the phenotype. In the absence of a mutant, I therefore intended to produce a phenotype from ectopic expression of the gene and suggest a possible role for *drongo*.

2) To analyse the effect of Drongo on Rev activity and assay the involvement of the Drongo protein in nuclear transport.

As well as establishing a mutant phenotype it would be interesting to study the role of the protein in the cell directly.

Drongo shows extensive sequence similarity at the amino acid level to the hRIP protein, a putative co-factor of the HIV-1 Rev protein. As further analysis of the role of the gene it would be interesting to observe if Drongo could function, in a similar way to hRIP, with Rev to transport an unspliced reporter construct from the nucleus. It would also be interesting to observe which regions of the gene, if any, are involved in the function of Drongo in the cell.
3) To induce mutations in the gene and study the mutant phenotype.

One of the best ways to deduce the wild type function of the *drongo* gene is to analyse the mutant phenotype. This would be performed with a mutagenesis screen of the second chromosome with the possibility of identifying a mutant *drongo* allele(s).

4) Expression of the Drongo protein in *E.coli* and production of an antibody to the Drongo protein.

Expression of the Drongo protein in a prokaryotic system may enable production of enough pure protein to produce an antibody to Drongo. It would also allow analysis of the properties of the protein such as size and solubility. After analysis of the expressed protein, a pure sample of protein would be used to raise antibodies to the Drongo protein. An antibody could be used to look at the localisation of the protein during development and its localisation in the cell. This could offer valuable information about the function of the protein.
Chapter 2

Materials and Methods
2.1 Maintenance of fly stocks.

2.1.1 Preparation of food.

2.1.1.1 Standard Fly food.

Fly stocks were maintained at 18°C or 25°C in bottles or vials of standard food. Standard food was prepared as in Ashburner (1989).

All fine chemicals used for fly food or otherwise were obtained from Gibco BRL unless otherwise stated.

2.1.1.2 Grape juice agar plates.

Grape juice agar plates, used for egg collections, were prepared according to Roberts (1986). Plates were stored in the refrigerator. Before use, plates were warmed in the microwave for 3 seconds and a small amount of yeast paste was placed on each plate.

2.1.2 Fly stocks used.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Details</th>
<th>Assigned chromosome</th>
<th>Used for</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS</td>
<td>White Canton S (essentially wild type stock)</td>
<td>-------------------</td>
<td>Overexpression experiments and mutagenesis</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>hs-drongo 14M3</td>
<td>drongo cDNA in hs (CaSpeR)</td>
<td>3<sup>rd</sup>. Balanced over TM6B.</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>hs-drongo line 1</td>
<td>drongo cDNA in hs (CaSpeR)</td>
<td>1<sup>st</sup>. balanced over FM7.</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>hs-drongoR</td>
<td>drongo cDNA in hs (CaSpeR)</td>
<td>2<sup>nd</sup>. Balanced over CyO</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>UAS-</td>
<td>drongo cDNA in</td>
<td>3<sup>rd</sup>. Balanced</td>
<td>Overexpression</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>drongo2M5</td>
<td>pUAST</td>
<td>over TM6B</td>
<td>of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>UAS-drongo2F1</td>
<td>drongo cDNA in pUAST</td>
<td>1st balanced over FM7.</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>UAS-drongoΔS13M6</td>
<td>deleted drongo cDNA in pUAST</td>
<td>3rd balanced over TM6B.</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
<tr>
<td>UAS-drongoΔS35M3</td>
<td>deleted drongo cDNA in pUAST</td>
<td>2nd balanced over CyO.</td>
<td>Overexpression of drongo</td>
<td>laboratory stock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P{GAL4-twi.G}</th>
<th>GAL4 line expressed in twist pattern</th>
<th>Overexpression of drongo</th>
<th>Bloomington stock Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>P{GAL4-ninaE.GMR}</td>
<td>GAL4 line expressed behind morphogenetic furrow in the eye.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GAL4-dpp.blk1}</td>
<td>GAL4 line expressed in a decapentaplegic pattern.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GAL4-arm.S}</td>
<td>GAL4 line expressed in a armadillo pattern</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GawB}h[1J3] GAL4</td>
<td>GAL4 line expressed in a hairy pattern.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GawB}69B GAL 4</td>
<td>GAL4 line expressed in the embryonic epiderm.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GawB}ptc-GAL4</td>
<td>GAL4 line expressed in a patched pattern.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GAL4-twi.2xPE}</td>
<td>GAL4 line expressed in a twist pattern.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P{GAL4-ve.NEE}</td>
<td>GAL4 line expressed in the</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td></td>
<td>GAL4 line expressed in a caudal pattern</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>P(GawB)md509/Cyo; MKRS/TM2</td>
<td>GAL4 line expressed in a bicaudal pattern.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>P(GawB)bi</td>
<td>GAL4 line expressed in the embryonic CNS and PNS.</td>
<td>Overexpression of drongo</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>Df(2L)ast4</td>
<td>Contains deficiency on 21D Breakpoints: 21D1-21D2:21E2</td>
<td>Screening EMS mutants.</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>Df(2L)ast6</td>
<td>Contains deficiency on 21D Breakpoints: 21E1-21E2:21E2-21E3</td>
<td>Screening EMS mutants.</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>Df(2L)S2</td>
<td>Contains deficiency on 21D Breakpoints:21C3-21C4:22A2-22A3</td>
<td>Screening EMS mutants.</td>
<td>Bloomington stock Centre</td>
</tr>
<tr>
<td>Df(2L)ast2</td>
<td>Contains deficiency on 21D Breakpoints:21D1-21D2:22B2-22B3</td>
<td>Screening EMS mutants.</td>
<td>Bloomington stock Centre</td>
</tr>
</tbody>
</table>
Table 2.1
Fly stocks used in this study.

2.2 DNA manipulations.

2.2.1 Agarose gels.

Agarose gels used for DNA analysis were prepared using 1X TBE (10.8g tris, 5.5g boric acid, 4mls of 0.5M EDTA per 1l water) adding 0.8% agarose. Samples were mixed with DNA loading buffer (Sambrook et al., 1989). The gel was then run at between 50-200mV until the DNA fragments had migrated far enough to be separated and 1kb ladder (Gibco BRL) was used to observe size separation. Ethidium bromide (0.5µg/ml) was added in order to visualise the DNA on a U.V. light box.

2.2.2 L.B. Agar Plates and L.B. cultures.

Bacterial cells were plated out on LB (Luria Bertani broth) agar plates. Per litre of LB agar, 10g bacto-tryptone, 5g of bacto-yeast extract, 10g NaCl, 10g of bacto-agar, 11 of water were mixed and the solution was autoclaved at 12 lbin² for 20 minutes. LB (same ingredients without the agar) was used as media for bacteria cells. Ampicillin/chloramphenicol was used at a final concentration of 50 µg/ml.

2.2.3 Large and Small scale preparation of plasmid DNA.

Plasmid DNA to be purified was excised from an agarose gel and cleaned with either a Geneclean kit (BIO 101) or a DNA extraction kit (Qiagen). DNA minipreps were performed using Qiagen Qiaprep plasmid minipreparation kit. Large scale preparations were performed using Qiagen Qiaprep Plasmid Maxipreparation kit, according to manufacturer’s instructions.
2.2.4 Restriction digestions.

DNA was routinely cut with restriction enzymes according to the manufacturer's instructions. Generally DNA was cut in a volume between 10 and 100μl reaction mix containing 1x reaction buffer (the relevant reaction buffer used for a particular enzyme) and 1/10th the volume of restriction enzyme. All digests were performed at 37°C for between 2 hours and overnight except for Sma I (25°C). Restriction enzymes and buffers were supplied by Gibco BRL or Amersham. Restriction digests were terminated by separation on an agarose gel (2.2.1) and then cleaned via gel extraction kit (Qiagen), according the manufacturer's instructions.

2.2.5 Ligation of DNA fragments.

Ligations were carried out using T4 DNA ligase (Gibco BRL) according to manufacturer's instructions. A ratio of 1:3 vector to insert was used in ligation reactions. Approximately 250ng of vector DNA was used. For blunt ended ligation samples were incubated at room temperature for 4 hours and for sticky ended ligation, samples were incubated for 2 days at 4°C. Vector cut with a single enzyme was de-phosphorylated with Bacterial alkaline phosphatase (BAP: Amersham life sciences). For de-phosphorylation reactions 1μl of enzyme was used and the reaction was placed at 37°C for 1 hour. DNA was quantitated by spectrophotometry (using a Ultraspec III machine (Pharmacia Biotech)) and 5μl was run on an agarose gel.
2.2.6 Transformation of *E. coli* cells with DNA.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>supE44 ΔlacU169 (Φ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1</td>
<td>Laboratory stock.</td>
</tr>
<tr>
<td>BL21 (DE3)</td>
<td>hsdS gal (λclts857 ind1 Sam7 nin5 lacUV5-T7 gene 1)</td>
<td>Pers.Comm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lauren Porter.</td>
</tr>
<tr>
<td>XA90</td>
<td>ΔlacZ Pr08 argEam ara^-* nal1A thi^-* rif*^-* F'λaci^-* lacZY*^+ proAB*+*</td>
<td>Pers.Comm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stuart Allen</td>
</tr>
</tbody>
</table>

Table 2.2:

E. coli strains used

Bacteria were transformed according to this section. DH5α, BL21 and XA90 cells were used for protein expression experiments (section 2.9.1). DH5α cells were used for all other cloning experiments unless otherwise stated.

DH5α cells were transformed with DNA unless otherwise stated. All cells used for transformations were made competent using the calcium chloride method (Sambrook *et al.*, 1989). Competent cells were stored at -70°C. Glycerol stocks were prepared of all transformed cultures used, i.e. 0.5 mls of 50% glycerol were added to 0.5 mls of culture and the cells were then frozen rapidly on dry ice and then stored at -70°C. Taken from Sambrook *et al.* (1989) and personal communication with Stuart Allen.
2.3 Double stranded DNA sequencing.

2.3.1 Preparation of DNA for sequencing.

Double stranded plasmid DNA to be sequenced was prepared using a Quiagen Maxi-prep kit, according to the manufacturer’s instructions. DNA was either sequenced on an automated sequencer (Perkin Elmer ABI PRISM 377 DNA sequencer) or by hand using a Sequenase Version 2.0 kit (Amershan life science), following manufacturer’s instructions.

5-10 μg of DNA template were used for each reaction in 20 μl of water. DNA was denatured by adding 250 μl of 5M NaOH, 2 μl of 0.5M EDTA, 248 μl of distilled water and incubated at room temperature for 5 minutes. DNA was precipitated by adding 3 μl of 3M NaAc, 8 μl of 1M Tris-HCl pH 7.0, 75 μl of ethanol and placed on dry ice for 30 minutes and the template pellet was resuspended in 7 μl of water. 10 μCi of S35dATP and 1 pmole/μl of primers were used per reaction and the reaction carried out according to the manufacturer’s instructions.

The following primers were used for sequencing the *drongo* deletion constructs:

For pGEX-*drongo* Δ S (see section 2.9.1):
Primer # 857: 5’ TCATCGCAGCAGCAGGA 3’
and for UAS-*drongo* Δ F (see section 2.6.4):
Primer # 1493: 5’ CCAACTCGTCGAGTAAC 3’

For sequencing the 3’ end of *drongo* cDNA for correct sequence.
Bottom strand:
Primer # 1b: 5’ GATAGCGTTCTTATTTATTT 3’
Primer # 2b: 5’ GTCATGCATTCGGGGTTC 3’
Primer # 3b 5’ GGCCACACAATCATTAACTG 3’
Primer# 4b 5’ CGAGCAGGTACTTGTCGTCC 3’

Top Strand:
Primer #1a: 5’ CGATGGCCACATTCACAC 3’
Primer # 2a: 5’ GCTCCCATCTACAATGCAG 3’
Primer # 3a: 5’ GGATCGATATGCCGCT 3’
Primer # 4a: 5’ CATACCAAATGCCTACGG 3’

Primers used for sequencing pTk34 cDNA (section 2.7.4):
SV40 promoter: 5’ CCTGATTGGCAGAAGCTACAC 3’
SV40 promoter and splice site I: CTCGGCCTCTGAGCTATTCC 3’
CAT gene; 5’ GACGGTGACCTGGTGATATG 3’
 5’ AGCGGAGGCTAG AAGGAGAG 3’
 5’ GACGGTGAGCTGGTGATATG3’
 5’ AAGGCGACAAAGGTGCTGATG 3’
splice site 2
and 3: 5’ TCCATGTCGGCAGAATGCTT 3’
Env gene
(and RRE): 5’ GGCAGGAAGAAGCAGGAGACA 3’
 5’ CATGTGGCAGGAAGTACGAA 3’
 5’ GAGCAGCGAGAAGCAGACTATG 3’
splice site 4: 5’ ATAGTGGAGGCTTGG 3’
Primers were manufactured by Genosys or pers. comm. Stephen Harris.

2.3.2 Sequencing gels.

0.4 mm thick sequencing gels were poured and used in a 40cm sequencing tank.
6% acrylamide gels were prepared (9:1 ratio of acrylamide:NN-methylbisacrylamide;
1x TBE; 47% Urea (w/v)). To polymerise the reaction, 70μl of TEMED and 800μl of
10% ammonium sulphate were added. Gels were run in 1 x TBE at 1000-1500 volts,
fixed in 10% (v/v) methanol: 10% acetic acid and vacuum dried at 80°C before being
autoradiographed.

2.4 Whole mount in situ hybridisation
2.4.1 Preparation of Dig labelled RNA probes.

Probes to be used for in situ hybridisations were prepared by a modified version of the protocol for the synthesis of Digoxygenin labelled probes using a Dig RNA labelling kit. (Boehringer Mannheim), according to manufacturer’s instructions. Templates used for Dig labelling transcriptions were prepared by linearising with restriction enzymes for 1-2 hours at 37°C. For probes used for in situ hybridisation see table 2.3.

<table>
<thead>
<tr>
<th>Clone name</th>
<th>Cloning Details</th>
<th>Digested with</th>
<th>Transcription details</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBS-drongo</td>
<td>drongo ORF</td>
<td>Xho1</td>
<td>Transcribed with T7 polymerase</td>
<td>antisense drongo.</td>
</tr>
<tr>
<td></td>
<td>cloned into pBluescript via Eco RI sites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBS-drongo</td>
<td>drongo cDNA</td>
<td>Xba I</td>
<td>Transcribed with T3 polymerase</td>
<td>sense drongo.</td>
</tr>
<tr>
<td></td>
<td>cloned into pBluescript via Eco RI sites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBN40-oskar</td>
<td>Oskar cDNA</td>
<td>Hind III</td>
<td>Transcribed with T7 polymerase</td>
<td>antisense oskar.</td>
</tr>
<tr>
<td></td>
<td>cloned into pBN40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBN40-oskar</td>
<td>Oskar cDNA</td>
<td>Not I</td>
<td>Transcribed with SP6 polymerase</td>
<td>sense oskar.</td>
</tr>
<tr>
<td></td>
<td>cloned into pBN40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3

Probes produced for in situ hybridisations.

RNA probes were acid hydrolysed (section 2.4.2) before use. Antisense drongo and sense drongo were used for in situ hybridisation to ovaries (section 2.4.4) and embryos (section 2.4.3), antisense and sense oskar were used for in situ to ovaries.
After linearisation, 2μl of each reaction was run on an agarose gel to check for complete digestion, the DNA was extracted and cleaned with phenol/chloroform, the upper phase was precipitated with ethanol as described by Sambrook et al., (1989) and resuspended in 20μl of dH2O. RNA was transcribed as described in the manufacturer’s instructions.

The probe was precipitated by adding 80μl of distilled, deionised water, 20μl of 4M LiCl and 360μl of 100% ethanol. The probe was incubated on dry ice for 15 minutes and centrifuged in a bench top centrifuge at 13,000 rpm. The RNA probe was then resuspended in 100μl of H2O and used as a 100 x stock. Before use RNA probes were acid hydrolysed according to the method in section 2.4.2. The labelling of the probes was also validated by dot blot testing, making dilutions of each probe from 1/10 to 1/10000 and dotting 2.5μl onto nylon membrane (Hybond N, Amersham). Filters were then dried and fixed DNA side down on a U.V. transilluminator for 3 minutes. Subsequent washing, antibody incubation and colour reaction steps are essentially as described in the manufacturer’s instructions.

2.4.2 Acid hydrolysis of probes.

100μl of 0.2M NaHCO3 were added to the precipitated RNA probe were added and the probe was heated to 60°C for t minutes as calculated by the formula below:

\[t \text{ (minutes)} = \frac{L_o-L_f}{(0.11)(L_o)(L_f)} \]

Where \(L_o \) = original length of the probe in kb

and \(L_f \) = desired length in kb (Usually between 0.3- 0.15 kb)

The probe was then precipitated with 20μl of 5% acetic acid, 20μl of 3M NaAc, 500μl 100% ethanol and incubated on dry ice for 15 minutes and then centrifuged at 13,000 rpm for 15 minutes in a microfuge.
Immediately before adding the probe it was heated to 95°C for 3 minutes in a heating block and allowed to cool on ice for 5 minutes.

2.4.3 In situ hybridisation of RNA probes to wholemount Drosophila embryos.

2.4.3.1 Embryo Collection and pretreatment.

Embryos were collected, dechorionated and devitellinised as described in Roberts (1986).

2.4.3.2 In situ hybridisation.

For in situ hybridisation to embryos the protocol is that described in Tautz and Pfeifle (1989) with the following additions. The embryos were incubated in anti-Dig antibody (Dig-RNA kit, Boehringer Mannheim) at 1/2000 (diluted in PBT) for 2 hours at room temperature.

The antibody conjugate was then removed and the embryos were washed for 2 minutes in PBT, 10 minutes in PBT, 3 x 20 minutes in PBT.

2.4.4 In situ hybridisations of RNA probes to wholemount Drosophila ovaries.

In situ hybridisations to wholemount ovaries were carried out using essentially the same method as for embryos. The ovaries were dissected out of young females in 1x Robbs buffer (55mM NaAc; 40mM Kac; 100mM sucrose; 1.2mM MgCl$_2$;1mM CaCl$_2$; 100mM HEPES (pH 7.4) and then fixed in 4% formaldehyde; 0.1% D.M.S.O. in PBT for 1 hour.

The ovaries were then dehydrated through an ethanol series (50%, 70%, 90%, 90%, 100%, 100%) then transferred to methanol. Ovaries were then rehydrated in the same manner as embryos and following this step, the steps up to mounting were identical to in situ hybridisations to embryos except that the ovaries were incubated in Proteinase K (Boehringer Mannheim; 14.4µg/ml) for 1 hour at room temperature and the ovaries washed overnight in PBT after addition of the anti-Dig antibody. The ovaries were not
dehydrated before mounting but mounted in gelvitol (90% (v/v) glycerol; 50mM Tris-HCl (pH 7.5); 1%(w/v) propyl trihydroxy benzoate) under a supported coverslip.

2.5 Whole mount antibody staining.

2.5.1 Antibody staining to *Drosophila* embryos.

<table>
<thead>
<tr>
<th>Primary. (dilution used)</th>
<th>Source.</th>
<th>Tissue used in staining.</th>
<th>Secondary. (Dilution used)</th>
<th>Detection method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Even-Skipped (1/250)</td>
<td>Develomental Studies Hybridoma Bank (Described in Doe et al., 1988)</td>
<td>Embryos.</td>
<td>HRP- Goat anti mouse. (1/250)</td>
<td>DAB staining.</td>
</tr>
<tr>
<td>Mouse anti-fasciclin III (1/10)</td>
<td>DSHB (described in Goode et al., 1996)</td>
<td>Ovaries</td>
<td>HRP- Goat anti mouse. (1/250)</td>
<td>DAB staining.</td>
</tr>
<tr>
<td>Rabbit anti-Drongo (section 2.10.1/2) (1/10-1/250).</td>
<td>Made in laboratory.</td>
<td>Ovaries/ Embryos.</td>
<td>HRP- Goat anti-rabbit. (1/250)</td>
<td>DAB staining.</td>
</tr>
<tr>
<td>Mouse anti-Engrailed. (1/100)</td>
<td>DSHB (described in DiNardo et al., 1985)</td>
<td>Embryos.</td>
<td>HRP- Goat anti mouse. (1/250)</td>
<td>DAB staining.</td>
</tr>
<tr>
<td>BP102 (mouse anti-CNS axons) (1/250)</td>
<td>DSHB</td>
<td>Embryos.</td>
<td>HRP- Goat anti mouse. (1/250)</td>
<td>DAB staining.</td>
</tr>
</tbody>
</table>
Table 2.4

Antibodies used for antibody staining to ovaries and embryos.

For antibody staining to embryos, embryos were pretreated (section 2.4.3.1) and antibody stained according to this section. Ovaries were antibody stained according to section 2.5.2.

(DSHB: Developmental Studies Hybridoma Bank).

Antibodies were used to localise proteins in embryos, most antibody staining was carried out according to the method below except for Even-skipped antibody staining which was carried out according to the method from Doe et al. (1988).

Embryos were collected and pretreated as in method 2.4.3.1. Embryos were incubated in blocking solution (10% BSA with 3% normal goat serum (Vector) for 30 minutes and then in primary antibody (see table 3) overnight at 4°C. Embryos were then washed in PBT (PBS + 0.1% Triton X-100) for 3 x 3 minutes and 3 x 20 minutes. Embryos were incubated in secondary antibody diluted in PBS (see table 3) for 4 hours at room temperature.

After subsequent washes for 3 x 3 minutes and then at 3 x 20 minutes in PBT, embryos were incubated in ABC solution (16μl of solution A and 16μl of solution B from Vectastain kit, Vector laboratories) for 30 minutes. Embryos were washed in PBT for 3 x 20 minutes and incubated in DAB reagent (10ml 0.1M Tris-HCl pH 7.5, 0.1mls DAB at 50mg/ml, 12μl of H₂O₂) until colour developed. Embryos were then washed, dehydrated, cleared in Histoclear and mounted in Canada Balsam (as in method 2.4.3).

2.5.2 Antibody staining to ovaries.

Ovaries were dissected in Robbs buffer (as in section 2.4.4), and rinsed in PBS. Ovaries were then fixed for 1 hour in 4% formaldehyde containing 0.1% DMSO.
After rinsing 3x 20 minutes in PBT, ovaries were blocked for 15 minutes in 10% BSA + 3% normal goat serum. Subsequent steps were identical to antibody staining to embryos (section 2.5.1). Ovaries were mounted in gelvitol on a supported coverslip. For staining with Gurken antibody, the above method was used with the following exceptions, 2% formaldehyde was used for fixing.

2.6 Overexpression of transgenes in Drosophila tissues

2.6.1 Production of transgenic flies.

WCS embryos were collected in large laying cages (according to Roberts, 1986). Embryo injections were performed essentially as in Roberts (1986) collecting embryos at hourly intervals. 250ng/μl of helper plasmid (pπΔ2-3; Roberts et al., 1986) was co-precipitated with the DNA to be injected. DNA was injected at 1μg/μl. After injection, embryos were placed at 18°C until hatching occurred and then the larvae were placed on standard fly food to develop to adulthood.

2.6.2 Mapping of insert in transgenic stocks.

Inserts were mapped by genetic crossing and then placed over a suitable chromosomal balancer (table 2.1).

2.6.3 Overexpression by heat shock and analysis of effects.

drongo cDNA was cloned into pP(CaSpeR-hs) via EcoR I restriction sites which placed the cDNA under the control of an inducible heat shock promoter (hs-drongo). The cDNA was also cloned into the same vector in a reverse direction. This construct was named hs-drongoR. Transgenic flies were produced by the embryo injection method described in section 2.6.1.

2.6.3.1 Overexpression during oogenesis.
Female adults were collected as virgins, conditioned with males for 3 days and then exposed to a 30 minute heat shock at 37° C. This was achieved by placing approximately 30 females in a food vial into a 37°C water bath. Heat shocks were repeated three times daily for three days and the ovaries were dissected one to three days post heat shock for analysis.

Ovaries were dissected in Robbs buffer, teased apart with fine forceps and fixed for 10 minutes in 3.7% formaldehyde in PBS. After washing in PBS the ovaries were incubated in 0.5 mls Hoechst #33258 (Sigma: 1µg/ml in PBS) for 4 minutes. The ovaries were washed two times for 10 minutes in PBS and mounted in Gelvitol.

2.6.3.2 Overexpression during eye development.

Approximately 20 third instar larvae were placed into a small sealed petri dish and lowered into a 37°C water bath using a weight to hold the dish under water. The larvae were heat shocked for either 15, 30, 60 or 90 minutes and then placed into a food vial at 25°C until they emerged as adults. Adult eyes were then examined after eclosion.

2.6.3.3 Overexpression during embryogenesis.

Embryos were collected from grape juice agar plates (see section 2.1.1.2) in laying cages and placed into embryo collecting baskets. Embryos were submerged into a prewarmed 5% saline solution at 37°C for either 15, 30, 60 or 90 minutes and fixed and mounted at 7 hours of age for observation.

2.6.3.4 Overexpression during late oogenesis.

Analysis of heat shock effects during late oogenesis was performed by heat shocking female flies for 30 minutes at 37°C twice daily for three days. The eggs were collected from the females 2-18 hours after the final heat shock and analysis of the embryo cuticle was performed by hand removal of the chorionic and vitelline membrane as
described in Roberts (1986). Embryos were viewed using dark field view down a Zeiss Axioskop light microscope.

For all overexpression experiments WCS flies were subjected to the same heat shock conditions as \textit{hs-drongo} and analysed identically as a control.

2.6.4 Overexpression of \textit{drongo} by UAS-GAL4 system.

For restriction maps of vectors see appendix 10.1

\textit{drongo} was overexpressed as a full length cDNA and as various deleted fragments.

The \textit{drongo} cDNA was cloned into pUASt vector, by linearising pUASt with \textit{EcoR I} and excising \textit{drongo} cDNA from \textit{pBS-drongo} with \textit{EcoR I}. The resulting fragments were ligated to produce the clone designated UAS-\textit{drongo}.

The \textit{drongo} cDNA fragment in \textit{pGEX-5X-1- drongo} \textit{Δ S} (prepared as described in section 2.9.1) was excised using \textit{Not I} and \textit{EcoR I}. \textit{pUASt} was also digested with \textit{Not I} and \textit{EcoR I}. The two fragments were then ligated. The resulting construct was designated UAS-\textit{drongo} \textit{Δ S}.

UAS-\textit{drongo} was also digested with \textit{Fsp I} and nucleotides 1-970 and 1205-3493 were religated and this construct was designated UAS-\textit{drongo} \textit{Δ F}.

Transgenic flies were produced containing UAS-\textit{drongo}, and flies were also produced which contained deletion constructs UAS-\textit{drongo} \textit{Δ S} and UAS-\textit{drongo} \textit{Δ F} as described in section 2.6.1.
2.7. Drosophila cell Culture

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Details</th>
<th>Source/reference</th>
</tr>
</thead>
</table>

Table 2.5

Insect tissue culture cells lines used in this study

Cells were passaged 2.7.3 tranfected according to section section 2.7.5.

2.7.1 Preparation of cell culture media.

Drosophila Schneider's Insect Medium (Gibco) was used throughout the cell culture experiments. Before use of the media, 50 mls of sterile foetal bovine serum (Sigma), heat inactivated at 65°C for 30 minutes; 5 ml of penicillin-streptomycin solution (Sigma: 5,000 units penicillin; 5mg/ml of streptomycin); and 1ml of 200mM filter sterilised Glutamine were added to a 500 ml bottle of sterile media. All glassware for use with cell culture was sterilised at 180°C for 20 minutes before use and plastics cleaned with ethanol before use.
2.7.2 Freezing cell culture cells.

Before proceeding with cell culture work. Back up samples were frozen by the following method. The best results were obtained when cells where frozen slowly and thawed quickly.

Freezing medium (80% (v/v) media; 10% FCS, 20% DMSO) was prepared and chilled on ice. Cells were frozen at a concentration of \(1.5 \times 10^7\) cells/ml. 0.5 ml aliquots of cells were added 1:1 with freezing media were placed into plastic ampules and chilled immediately as the DMSO was cytotoxic. The vials were then placed at -20°C for 1-2 hours and then transferred to -70°C overnight. The cells were then transferred into liquid nitrogen storage.

Cells were recovered after 1-2 weeks after freezing and tested for viability using the Trypan Blue exclusion test (Davis, 1994). Cells were thawed by gently thawing ampules by warming in the hand, the contents of the ampule was transferred to a 50ml tissue culture flask (Nunclon) flask containing 5ml of media. Cells were transfered after 2-3 days to wash out any cryoprotectant (DMSO).

2.7.3 Subculture of Drosophila cells.

DH33 cells were maintained as monlayer cultures. When cells reached a confluent monolayer (approximately every three days) they were passaged 1/5 dilution. Passaging was performed by knocking the side of the flask to release the cells into the media, the cell mixture was then poured into a sterile tube and diluted. 5mls of the diluted cell suspension was placed into 50cm² and 10ml into 200cm² flasks.

Schneider 2 cells were also maintained as monlayer cultures in Drosophila Schneider’s medium at 25°C in Nunclon 200cm² vented flasks. Cells were grown until they were 80% confluent at which time they were 80-99% in suspension. The flask was then rocked gently to ensure a uniform cell density and the cells in suspension were subcultured at a 1/10 dilution into fresh media.

The cell density was measured using a haemocytometer (Hawksley Crystalite improved Nelbauer).
2.7.4 Cloning for tissue culture.

\(\text{rev} \) cDNA was excised from pGEMt, using EcoR I and \(Xba \) I restriction sites and subcloned into pUASt (also cut with EcoR I and \(Xba \) I). pTK34 contains a Rev responsive element (RRE) which drives expression of chloramphenicol acetyl transferase (CAT), pTK53 is an identical construct with a 2 nucleotide mutation at 7805-7806, which induces a conformational change in the RRE, disrupting Rev binding (pGEMt-\(\text{rev} \), pTk34 and pTk53 constructs were kind gifts from Jon Karn at MRC, Cambridge).

pUASt, pTK34 and pTK53 were digested with Not I and Xho I (a 3kb fragment in each case included the env exon and the CAT gene and ligated to produce UAS-RRE and UAS-mRRE respectively.

2.7.5 Calcium Phosphate Transfection of \textit{Drosophila} cells.

Cells were plated out at a density of 1-5 \(\times 10^6 \) cells per 60mm dish (Nunclon) in 3mls of Schneider's \textit{Drosophila} medium at least 6 hours prior to transfection. Cells were transfected using the calcium phosphate method as described in Kingston, 1997.

2.7.6 Preparation of cell lysates.

Media was removed from the dishes and 1ml of PBS was added to the transfected cells. Cells were scraped into microcentrifuge tubes using a Costar disposable scraper, pelleted by centrifugation for 2 minutes at 6,000 rpm in a microfuge (Sanyo MSE) and resuspended in 100\(\mu \)l of 0.25M Tris-HCl (pH7.8). Cells were lysed by three freeze/thaw cycles (30 seconds in liquid \(N_2 \) and 90 seconds at 37\(^\circ \)C) and the debris was pelleted by centrifugation at 12,000 rpm for 2 minutes. Supernatants were transferred to fresh tubes and 30\(\mu \)l of each lysate was used for CAT assays as described in section 2.7.7 and 30 \(\mu \)l was assayed for \(\beta \)-galactosidase activity as described in section 2.7.8. 10\(\mu \)l of the lysate was also used to measure the protein concentration using the Biorad protein assay according to manufacturer’s instructions.
2.7.7 Assay for Chloramphenicol Acetyl Transferase (CAT) activity.

CAT activity was assayed as described in Ausubel (1996) with the following modifications. 14C chloramphenicol (ICN) was used at 25μCi/ml and 1μl 10mM acetyl CoA. was used.

The samples were run on ascending thin layer chromatography (TLC) using 95% chloroform and 5% methanol. The plates were then dried and exposed to X-ray film overnight at room temperature. The CAT assays were then quantified by wrapping the plates in cling film and exposing them overnight to phosphoimager screen (Molecular Dynamics) according to the manufacturer's instructions. The ImageQuant programme was used to analyse the phosphoimaged samples, by measuring the volume of the 3-acetylchloramphenicol in each case compared to the background.

2.7.8 Assay for transfection efficiency (β-galactosidase activity) in tissue culture cells.

1μg of SV40βGal plasmid (expressing the enzyme β galactosidase) was co-transfected with the assay constructs and cell extracts were prepared as described in section 2.7.6 to measure β galactosidase activity.

β galactosidase activity in cell extracts was measured according to the protocol in Kingston (1997).

2.7.9 Extraction of proteins from tissue culture cells.

Proteins were extracted from Drosophila tissue culture cells were extracted as in method 2.7.6 and heated in 1x SDS loading buffer at 95°C for 4 minutes and then subject to western analysis (2.11.5).
2.7.10 Immunofluorescence to tissue culture cells.

Antibody staining to S2 cells was carried out essentially as described in King and Prosse (1992), with the following modifications: cells were fixed in methanol at -20°C, primary antibody was added 1/50 (unless otherwise stated) in PBS +10% normal goat serum (NGS) for 2 hours and secondary antibody was added 1/100 for 30 minutes. Double labelling with Hoechst # 33258 (Sigma) was performed as follows: after the secondary antibody was added the cells were rinsed 5 times and then 1ug/ml of Hoechst # 33258 in PBS was added for 4 minutes, the cells were then rinsed 5 times and washed for 2 X 5 minutes and rinsed a further 5 times before mounting.

2.8 Ethylmethane sulphonate (EMS) mutagenesis of 21D region.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Df(2L) ast2</td>
<td>deficiency</td>
<td>21D1-21D2; 22B2-22B3</td>
<td>gamma ray</td>
</tr>
<tr>
<td>Df(2L) S2</td>
<td>deficiency</td>
<td>21C6-D1; 22A6-B1</td>
<td>gamma ray</td>
</tr>
<tr>
<td>Df(2L) ast4</td>
<td>deficiency</td>
<td>21D1-21D2; 21E2.</td>
<td>gamma ray</td>
</tr>
<tr>
<td>Df(2L) ast6</td>
<td>deficiency</td>
<td>21E1-21E2; 21E2-21E3</td>
<td>gamma ray</td>
</tr>
</tbody>
</table>

Table 2.6
Deficiencies used in defining mutations in the 21D region.
Deficiency stocks and breakpoint information were obtained from the Bloomington stock centre. These stocks were used for screening EMS mutants according to section 2.8.2.
2.8.1 Isogenisation of wild type stocks

Isogenisation of a white Canton S (WCS) stock of flies was performed essentially as described in Greenspan (1997).

2.8.2 Mutagenesis of WCS stocks and subsequent crosses.

Male flies from isogenised WCS stock were fed 2.5mM EMS/sucrose solution according to EMS mutagenesis protocol of Roberts (1986). 100 males per bottle were then mated to \(W; CyO/Sp \) virgin females. At evenly spaced timepoints throughout the mutagenesis, crosses were also performed to assess the effectiveness of the EMS treatment by observing male lethals (see appendix 10.2A).

Single pair matings were performed by placing one male and one female in a vial. Large scale bottle matings were performed by adding approximately 20 females and 30 males together in a bottle. Non-complementation in any cross was taken as the absence of any \(Cy^+ \) flies in over 100 progeny unless otherwise stated.

2.8.3 Analysis of progeny.

Mutants were placed in laying cages and a total of 200-300 eggs per allele were collected and kept at 18\(^\circ\)C for up to 3 days. The eggs were scored for any lethality and any hatching larvae were then transferred to a food vial and then followed up to eclosion of the adult flies noting any lethality at any stage of development. Eggs which did not hatch in the time period allowed were first examined by cuticle preparation (as described in section 2.6.3.4), then subsequently by antibody analysis as described in method 2.5.1.
2.9 Fusion Protein production and analysis.

2.9.1 Expression of fusion proteins in *E. coli*.

The *drongo* ORF was cloned into (1) pGEX-5X-1 expression vector (Pharmacia Biotech) using *Eco*RI restriction sites (appendix 10.1); into (2) pMAL-c2 expression vector (New England Biolabs) for expression of maltose binding protein (MBP)-fusion protein, using *Eco*RI restriction sites (appendix 10.1); and into (3) pQE32 vector (Qiagen) using *Sma*I and *Eco*RI sites for expression of a 6X his tagged -fusion protein (not shown).

As controls in determining the validity of induction and purification, pGEX-5X-1, pMal-p2 and pQE-32 vector alone were used alongside expression of GST-fusion proteins, MBP-fusion proteins and His-tagged fusion proteins respectively.

For expression of all fusion proteins, overnight cultures were diluted 1:100 into fresh media/antibiotic and grown at 37°C (unless otherwise stated) until O.D. $A_{600} = 0.6$-0.8. To induce expression of fusion proteins, IPTG was then added to the bacterial culture to a final concentration of 1mM (unless otherwise stated) and the culture was grown at 37°C for a further 4 hours. (To determine successful induction, various time points were taken throughout).

For GST-fusion proteins DH5α was used initially as a bacterial strain, then protease deficient strains BL21 (DE3) and LE392 (Table 2.2) were used subsequently in order to minimise protein degradation.

Attempts were made to solubilise the fusion protein using the *E. coli* thioredoxin plasmid *pTtrx* or using heat shock chaperone plasmids *pTgroE* (these were a gift from Lauren Porter and described in Yasukawa *et al*, 1995). Both of these plasmids are also IPTG inducible (appendix 10.1H).

pGEX-5X-1 was also digested with *Sst*I and *Not*I, deleting amino acids 1650-3494, the remaining fragment was treated with S1 nuclease (from nested deletion kit, Pharmacia Biotech: used according to manufacturer’s instructions) to form a deleted
Drongo fusion protein (pGEX-5X-1-drongo ΔS) in order to minimise steric hindrance of binding to the affinity matrix.

Cultures were then centrifuged at 3,000 rpm for 10 minutes at 4°C to pellet the cells and the cells were resuspended in an appropriate buffer for lysis.

2.9.2 Purification of fusion proteins by affinity binding.

Cells were either sonicated or lysed in a French pressure cell. For sonication, bacteria were sonicated in lysis buffer 1 (150mM NaCl, 1% triton X-100, 0.1% SDS, 50mM Tris-HCl pH 8.0, 1mM PMSF) using a Jencons sonicator using a 30 second pulse at 6 urn repeated five times with 30 seconds break in between pulses. The cell lysate was then centrifuged at 10,000 rpm for 20 minutes at 4°C and the supernatant transferred to a fresh test tube and the pellet was resuspended in lysis buffer 1. Samples were then analysed on an SDS-PAGE electrophoresis gel.

For French press, bacterial cells were resuspended in lysis buffer 2 (10mM Tris-HCl pH 8.0, 150mM NaCl, 1mM EDTA) with 1mM PMSF. Cells were then subject to French pressing twice at 1010atm in a Aminco French pressure cell press and the cell lysate was centrifuged at 10,000 rpm for 20 minutes at 4°C.

The supernatant was transferred to a fresh test tube and the pellet was resuspended in 0.5% S.D.S.

After cell lysis the supernatant was used for a source of soluble fusion protein in the purification experiments. For elution of GST-fusion proteins, supernatants were incubated with 150μl of 50% slurry of Glutathione Sepharose 4B beads (prepared according to manufacturer’s instructions (Pharmacia Biotech) per 10ml of culture on a rotator at 4°C for 1 hour-overnight. Purification was attempted according to the batch method. GST-Fusion proteins were eluted in 100mM Tris-HCl pH 9.5, 20mM reduced glutathione (Sigma). Elution was achieved by rocking gently at room temperature for 1-3 hours.

For isolation of MBP-fusion proteins, a similar method was used utilising an Amylose Resin (NEB). Elution was performed with 10mM maltose in 150mM tris-HCl pH 7.5.
All samples were analysed by SDS-PAGE to determine the purification of the fusion proteins.

2.9.3 Analysis of fusion protein on SDS-PAGE electrophoresis.

1x SDS-loading buffer (50mM Tris-HCl pH 6.8; 5% 2-mercaptoethanol; 2% SDS; 10% glycerol) was added to samples to be analysed. The samples were heated to 94°C for 4 minutes and 1μl of bromophenol blue dye was added to each sample. SDS PAGE was performed according to Sambrook et al. (1989) using 12% acrylamide gels.

Prestained molecular weight protein marker were loaded onto the end wells of each gel. See Blue standards (Novex Novel experimental technology) or Broad range prestained protein marker (NEB) were used.

In order to visualise whole proteins, the gels were stained with 0.2% coomassie blue in 10% acetic acid 10% methanol, and destained after 1-2 hours with 10% methanol/10% acetic acid.

2.9.4 Concentration of protein solutions.

Protein solutions were often precipitated out of solution in order to produce a sample which was more concentrated. Ammonium sulphate precipitation was carried out essentially as described in Harlow and Lane (1988) using 80% ammonium sulphate. For ammonium reneke precipitation, an equal volume of ammonium reneke (Sigma) was added and the solution of protein was incubated on ice for 10 minutes and the centrifuged for 10 minutes at 10,000 rpm at 4°C. The supernatant was discarded and the pellet was washed twice with 6:1 acetone :100mM HCl and then centrifuged for 3 minutes at 10,000 rpm at 4°C. The pellet was washed twice again with acetone and then vacuum dried and resuspended in 1X SDS loading buffer.
2.10. Immunisations and preparation of serum.

2.10.1 Production of synthetic peptide.

The following peptide was produced at the Department of Genetics in Cambridge and coupled to MBS activated Keyhole limpet haemocyanin (KLH) through the thiol group on the N-terminal cysteine. The efficiency was calculated using Ellmans reagent (Sigma) according to the manufacturer’s instructions, which gives a colour reaction with the free cysteines before and after the coupling. 78% of 4mg were coupled and the final concentration of the conjugate was 2mg/ml.

For immunisation procedures, 100μl of the peptide was used and mixed with 800μl of Freund’s adjuvant (Morris, Guildhay ltd.) and 400μl of PBS. This peptide was mixed to an emulsion between two syringes linked by a thin metal tube. Complete Freund’s (prepared by adding 10 doses of intradermal BCG vaccine BP (Evans) to 20ml of Freund’s) was used for the first injection and incomplete non ulcerative Freund’s was used for subsequent injections.

Rabbits were injected subcutaneously every 4 weeks and bleeds taken 2 weeks after injection and analysed by ELISA (section 2.11.1) and by western analysis (section 2.11.5). The serum taken post immunisation was termed anti-Drongo peptide antibody.

2.10.2 Isolation of GST-fusion proteins from SDS-PAGE gels.

25μg of total bacterial extract was loaded onto a 12% SDS-PAGE gel and run as previously described. After Coomassie blue staining of the gel and localisation of the fusion proteins on the gel, the band was excised with a clean scapel and placed in an electroelution chamber (BioRad), where the protein was electroeluted for 6 hours at 18mA at 4°C and dialysed against PBS the fusion protein and used to immunise a rabbit as described in section 2.10.1. 200μg of protein was used for each vaccination. Before immunisation, SDS was removed by dialysis against PBS containing 1ml of DEAE-cellulose (Sigma) and 10% methanol. The serum taken post immunisation was termed anti FL (full length) Drongo antibody.
2.10.3 Preparation of rabbit serum.

Blood taken at each bleed was placed at room temperature for 1 hour, while a clot formed, the clots were detached from the sides using a spatula. The blood was then left overnight at 4°C. The serum was then taken and centrifuged at 12,000 for 5 minutes to pellet any red blood cells and then the supernatant was aliquotted and stored at -20°C. Pre immune serum was mixed with 50% glycerol and stored at -70°C.

2.11 Analysis of serum

2.11.1 ELISA (Enzyme Linked Immunoabsorbant Assay) for detecting antibodies in crude serum.

150 μl of protein solution (purified protein or bacterial extract) at 1 μg/ml, diluted in coating solution (50 mM sodium carbonate pH 9.6) was placed into the wells of a 36 well dish (Nunclon), using a complete column of wells for each antibody dilution and reserving the first set of columns for blank (coating solution only). The plate was incubated overnight at 4°C. The coating solution was then removed from the wells and 2 x 160 μl of blocking solution (0.5% w/v gelatine) was added to each well and the plate was incubated at 37°C for 30 minutes. Wells were then washed 3 x with PBS + 0.1% Tween-20 (PBS-Tw).

Serum was diluted (in the range: 1,1000-1,6400) in PBS and a control of pre immune serum was used at 1,1000. Each row of wells was filled each dilution of antibody solution (including the blank column) and incubated at 37°C for 30 minutes. The antibody solutions were then removed and the wells washed 5 x PBS-Tw.

Each well was then filled with secondary antibody (HRP conjugated goat anti-rabbit IgG) at 1,6000 (diluted in PBS) and incubated again at 37°C for 30 minutes.

The wells were washed 5 x with PBS-Tw and then the colour was developed with 150 μl of substrate OPD (10 mg OPD, 25 ml dH2O, 13 ml 2.84% (w/v) Na2HPO4, 12 ml 1.92% (w/v) citric acid, 20 μl H2O2, and after a 30 minute incubation in the dark, the reaction was terminated with 100 μl of 2M H2SO4. The reaction was quantitated by measuring the O.D. at A490.
2.11.2 Protein A affinity purification of IgG from rabbit serum.

IgG fraction from anti-Drongo peptide antibody was purified using a 5 ml Protein A (Sigma) column. The protocol was essentially according to the manufacturer’s instructions, adjusting the pH of the crude serum to pH 8.0 by adding 10mls of 1M Tris HCl (pH 7.9), antibody was bound to the matrix and albumin was washed from the column with Tris HCl (pH 8.0) and elution was carried out with 100mM glycine pH 3.0 into 100μl of 1M Tris HCl pH 8.0. IgG containing fractions were analysed by reading absorbance at 280nm.

2.11.3 Subcellular Fractionation of Drosophila embryos.

Drosophila embryos were fractionated by the method according to Berrios et al. (1995). 1 x SDS loading buffer was added to samples from each fractionation step and the samples were boiled at 95°C for 4 minutes and loaded on a 15% SDS PAGE gel. Drosophila anti-lamin antibody (a generous gift from Paul Fisher, at Stony Brook, described in Gruenbaum et al., 1988) was used as a control in subcellular fractionation experiments.

2.11.4 Protein extraction for western blotting.

Various Drosophila tissues were homogenised essentially as described in Govind et al. (1992) in homogenisation buffer (50mM Tris HCl (pH 7.5) 140mM NaCl, 5mM MgCl₂, 0.05% NP-40, 1mM PMSF, 10mg/ml pepstatin A, 10mM/ml aprotinin, 1mg/ml leupeptin) on ice. Homogenates were filtered and 20μg was loaded onto a SDS PAGE gel for western analysis.

2.11.5 Western Analysis.

Western analysis was performed essentially as described in Harlow and Lane (1989).
SDS-PAGE gels were run as described in section 2.9.3. All western blotting materials used were first soaked in 1x blot transfer buffer (10mM Tris-HCl, 76mM glycine, 0.0% SDS, 20% Analar grade methanol.) Proteins were transferred overnight at 25V with the buffer stirring continuously and the blots were blocked overnight in 5% Marvel in PBS-Tween-20 (0.1%:unless otherwise stated).

For the colour reaction, unless otherwise stated, filters were incubated in substrate (3,3' diaminobenzidine (DAB) tetrahydrochloride tablets (Sigma) at 0.5mg/ml) in Tris/NaCl buffer. 5μl of hydrogen peroxide was added for every 1mg of DAB. When the colour reaction was complete the blots were then rinsed well in PBS and dried on Whatman paper.
Chapter 3:

Overexpression of *drongo*
3.1 Introduction.

Previous in situ hybridisation analysis of *drongo* indicated expression of the gene at various developmental phases in *Drosophila* (Harris, 1995). *drongo* is expressed during development of the compound eye, early neurogenesis (section 1.3) and also as the ovary is developing in the female fly (section 1.4). In order to establish the function of *drongo*, one aim of this project was to investigate if overexpression of the *drongo* cDNA would have any deleterious effect in these tissues. It was hypothesised that, given the restricted expression pattern of the wild type gene, ectopic expression of *drongo* may produce defects which could be analysed later in the development of each phase, possibly suggesting a role for the Drongo protein in the wild type fly.

3.2 RESULTS: Overexpression via heat shock.

3.2.1 Cloning of *drongo* cDNA into a heat shock inducible vector.

In order to analyse the effects of overexpression of the *drongo* gene, the 2.9 kb *drongo* cDNA (nucleotides 584 - 3494) was cloned into the vector p(hsCaSpeR) (pers. comm. Marcus Allen). This cDNA fragment included both potential translational start sites in the cDNA (+605 and +958) (figure 1.3).

WCS embryos were injected with the clone P(hsCaSpeR- *drongo*) and three transgenic lines were produced (pers. comm. Marcus Allen). These *hs-drongo* flies are listed in table 2.1. The insert was mapped, crossed to produce a homozygous stock (table 2.1) and placed over a relevant balancer chromosome.

Preliminary experiments were performed by in situ hybridisation to embryos to determine if the *drongo* gene could be overexpressed. These embryos appeared to show staining all over the embryo (data not shown), demonstrating that *drongo* could
be overexpressed constitutively in *Drosophila* tissues of *hs-drongo* flies.

One line was also produced containing the *drongo* cDNA in reverse orientation and designated *hs-drongo R*, in an attempt to produce possible antisense effects (Table 2.1). Effects of overexpression of the gene were then analysed during oogenesis, eye development and embryogenesis (to determine if overexpression of *drongo* had any effect on the formation of the nervous system).

3.2.2 Ectopic expression of *drongo* during *Drosophila* oogenesis.

Overexpression of *drongo* was initially analysed in the ovaries due to the relative ease of identifying abnormal phenotypes in this organ without using specific markers or antibodies.

Preliminary experiments were performed where homozygous *hs-drongo* (line 1) females received a single heat shock at 37°C for 30 minutes. The ovaries from these females were then dissected one day post heat shock (PHS) (after the final heat shock). Ovaries were dissected and stained with Hoechst # 33258, a nuclear stain used previously for observing nuclei in somatic and germline cells of the ovaries (Swan and Suter, 1996).

No abnormal phenotypes were seen following analysis of these ovaries compared to WCS (essentially wild type) ovaries from females which had undergone an identical heat shock regime. It has previously been documented that the window of heat shock sensitivity is often minimal. Pulses of heat shock may therefore be more likely to produce an effect during a developmental process (Forbes *et al.*, 1996). Therefore one day old females were heat shocked twice a day for three days and then the ovaries were dissected one or three days PHS and analysed as before.

At the beginning of oogenesis in the wild type germarium (the most anterior structure of the ovary), a cystoblast divides to produce 16 cystocytes. One of these cystocytes becomes an oocyte and 15 become nurse cells (section 1.4). These are subsequently surrounded by a layer of follicle cells to form a stage one egg chamber (Spradling, 1993). When *drongo* was overexpressed there was a increase in nurse cell number in at least one egg chamber per ovary (figure 3.1). This was observed in 26%
Figure 3.1
The effect of overexpression of *drongo* on egg chambers during oogenesis.

A-F: Hoechst staining of *hs-drongo* and WCS egg chambers. *Hs-drongo* and WCS females were heat shocked at 37°C for 30 minutes 3x a day for 3 days (section 2.6.3.1). Ovaries were then dissected from these flies one day post heat shock and stained with Hoescht # 33258 (section 2.6.3.1).

(A) WCS (essentially wild type) stage 7 egg chamber containing 15 nurse cells (nc) and 1 oocyte (O) surrounded by a layer of somatic follicle cells (fc).

(B) *hs-drongo* stage 8 egg chamber containing 30 nurse cells (arrow).

(C) *hs-drongo* stage 7 egg chamber containing 19 nurse cells (arrow 1). The more anterior egg chamber contains 11 nurse cells (arrow 2).

(D) WCS stage 10A egg chamber.

(E) *hs-drongo* stage 10A egg chamber containing 26 nurse cells (arrow). Anterior is downwards.

(F) *hs-drongo* stage 4 containing 24 nurse cells (arrow). Anterior is to the left (unless otherwise stated). All egg chambers are staged according to Spradling 1993. Scale bar: 25μm.
of ovaries analysed one day post heat shock and 8% of *hs-drongo* ovaries analysed three days PHS (table 3.1).

<table>
<thead>
<tr>
<th></th>
<th>No heat shock</th>
<th>Analysed one day PHS.</th>
<th>Analysed three days PHS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS</td>
<td>0% of 77</td>
<td>0% of 85</td>
<td>0% of 104</td>
</tr>
<tr>
<td>hs-drongo14M3</td>
<td>0% of 62</td>
<td>26% of 80</td>
<td>8% of 75</td>
</tr>
<tr>
<td>hs-drongoline</td>
<td>0% of 50</td>
<td>26% of 58</td>
<td>8% of 60</td>
</tr>
<tr>
<td>hs-drongoR</td>
<td>0% of 91</td>
<td>0% of 82</td>
<td>0% of 90</td>
</tr>
</tbody>
</table>

Table 3.1.

Summary of defective egg chambers.

Females were heat shocked as in figure 3.1 and the ovaries were dissected and analysed as in figure 3.1.

Ovaries were analysed either minus heat shock; or heat shocked and dissected 1 or 3 days PHS. The percentages shown are the number of egg chambers containing more than 15 nurse cells as a percentage of the total number of ovaries analysed.

In affected egg chambers, between 19 (figure 3.1C) and 30 (figure 3.1B) nurse cells were observed, with an average of 26. This phenotype was not stage specific and it was observed at various stages as seen in figure 3.2.
Figure 3.2.

Distribution of affected hs-drongo egg chambers.

The number of affected egg chambers from hs-drongo flies (heat shocked and treated as in figure 3.1). Egg chambers were staged according to Spradling (1993). Defective egg chambers prior to stage 3 and after stage 11 were not scored due to difficulty in counting the nurse cell number. The affect of overexpressing drongo during oogenesis is not stage specific.
Affected stages included stage 4 (figure 3.2 F), 7/8 (figure 3.1 B, C), and at stage 10A (figure 3.1 E). In most cases it was noted that there were adjacent egg chambers containing less than fifteen nurse cells (e.g. figure 3.1C, arrow 2) but the sum of the nurse cells in the two adjacent egg chambers was often equal to the number in two separate wild type egg chambers (i.e. 30). An increase in nurse cell number was also observed in ovaries from a second hs-drongo line (hs-drongo14M3), suggesting that the effect was not position dependent (table 3.1).

It was postulated that this defect observed following heat shock of hs-drongo females could be the result of two occurrences: either a cell division defect in the germline, or a defect in somatic follicle cell migration (section 1.4.1.2). The germ line divisions which occur in the germarium are known to be affected in mutants of enc (Hawkins et al., 1996). Mutants have also been identified which disrupt the migration of the somatic follicle cells around the 16 cell cyst to form the stage one egg chamber. Previously documented analysis of known neurogenic mutants of N and Dl (Ruohola et al., 1991) indicate that their gene products are involved in follicle cell development; another neurogenic gene brn (Goode et al., 1996) is also required for prefollicular cells to migrate between egg chambers (section 1.4.1.2).

To determine if either a cell division defect or a follicle migration defect was the underlining cause of the phenotype, further analysis of the ovaries was performed. Firstly, egg chambers where observed in which a gradient in nurse cell size from the anterior to the posterior of the egg chamber was seen (figure 3.1 C). This suggested that some cystocytes originated earlier than others, thus the defect does not appear to be a cell division defect. Also the ratio of cystocytes between the supernumary egg chamber and the adjacent anterior egg chamber was not always 0:32, which may have indicated an extra cell division in the germline (figure 3.3).
Figure 3.3

Distribution of cystocytes in affected egg chambers.

Ovaries were dissected and treated as in figure 3.1 and all affected egg chambers seen were scored. The ratio corresponds to the number of cystocytes (total = 32; 30 nurse cells and 2 oocytes between the two egg chambers) present in the anterior versus number in the adjacent posterior egg chamber.
Secondly, the timings of the division and encapsulation processes (according to Spradling, 1993) are correct for it to be a follicle cell migration defect but not a cell division defect. These timings are summarised in figure 3.4. Heat shocking the ovaries on day 1 of the regime (Extremes: heat shock for three days, dissected three days later) would result in the ovaries being analysed 6 days after the first heat shock.

![Figure 3.4](image_url)

Summary of the duration of oogenesis.

Every 24 hours a stem cell divides to produce a cystoblast and a daughter stem cell. Taking stem cell division as time 0, the cystoblast then undergoes 4 divisions, each of 12 hours. It takes a further 3 days for follicle cell migration to occur, 12 hours to produce a stage 2 egg chamber and up to 78 hours for a stage 2 to become a stage 14 egg chamber. It is unlikely, therefore, even if the heat shock disrupted the final cystoblast division, that stage 8/9/10 egg chambers containing supernumary nurse cells would be observed. Timings taken from Spradling, 1993 and King, 1970.
If this heat shock was affecting a cystoblast division, even the final division, it is unlikely a defect would be seen in late stages such as stage 10A (which is 6-7 days after the final cystoblast division), this is clearly not the case. If defects at these stages are observed, the heat shock is more likely to affect a process that occurs after cell division but at least one-three days before stage 8-10A egg chambers are formed. This process may be follicle cell migration as this occurs in the correct time frame.

3.2.2.2 Further analysis of the gerarium.

If follicle cell migration around the egg chamber was the process affected, it was postulated that a defect in the gerarium (where the stage one egg chamber is formed) should be observed.

Previous studies have used the membrane protein, Fasciclin III as a marker for follicle cells in the gerarium (Goode et al., 1996). *hs-drongo* females were again heat shocked as before but this time dissected 6 hours post heat shock and stained with an anti Fasciclin III monoclonal antibody. In the wild type gerarium, Fasciclin III protein is expressed in the follicle cells that have already migrated in the gerarium, and appears as three thin bands of expression in the gerarium as seen in previous work (Goode et al., 1996, figure 3.5A). In *hs-drongo* ovaries, the Fasciclin III pattern was perturbed in 20% of 80 geraria. Only one, sometimes two, bands of expression were observed in the gerarium from the ovaries of *hs-drongo* females (figure 3.5B), suggesting that ectopic expression of *drongo* resulted in a defect in migration of the follicle cells across the gerarium over the 16 cell cyst. No gerarial defects were seen in over 80 analyses of WCS flies and *hs-drongoR* flies that had experienced the same heat shock regime.

Previous *in situ* hybridisation analysis of *drongo* (Harris, 1995) had reported the gene to be expressed during early oogenesis. The analysis of *drongo* expression was therefore performed in the gerarium to determine exactly were *drongo* is normally expressed as this had not previously been looked at in detail. *In situ* hybridisation showed expression of *drongo* in the follicle cells that had already migrated across the gerarium (figure 3.5C), thus ectopic expression of *drongo* in the
Figure 3.5
The effect of overexpression on migration of follicle cells.

A-B Fasciclin expression in the germarium. C-D *in situ* hybridisation in the germarium

For analysis of Fasciclin III expression in the germarium, WCS and *hs-drongo* females were heat shocked 3 x a day at 37°C for three days for 30 minutes. Ovaries were then dissected 6 hours post heat shock and antibody stained with anti-Fasciclin III antibody (section 2.5.2). For *in situ* hybridisation to ovaries from WCS females were dissected teased apart and *in situ* hybridisation was carried out according to section 2.4.4. Hybridisation was performed with a riboprobe made from the *drongo* cDNA (section 2.4.4).

(A) Wild type germarium/stage one egg chamber. Fasciclin III is expressed in three thin bands corresponding to each layer of follicle cells which have migrated across the germarium (arrows)

(B) *hs-drongo* germarium/stage one egg chamber, Fasciclin III is expressed in only two bands (arrows)

(C) *drongo* transcript is expressed in the migrated follicle cells in region II of the germarium.

(D) *In situ* hybridisation with sense riboprobe.

Anterior is to the left. *Scale bars*: 15μm A-C, 35μm in D.

Key: tf: terminal filament; I, II, III: stage I, II and II in the germarium; s: stage.
follicle cells in the pre-migration state may be responsible for the phenotype observed after heat shock.

In wild type germaria, the developing 16 cell germline cysts are spanned by a cytoskeletal structure called a fusome (Section 1.4.1.1; Deng and Lin, 1997; Lee et al., 1997). It has been shown that alpha-spectrin, which is one of the components of the fusome, is required for cyst formation and oocyte differentiation in the germline cells (deCuevas and Spradling, 1996). I postulated that after overexpression of drongo in hs-drongo germaria, I may be able to see follicle cell migration between the cysts and hence across a fusome instead of between each fusome.

When hs-drongo ovaries were analysed 6 hours PHS and stained with an alpha-spectrin antibody, however, no such defects were detected (data not shown). This may be due to difficulty in observing each fusome and the follicle cells simultaneously.

3.2.3 Overexpression of drongo during eye development.

hs-drongo third instar larvae were used in analyses of overexpression effects of drongo during eye development, as drongo was shown previously to be expressed just behind the morphogenetic furrow by in situ hybridisation (Harris, 1995; figure 1.2J).

hs-drongo larvae were heat shocked at 37°C for either 15 minutes, 30 minutes, 45 minutes, 60 minutes or 90 minutes and then transferred to 25°C. After eclosion the adult eyes were analysed for any abnormalities (rough eyes may indicate a change in the structure of the eye).

Analysis of adult eyes after larval heat shocks (at 15, 30, 45 minutes) showed no effect on the formation of the eye and had no deleterious effect on any other body part upon gross morphological examination. Heat shocks for 90 minutes or more were lethal to the larvae. 76 hs-drongo third instar larvae were analysed for defects at each time point (15 minutes, 30 minutes, 45 minutes and 60 minutes) and 25 larvae were analysed for 90 minutes. 90 WCS third instar larvae, which were also subject to identical heat shocks and analysed in the same way, showed no defects in eye
3.2.4 Overexpression during embryogenesis.

In order to analyse possible defects during neurogenesis (section 1.3), *hs-drongo* embryos were collected and heat shocked at stage 7, 3.5 hours into development (taking time 0 as fertilisation), as neurogenesis first begins in the embryo. 50 embryos at a time were heat shocked at 37°C for each time point (15, 30, 45, 60, 90 minutes), a total of 250 embryos were thus heat shocked. Embryos were then analysed at stage 16/17, 13-17 hours of development, when the CNS was fully developed. Two antibodies were then used for analysis of the embryos, firstly BP102 (anti CNS axons: Carney *et al.*, 1997), a marker for central nervous system longitudinal connectives and axon commissures and secondly, anti-Even skipped, a more specific marker for a subset of neurons (Patel *et al.*, 1989). Analyses of embryos with both of these markers (data not shown), showed no obvious defects in nervous system development. 300 WCS embryos, also heat shocked as above and analysed with the same markers, showed no defects in CNS development. Heat shocks to embryos prior to 3.5 hours of development were detrimental to both *hs-drongo* and to WCS embryos, indicating sensitivity during early development to heat shock effects.

Heat shocks during embryogenesis seemed not to perturb any phase of embryonic development, suggesting overexpression of zygotic message had no effect. Overexpression of maternal message or a somatic message during oogenesis, however, may have an effect on embryo development.

One day old *hs-drongo* females were heat shocked at 37°C for 30 minutes, 3 x a day for 3 days and embryos were collected from the flies between 2-18 hours after the final heat shock. Cuticle preparations of 100 embryos from heat shocked *hs-drongo* females and embryos from heat shocked WCS females were analysed. In the wild type late embryo/1st instar larvae (figure 3.6 A), a pattern of segmentally repeated fine hairs or denticle belts can be observed on the ventral side of the embryos. One can also observe anterior structures such as the head skeleton and mouth parts and posterior structures such as the paired filzkörper, part of the embryo's
Figure 3.6
The effect of overexpression of *drongo* during late oogenesis on embryos

A-D: Cuticle preparations of late embryos.

hs-drongo females were heat shocked 3 x a day at 37°C for 3 days and fertilised eggs were collected 13-17 hours post heat shock. The embryos were cleared and cuticle preparations were performed (section 2.6.3.4).

E-F: Oskar antibody staining to ovaries.

hs-drongo females were heat shocked as above, their ovaries dissected 6 hours later and antibody stained with Oskar antibody (section 2.5.2).

(A) *hs-drongo* type A (essentially wild type morphology) first instar larva showing mouthparts (mt) as an anterior marker and the filzkorper (fz) as a posterior marker. The 11 denticle belts observed on the ventral side of the larva represent the 3 head (tl-3) and 8 abdominal segments (a1-8) present (ventral is facing).

(B) *hs-drongo* type B embryo. At least 3 denticle belts are absent (ventral is facing).

(C) *hs-drongo* type C embryo. Only half the wild type number of denticle belts are present (arrowheads), embryo is starting to show posterior defects (ventral is down).

(D) *hs-drongo* type D embryo, embryo appears to contain no abdominal segments, posterior defects are now obvious as the filzkorper is no longer paired (ventral is up).

Abnormal embryos were seen 25% of the embryos analysed after overexpression of *drongo*.

Scale bar: 15μm. Anterior is to the left.

(E) Oskar expression in wild type stage 9 (S9) egg chamber, Oskar is located at the posterior tip of the oocyte (asterisk).

(F) Oskar expression in *hs-drongo* stage 9 egg chamber, Oskar is located at the dorsal and ventral sides of the oocyte (asterisks). This phenotype was observed in 20% of all ovaries observed after overexpression of *drongo*.

Scale bar: 35μm. Anterior is to the left.
breathing apparatus. The patterned denticle belts and the terminal structures provide easily identifiable markers where any perturbation in the embryos can be easily defined.

When embryos were observed from heat shocked *hs-drongo* females 25% of 100 embryos showed a variety of defects. The embryos often showed mostly segmental and posterior defects (figure 3.6 B-D; table 3.2). The majority of the embryos were classed into four types (A-D). Type A (which were essentially wild type) and then types B, C and D depending on severity of defect (table 3.2). Type B embryos displayed mild defects in cuticle formation. These embryos had one to three denticle belts missing. Type C embryos only had half the normal number of denticle belts and mild posterior defects (figure 3.6C); and type D embryos had a normal anterior but the posterior was obviously abnormal (figure 3.6D). Type D embryos often had no abdominal segments present.
Table 3.2
Classification of embryo defects.

Hs-drongo females were heat shocked at 37°C for 30 minutes 3x day for 3 days. Fertilised, embryos were collected and cuticle preparations were performed. Embryos were analysed and the cuticle defects were placed into four groups depending on severity of the phenotype (types A-D). **Type A:** essentially wild type morphology showing all 3 head and 8 abdominal denticle belts; **Type B:** Anterior and posterior structures normal but with one to three denticle belts absent; **Type C:** Anterior normal, posterior slightly abnormal but with half the normal number of denticle belts; **Type D:** Anterior normal, posterior abnormal with only a few denticle belts present. 25% of the embryos observed showed abnormalities (types B, C and D). A similar experiment was carried out where WCS and _hs-drongo_ flies were incubated at 25°C instead of 37°C. Embryos were collected and the cuticle analysed as before to ensure no background mutation was causing the phenotype observed. Numbers represent embryos of each observed.
In over 120 analyses of cuticles prepared from WCS subject to an identical heat shock regime no abnormalities were seen in these embryos (table 3.2).

In order to ensure no background mutations were causing any effects, embryos from non-heat shocked WCS and hs-drongo females kept at 25°C were also collected and analysed by cuticle preparation (as before).

In type D embryos, other defects were observed in addition to the lack of denticle belts. Embryos where drongo had been overexpressed displayed a phenotype reminiscent of posterior group maternal mutants such as osk (Section 1.4.2; Ephrussi et al., 1991; Gonzalez-Reyes et al., 1995) and aub (Wilson et al., 1996). Embryos from these mutants are unable to form a normal posterior due to defects in localisation or translation of posterior determinants. A similar phenotype is observed in type D embryos (figure 3.6D).

In view of this phenotype, subsequent experiments were carried out to determine the nature of this posterior perturbation. The anteroposterior axis is established during oogenesis when RNA determinants such as osk and bcd are localised (section 1.4.2; figure 1.10). An Osk antibody (pers. Comm. Clare Hudson; described in St Johnston et al., 1991) was used to observe if any defect had occurred in the localisation or translation of the Osk protein. Any perturbation may indicate that overexpression of drongo has an effect on posterior formation in the embryo.

In the wild type ovary, Osk can be seen to localise to the posterior tip of the oocyte (figure 3.6 E) (Kim-Ha et al., 1991). The mRNA is first localised and then translated in egg chambers after stage 9. Translation is usually dependent on localisation of the RNA at the posterior of the oocyte and translation is normally suppressed until this occurs (Kim-Ha et al., 1995). In 20% of 73 hs drongo ovaries, Osk protein is observed on the dorsal and ventral sides of the oocyte (figure 3.6 F). In order to establish if the mRNA was correctly localised, in situ hybridisation was also performed with an osk RNA probe but localisation of the RNA appeared no different to the wild type (data not shown).

Overexpression of drongo appeared to affect posterior patterning during
oogenesis. Posterior patterning involves Grk function specifying the posterior follicle cells. These cells then signal back in order to localise mRNAs such as osk (St. Johnston et al., 1996). I was interested in determining if any localisation of any of components of the posterior pathway were also affected.

Grk protein expression was therefore analysed in wild type and hs-drongo egg chambers. Like osk, grk mRNA is first localised and then the protein is translated in the specific region. An anti Grk antibody (Neuman-Silberberg et al., 1993) was used in order to locate the protein in egg chambers. In wild type egg chambers the protein is located at the posterior tip of the oocyte up until stage 8. The protein then moves to a more central position at the anterior/dorsal side of the oocyte (Neuman-Silberberg et al., 1993). In hs-drongo egg chambers the pattern of Grk expression does not deviate from wild type staining (data not shown) all through development of the ovary suggesting that overexpression of drongo does not have an effect on grk localisation or translation.

3.3 Overexpression of drongo using the yeast UAS/GAL 4 system.

3.3.1 Cloning of drongo into the pUASt vector.

drongo cDNA was also cloned into the pUASt vector (Brand and Perrimon, 1993; figure 3.7 A; appendix: figure 10.1) via EcoRI sites in order to overexpress the gene in a more defined manner in each developmental context. Ligation junctions were again sequenced along with GAL4 binding sites in pUASt (data not shown)

In order to examine whether a dominant negative effect could be produced, deletions of the drongo gene were produced and placed under the control of the UAS promoter (figure 3.7 B and C). Two deletion constructs were made, UAS-drongoΔS, effectively making a deletion in the 3'end of the gene (figure 3.7 B); and UAS-drongoΔF, where a deletion was produced in the zinc finger (figure 3.7 C). Three transgenic lines were produced by injection of embryos and designated UAS-drongo. Two transgenic lines were produced using UAS-drongo ΔS, however no transgenic lines were produced after injection of over 1000 eggs with the UAS-drongoΔF. This construct may have been toxic to the embryos. Transgenic stocks were mapped, a
homozygous stock was produced, and placed over a relevant balancer chromosome (see table 2.1).
Figure 3.7

UAS-DRongo and deletion constructs and expression of GAL line P{GAL4-Hsp70.PB}31-1/T(2;3)B3

A-C: UAS-drongo deletions constructs. (For restriction maps and digestion checks see appendix 10.1).

D-E: Antibody staining with anti-β galactosidase on Drosophila stage 16 embryos from GAL4 line 31.1. Embryos were collected from GAL4 line P{GAL4-Hsp70.PB}31-1/T(2;3)B3 and antibody staining was performed (section 2.5.1).

(A) UAS-drongo: drongo cDNA cloned into pUASt. This clone was used to make the deletion clone in (B) and (C)

(B) UAS-drongoΔS: a deletion in the OPA and FG repeats encoded at the 3' end of drongo (figure 1.3) was produced by digestion with SstI. This clone was produced by digesting pGEX-5X-1-drongo DS (section 5.3.2) with EcoRI and pUASt with EcoRI and ligating the drongo fragment into pUASt.

(C) UAS-drongoΔF was produced by digestion with FspI resulting in a deletion in the zinc finger.

(D) Expression pattern of GAL4 line P{GAL4-Hsp70.PB}31-1/T(2;3)B3 pan neurally in the central nervous system (arrows). Embryos from GAL4 line P{GAL4-Hsp70.PB}31-1/T(2;3)B3 are crossed to embryos containing UAS-lac Z. β galactosidase protein expressed in the GAL pattern is detected by an anti-β galactosidase antibody (section 2.5.1).

(E) Expression pattern of GAL4 P{GAL4-Hsp70.PB}31-1/T(2;3)B3 in the peripheral nervous system (arrow).

Expression of UAS-drongo in the pattern of the GAL4 line produced lethality in first instar larvae.
1.3.2 Overexpression of drongo via UAS/GAL4.

UAS-drongo and UAS-drongoΔS were crossed to a number of GAL4 lines as shown in (A). The UAS-drongoΔF line was crossed to a number of GAL4 lines as shown in (B). The absence of...
3.3.2 Overexpression of *drongo* via UAS/GAL4.

UAS-*drongo* and UAS-*drongo*ΔS were crossed to a number of GAL4 lines as shown in Table 3.3.

<table>
<thead>
<tr>
<th>GAL4 line</th>
<th>UAS-drongo line</th>
<th>UAS-drongo ΔS</th>
<th>UAS-drongo ΔS 35M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[p(GAL4-tw1.G)]</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAL4-ninae.GMR}</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAL4-arm.S}</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GawB}h[1j3] GAL4</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GawB}69BGA L4</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GawB}ptc-GAL4</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAL4-tw1.2xPE}</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAL4-ve.NEE}</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAWB}md509/CyO;MKRS/TM2 GAL4</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GawB}bi</td>
<td>viable</td>
<td>viable</td>
<td>viable</td>
</tr>
<tr>
<td>p{GAL4.hsp70P} 31.1/T(2;3)B3</td>
<td>lethal</td>
<td>lethal</td>
<td>viable</td>
</tr>
</tbody>
</table>

Table 3.3

Results of overexpression of *drongo* via GAL4 lines.

Flies were crossed as single pair matings, and the progeny scored. The absence of
marked flies in over 100 progeny was taken as an indication that driving UAS-*drongo* in the specific GAL4 pattern was lethal to the flies. In these crosses, 25% of the progeny would be expressing the GAL4 line and the UAS-*drongo* insert. The cross between UAS-*drongo* and GAL4 line p{GAL4.hsp70P} 31.1/T(2;3)B was lethal for 25% of the progeny. These embryos hatched but died after the first larval instar stage.

When UAS-*drongo* was driven under GAL4 line 31.1 in embryos it was lethal in the progeny containing both inserts. All other crosses produced viable progeny (the progeny were all staged until eclosion). The progeny of the lethal cross hatched normally and then died at the first instar larval stage. P{GAL4-hsp70.PB}31-1 expresses in the embryonic CNS and PNS (figure 3.8D and E). The larvae upon gross morphological analysis are wild type in appearance (data not shown) and show no defects in movement were not affected. The affected larvae lived for 2 days, an extra day longer than the wild type.

It may be the case that these larvae cannot moult for some reason possible due to a hormonal excess or deficiency caused by overexpression of *drongo* or an effect on the peripheral nervous system inhibiting the moulting process. When UAS-*drongoΔS* was crossed to the GAL4 lines available (Table 3.3), the progeny of each of the crosses was viable, including UAS-*drongoΔS* crossed to P{GAL4-hsp70.PB}31-1.
3.4 DISCUSSION: Overexpression of *drongo*.

This chapter has described how *drongo* has been ectopically expressed in a number of developmental systems in *Drosophila*, including oogenesis, eye development and embryogenesis. Overexpression by heat shock results in egg chambers with supernumery nurse cells (an average of 26 nurse cells in defective egg chambers). More detailed analysis of the germarium suggests a probable cause of the phenotype is a delay in follicle cell migration over the 16 cell cyst. In the wild type fly, this migration normally produces a stage one egg chamber of 15 nurse cells and 1 oocyte.

Mutations in many genes result in the production of supernumerary nurse cells. These include *brn* (Goode *et al.*, 1996), *N* (Ruohola *et al.*, 1994), and *encore* (Hawkins *et al.*, 1996). As mentioned previously, *enc* is thought to be involved in stem cell division in the germarium and *N* in determination of follicle cell fate. It appears that *drongo* overexpression has a consequence different to these and more similar to the defect seen in *brn* mutants. As *drongo* is expressed in migrated follicle cells in the germarium, it may act as a part of a signal to negatively control the next set of follicle cell migrations.

From sequence data it is unlikely that Drongo acts as a diffusible molecule. It is more likely to act as a transcription factor or function in the transport of molecules across the nuclear membrane. Both of these processes are important for ensuring communication between the germline and the follicle cells in order to form a stage one egg chamber.

Ectopic expression of *drongo* during late oogenesis results in embryos with cuticle defects and, in severe cases, posterior malformations. Upon further examination it appears a possible cause of this phenotype is the localisation of Osk protein in stage 9 egg chambers, although it does not appear that the localisation of the RNA is affected in these egg chambers. Overexpression of *drongo* appears to cause mislocalisation of Osk protein from the posterior tip to more dorsal and ventral positions in the oocyte of affected egg chambers. In the wild type egg chamber, Grk protein is expressed as a crescent around the germinal vesicle (oocyte nucleus).
(Neuman-Silberberg and Schüpbach, 1996) and acts to signal a set of follicle cells which then activate the *Drosophila* EGF receptor and adopt a posterior fate. N signalling is also known to be important for establishing the number of follicle cells which take a posterior fate. Osk is normally localised at the posterior by a microtubule network in the oocyte, which is polarised via a signal from the posterior follicle cells, factors such as *bruno* and *aubergine* normally regulating the translation of *osk* (Wilson, *et al.*. 1996; Kim-Ha *et al.*, 1995). It is likely that *drongo* overexpression could be affecting one of these processes utilised to establish posterior identity in the embryo.

It is surprising that Grk protein localisation appears normal throughout oogenesis. Most mutations which disrupt the signal from the posterior follicle cell to the oocyte mislocalise posterior determinants. Mutations at the *mago nashi* locus (Newmark *et al.*, 1997) disrupt the oocyte nucleus localisation affect the second phase of *grk* localisation where dorsoventral pathway is established. This result may indicate that Grk mislocalisation may not be the cause of the abnormal embryos observed from hs-*drongo* females. Also the *drongo* gene is not specifically expressed in the posterior of wild type egg chambers (section 1.2.1), and is normally expressed in the follicle cells and the oocyte during early oogenesis and in the nurse cells during later stages, not indicative of a gene involved in the posterior pathway. The gene may however be ectopically expressed elsewhere in the egg chamber thus causing this effect. A mutant of *drongo* could be analysed for possible defects in oogenesis, and genetic interactions with posterior group genes could be analysed.

In order to define the role further, *drongo* was also overexpressed using the UAS/GAL4 system. When *drongo* was overexpressed its effect was lethal when driven by GAL4 line P{GAL4-hsp70.PB}31-1, which resulted in ectopic expression in the embryonic CNS/PNS. Expression of *drongo* has already been established in the CNS and PNS and so any defect caused by misexpression warranted further analysis. It was unclear however, why overexpression of *drongo* via this GAL4 line produced this effect.

When *drongo* is ectopically expressed by any of the other GAL4 lines which also express in the embryonic nervous systems (for example P{w+mc=GAL4-ve.NEE}) there are no deleterious effects on development. Expression in these
lines was not established. I found that there were no reliable GAL4 lines available to use in which germline or somatic overexpression of *drongo* could be tested, so an effect on oogenesis could not be established using this system.

It is also interesting how a deleted form of the protein, when driven by GAL4 has no deleterious effect on development, suggesting perhaps that *drongo* may require some or all of the repeat sequences at the end of the gene, even to have an effect during overexpression. It was surprising that this deletion did not perhaps have a dominant negative effect by competing with the wild type protein and hindering it's normal function.

drongo overexpression has produced interesting effects during early and late oogenesis and during CNS and PNS formation in the embryo. I was also able to analyse these phenotypes further. Although these analyses have offered clues to the possible roles of *drongo* in *Drosophila*, perhaps overexpression is not indicative of the true role of a protein in a developmental system. A more direct method is therefore required to assign a role to *drongo* at the cellular and molecular level.
Chapter 4:
Analysis of drongo function in nuclear transport:
A Rev activity assay.
Chapter 4: RESULTS AND DISCUSSION: Analysis of *drongo* function in nuclear transport: A Rev activity assay.

4.1 Introduction

Analysis of the overexpression of *drongo* has shown that ectopic expression of the protein in *Drosophila* can produce an effect during various stages of development. It would be a strong statement, however, to define a role for the protein in any system just by observing an overexpression effect. Previous sequencing of the gene (section 1.2) reveals the highest amino acid identity (section 1.2.2) with hRIP/Rab, a human nucleoporin gene (Fritz *et al.*, 1995; Bogerd *et al.*, 1995). There is some evidence (Fritz *et al.*, 1995, Bogerd *et al.*, 1995; Stutz *et al.*, 1996) that hRIP may be a co-factor for the HIV-1 regulatory protein Rev. Rev is thought to be involved in activating the translation of viral structural proteins by enabling nuclear export of unspliced/partially spliced viral mRNA (section 1.5). Previous analyses suggest that Rev can function in *Drosophila* cells (Ivey Hoyle and Rosenberg, 1990) suggesting that a cellular co-factor exists in insect cells and that similar nuclear transport pathways to those in mammals may prevail in this organism.

It seemed logical therefore to observe if Drongo had any effect on Rev function in nuclear transport. Before this analysis, an assay was required to measure Rev binding and Rev activity.

A number of constructs were obtained or made in the laboratory and tested in an assay set up to measure Rev activity. The constructs did not function in *Drosophila* cells and therefore it was not possible to test if Drongo had an effect on Rev function in tissue culture. The following chapter is therefore a documentation of the constructs made, the cell lines used and how the assay was carried out, leading to a discussion on the problems of this approach.
4.2 Co-transfection of *Drosophila* cells.

Transfection of tissue culture cells offered a well established system and was used as an assay for a gene’s function.

In order to observe possible interactions, previous studies have co-transfected more than one plasmid and evidence suggests that if cells are successfully transfected they will take up all plasmid DNA in the assay (*pers. comm.* Marcus Allen).

Two types of plasmids were used in this co-transfection analysis. An ‘effector plasmid’ has been utilised which expresses the gene(s) under test; and a ‘reporter plasmid’, where a reporter gene is fused to a promoter which is acted on by the protein expressed by the gene under test. A change in expression of the reporter gene may indicate an effect from the test gene or a possible interaction between the two, be it direct or indirect.

4.3 The Rev activity assay.

Previous studies have shown that HIV-1 Rev uses a conserved cellular pathway for the export of viral RNAs (Fritz and Green, 1996; Stutz and Rosbash, 1998; Neville *et al.*, 1997). This suggests that putative co-factors such as hRIP (Fritz *et al.*, 1995) may also show similarities in sequence between organisms. Fritz *et al.* (1995) indeed showed that the amount of hRIP was proportional to the activity of Rev in tissue culture cells, therefore a possible cofactor in *Drosophila* may show a similar effect. As mentioned earlier, Rev has also been previously shown to function in *Drosophila* cells (Ivey Hoyle and Rosenberg, 1990) suggesting that a co-factor exists in *Drosophila* cells. Due to the similarity with hRIP, Drongo was a likely candidate for this role in *Drosophila*. An alignment between Drongo and hRIP is shown in figure 4.1.
Figure 4.1

Homology between Drongo and hRIP.

Drongo shows substantial similarity to human Rev interacting protein (RIP). RIP has been shown to bind to HIV-1 regulatory protein Rev and implicated in the export of viral RNA from the nucleus. Homology was highest around the zinc finger in both protein at 77% over 73 amino acids but also include short motifs towards the C terminal of the protein.

Key: Drongo: Drongo amino acid sequence; hRIP: human RIP amino acid sequence.
<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence 1</th>
<th>Position 1</th>
<th>Sequence 2</th>
<th>Position 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drongo hRIP</td>
<td>QQLSHEVVPNFOQQQQQQQHQQQQLYGQLTLIFNAYG-</td>
<td>448</td>
<td>PSVAS-STNFGETNARGATAATFGTASMSMPTGFGTPAPYSLPTS</td>
<td>485</td>
</tr>
<tr>
<td>Drongo hRIP</td>
<td>-SSSSQOMGHLLQQQQQQQFSSFFNFAISQGLFNGCGFG</td>
<td>491</td>
<td>FSGSFQOPPAAFFAQPFQQTAFSQQPNGPGAASFGCTKPVVTPFG</td>
<td>530</td>
</tr>
<tr>
<td>Drongo hRIP</td>
<td>SMQPAPVMMANNP---AASGAMNTN---NPFL</td>
<td>517</td>
<td>QVAAAGV-SSNPBMTPGAPTQFPTGSSSTNPFL</td>
<td>562</td>
</tr>
</tbody>
</table>
An assay has been developed which utilised the UAS/GAL4 system in *Drosophila* cells and attempts were made to measure Rev activity following measurement of expression from a CAT reporter gene. The assay used an effector plasmid containing an Adh-GAL4 construct which utilised the constitutive alcohol dehydrogenase (Adh) promoter fused to a GAL4 gene. Adh-GAL4 will then activate any plasmid that is driven by the UAS (upstream activating sequence) promoter in every cell transfected.

The principle plasmid used in this assay was the HIV-1 derived ‘Rev responsive’ reporter plasmid, pTK34 (Kind gift from John Kam) (figure 4.2). The reporter plasmid, carrying the bacterial chloramphenicol acetyltransferase gene (CAT; Gorman, 1983) inserted downstream of the HIV-1 *gag* (*gag* encodes a viral capsid protein) 5’ splice site (see figure 4.2), transcribes sequences from the molecular clone pNL4-3 (nucleotides 5943-8888) under the control of the SV40 (Simian virus 40) early promoter and enhancer. Nucleotides 5943-8888 of pNL4-3 include the *env* exon, which contains the Rev responsive element (RRE). The RRE is a secondary structural loop in the RNA which is thought to bind Rev and be essential for it’s function in prevention of RNA splicing during HIV infection (section 1.5). The CAT gene in this construct is therefore flanked by splice donor (SD) and splice acceptor (SA) sites (figure 4.1).

The construct was partially sequenced in this study to check the sequences highlighted (the SV40 promoter, the CAT gene, the *env* gene and location of the RRE and location of splice sites: appendix figure 10.1 I).

In the event of cellular splicing, CAT RNA produced from this construct can only enter the cytoplasm in the presence of the Rev protein (figure 4.3). In the absence of Rev, CAT will spliced out as an intron.
Figure 4.2
Structure of the Rev-responsive CAT reporter gene, pTK34.

The CAT gene is placed under the control of an SV40 promoter and flanked by a 5' splice site from the HIV-1 clone pNL4-3. pTK34 also contains the tat, rev, vpu, and env genes. The env gene contains the Rev responsive element (RRE) to which Rev is thought to bind and prevent or bypass RNA splicing. Endogenous rev function is inactivated by a frame shift mutation at the BamHI site in the second exon of rev (Nucleotide 8466). The SV40 polyadenylation signal was also placed downstream of the HIV-I sequence. A second plasmid, PTK53 is a plasmid derived from pTK34 which contains a two nucleotide deletion at the RRE site resulting in a disruption to Rev binding and was used as a negative control. (pers.comm. John Karn.)
Endogenous \textit{rev} expression from pTK34 was prevented by a frame shift mutation in the clone.

A derivative of pTK34, pTK53, was used as a negative control in the experiments. PTK53 contained a two nucleotide deletion (G 7805-G7806) which was made to disrupt the RRE site on the RNA and prevent Rev binding (\textit{pers. comm.} Jon karn). The construct would therefore be "unresponsive" to Rev and no CAT activity would be observed. The assay uses Adh-GAL4 to drive \textit{rev} expression under the control of a UAS promoter (and any other construct driven by UAS). Rev would then bind the Rev responsive plasmid (pTK34) and enable CAT expression by bypassing the cellular splicing machinery (figure 4.3). Addition of any possible co-factors may result in an increase in Rev activity. These construct have been previously used in HeLa cells but have not been tested in \textit{Drosophila} cells.
Figure 4.3:

The Rev activity assay:

Adh-GAL4 was used as a constitutive promoter to drive expression of GAL4 which drives rev expression under a UAS promoter. Rev binds to the RRE site on the Rev responsive plasmid, prevents splicing and enables expression of the CAT gene via the SV40 promoter, thereby allowing analysis of Rev activity indirectly through measurement of CAT activity. In the absence of Rev, splicing occurs and no/reduced CAT expression is seen.
4.4 Results

4.4.1 Expression of CAT in *Drosophila* tissue culture cells.

Before an assay was set up to measure Rev binding and activity, it was important to test levels of CAT activity in the available cell lines. Dh33 (*Drosophila hydei*) (Saunders *et al.*, 1989), an embryonic cell line, was transfected with 2µg of Adh-GAL4 and 2µg of UAS-CAT (figure 4.4A). Dh33 have previously been used for co-transfection of plasmids and have been observed to produce a good level of expression (Saunders *et al.*, 1989).

Each plasmid was also tested alone (Figure 4.4: 4µg of Adh-GAL4 and 4µg of UAS-CAT) to ensure no (or very little) leakage was observed from the plasmids. Equal amounts of DNA were added in each transfection as analysis suggests that the number of cells transfected increases as the amount of DNA increases (Fehon *et al.*, 1990).

Other controls for the experiment included adding no DNA to cells, using cells which had not been transfected at all (to check for any bacterial CAT activity) and no cells in the assay. After 3 days, cells were harvested and extracts of the cells were run on thin layer chromatography TLC plates (Data not shown). The protein concentration (figure 4.4 B) for each extract was also measured (section 2.7.9) and the TLC plates were quantitated (section 2.7.7) on the phosphoimager (figure 4.4 B). In order to check the transfection efficiency of each set of experiments, 10% of the total DNA amount of pSVβgal was cotransfected. pSVβgal (*Pers. Comm.* Phil Gardener) drives expression of *E.coli* βgalactosidase under the control of an SV40 promoter, this was measured using a colourimetric assay (section 2.7.8). The efficiency of each transfection and the amount of protein used for each CAT assay was probably often different so it was important to normalise the data. The CAT activity was normalised by calculating the phosphoimager reading per units of βgal per µg of protein present in assay (figure 4.4 B+C). As transfections were usually performed in duplicate (some later in triplicate) an average
Figure 4.4
Schematic, table and histogram of control transfections in Dh33 cells.

(A) Constructs used in the control transfections.
Dh33 cells were transfected with 4µg of Adh-GAL4 alone, 4µg of UAS-CAT alone or 2µg both constructs (section 2.7.5). 1µg of SVβgal (to assay for transfection efficiency) was also transfected into every set of cells used.
Negative controls were no DNA transfected (to check for the presence of any bacterial CAT protein), untransfected (untreated) cells, and no cells in the CAT assays.

(B) Table showing results from the transfections.
Cells were harvested 3 days after transfections, extracts were made and assayed for CAT activity and run on TLC plates (section 2.7.6 and 2.7.7). The TLC plates (data not shown) were used to obtain a phosphoimager reading for each sample (section 2.7.7).
CAT activity was calculated by normalising the phosphoimager reading (2.7.9) against amount of protein in each sample (section 2.7.9) and transfection efficiency (β galactosidase units). The average reading was calculated per µg of protein/units of β Gal. the positive control was taken as 100% CAT activity and the other samples were a percentage of this figure.

(C) The data from (B) was plotted as a histogram.
This shows that although the CAT reporter constructs displays a little leakage, Adh-GAL4 is able to drive UAS-CAT in Dh33 cells and that all of the other negative controls showed no CAT activity.

Abbreviations: Adh: alcohol dehydrogenase; CAT: Chloramphenicol acetyl transferase;
AG: Adh-GAL4; UC: UAS-CAT; βGAL: β galactosidase.
GAIA

(A)

Adh-GAL4 → CAT

UAS-CAT

(B) Optimizing the expression of CAT.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Reading</th>
<th>βGAL activity</th>
<th>Protein in assay (µg)</th>
<th>Reading/µg of protein</th>
<th>βGAL activity/µg of protein</th>
<th>Units CAT/units βGAL</th>
<th>Average Units CAT/units βGAL</th>
<th>%: CAT activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS-CAT</td>
<td>447387</td>
<td>186</td>
<td>2.98</td>
<td>150130</td>
<td>62.4</td>
<td>2405.3</td>
<td>3881.6</td>
<td>14.3</td>
</tr>
<tr>
<td>UAS-CAT</td>
<td>1071584</td>
<td>200</td>
<td>2.8</td>
<td>382709</td>
<td>71.4</td>
<td>5357.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adh-GAL4</td>
<td>3713</td>
<td>399</td>
<td>3.8</td>
<td>978</td>
<td>105</td>
<td>9.3</td>
<td>10</td>
<td>0.04</td>
</tr>
<tr>
<td>Adh-GAL4</td>
<td>2168</td>
<td>203</td>
<td>2.6</td>
<td>834</td>
<td>78.8</td>
<td>10.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC/AG</td>
<td>1189594</td>
<td>269</td>
<td>3.3</td>
<td>3604558</td>
<td>81.5</td>
<td>4421.9</td>
<td>27200.2</td>
<td>100</td>
</tr>
<tr>
<td>UC/AG</td>
<td>6313030</td>
<td>117</td>
<td>3.4</td>
<td>1856774</td>
<td>34.4</td>
<td>53957.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DNA</td>
<td>28940</td>
<td>82</td>
<td>3.09</td>
<td>9366</td>
<td>26.5</td>
<td>352.9</td>
<td>355.3</td>
<td>1.3</td>
</tr>
<tr>
<td>No DNA</td>
<td>38987</td>
<td>109</td>
<td>3.2</td>
<td>12183</td>
<td>34.1</td>
<td>357.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>27252</td>
<td>0.00</td>
<td>4.62</td>
<td>5898</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No cells</td>
<td>33324</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

(C) Transfection efficiency was substantially higher with the UAS-CAT construct (adding 5µg UAS-CAT to a 5µg DNA construct) for UAS-CAT (Figure 4.4 B, C, D). Expression was more efficient in different cell lines, Schneider 2 (S2), also an embryonic cell line. The experiment also showed that expression of CAT was not a function of simply adding more DNA. The experiment also determined that expression of CAT was higher in Drosophila cells compared to Drosophila cells.
reading/units βgal/μg protein was taken and the percentage CAT activity was calculated from this (figure 4.4 B+C). The positive control in each experiment was taken as 100% CAT activity and the other samples were calculated as a percentage of this. This allowed comparison of samples within the same experiment but not between experiments.

CAT activity was sufficient in Dh33 cells, although a basal level of CAT was produced using UAS CAT alone. All the other controls were negative.

4.4.2 Optimising the expression of CAT.

I wanted to select the best cell line in which to measure CAT activity and also to determine the amount of a UAS-driven construct that gives the highest measurable level of CAT activity from the reporter construct. Dh33 cells were transfected with increasing amounts of UAS-CAT (UC) (figure 4.5: 2μg UAS-CAT; 3μg UAS-CAT; or 5μg UAS-CAT) with 5μg of Adh-GAL4 (AG) in each case). A reverse experiment was performed whereby Dh33 cells were transiently transfected with increasing amounts of Adh-GAL4 (AG) (Figure 4.5: 2μg Adh-GAL4; 3μg Adh-GAL4; or 5μg of UAS-CAT (UC) for each case. As negative controls, extracts from cells transfected with 5μg of UAS-CAT and with 5μg of Adh-GAL4 were also loaded on the TLC plate (data not shown).

The data (figure 4.5 B and C) showed that the increase of CAT activity was relatively (although not exactly) proportional to the addition of more construct (adding pUASSt to ensure equal amounts of DNA were transfected ensured this was not a function of simply adding more DNA). The experiment also determined that expression of CAT was highest when 5μg of Adh GAL4 was used with 5μg of UAS-CAT.

Another Drosophila tissue culture cell line, Schneider 2 (S2: also an embryonic line), was tested to determine if CAT expression was more efficient in a different cell line. The experiment was repeated with S2 cells (figure 4.6 A, B and C). Expression was substantially more efficient in these cells compared to Dh33. Transfection efficiency was
Figure 4.5

Schematic, table and histogram of increasing amounts of Adh-GAL4 and UAS-CAT in Dh33 cells.

(A) Constructs used in the transfections.
Dh33 cells were transfected with 5µg of UC alone or 5µg of AG alone or with 2, 3 or 4µg of UC with 5µg of AG in each transfection. Cells were also transfected with either 2, 3 or 4µg of AG with 5µg of UC in each transfection. Cells were transfected as in figure 4.4.

(B) Table showing results from the transfections.
Cells were harvested and assayed for CAT activity, βGAL activity and protein concentration as in figure 4.4.

(C) The data from the table was plotted as a histogram.
There appeared to be a general increase in CAT activity with the increase in the amount of each construct. The data also suggests that 5µg of each construct shows the highest CAT activity in this cell line. Key: 1: 5µg UC; 2: 5µg AG; 3: 2µg UC/5µg AG; 4: 3µg UC/5µg AG; 5: 2µg AG/5µg UC; 6: 3µg AG/5µg UC; 7: 5µg UC; 5µg AG.

Abbreviations: as in figure 4.4.
Table: Constructs and CAT Activity

<table>
<thead>
<tr>
<th>Construct</th>
<th>Reading</th>
<th>βGAL activity</th>
<th>Protein in assay (µg)</th>
<th>Reading/µg of protein</th>
<th>βGAL activity/µg of protein</th>
<th>Units CAT/µg protein</th>
<th>Units CAT/µg protein</th>
<th>Average Units CAT/µg protein</th>
<th>% CAT activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5µg UC</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>(X/Z) A</td>
<td>(Y/Z) B</td>
<td>(A/B) C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>558391</td>
<td>304</td>
<td>4.1</td>
<td>136192.9</td>
<td>74.2</td>
<td>18220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>986022</td>
<td>297</td>
<td>2.4</td>
<td>410842.5</td>
<td>123.8</td>
<td>3319.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg AG</td>
<td>6701</td>
<td>265</td>
<td>2.3</td>
<td>2913.5</td>
<td>115.2</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7792</td>
<td>304</td>
<td>1.2</td>
<td>6493.3</td>
<td>253.3</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg UC/5µg AG</td>
<td>8967330</td>
<td>152</td>
<td>3.1</td>
<td>2892687.1</td>
<td>49.0</td>
<td>58995.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg UC/5µg AG</td>
<td>6403219</td>
<td>310</td>
<td>3.5</td>
<td>1829491.1</td>
<td>88.6</td>
<td>20655.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg UC/5µg AG</td>
<td>9870123</td>
<td>132</td>
<td>4.2</td>
<td>2350029.3</td>
<td>31.4</td>
<td>74773.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg UC/5µg AG</td>
<td>7940347</td>
<td>177</td>
<td>3.2</td>
<td>2481358.4</td>
<td>55.3</td>
<td>44860.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg AG/5µg UC</td>
<td>9903621</td>
<td>325</td>
<td>2.2</td>
<td>4501645.9</td>
<td>147.7</td>
<td>30472.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg AG/5µg UC</td>
<td>10949620</td>
<td>340</td>
<td>2.5</td>
<td>4379848</td>
<td>136</td>
<td>32204.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg AG/5µg UC</td>
<td>12950351</td>
<td>269</td>
<td>3.5</td>
<td>3700100.3</td>
<td>76.9</td>
<td>48142.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg AG/5µg UC</td>
<td>13068197</td>
<td>246</td>
<td>3.0</td>
<td>4356065.7</td>
<td>82</td>
<td>53122.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg UC/5µg AG</td>
<td>88950351</td>
<td>351</td>
<td>3.0</td>
<td>29650117</td>
<td>117</td>
<td>253419.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg UC/5µg AG</td>
<td>17905831</td>
<td>116</td>
<td>3.2</td>
<td>5595572.2</td>
<td>36.3</td>
<td>154360.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
measured by assaying β-galactosidase activity (figure 4.6 B) for each experiment. The S2 cells were thus used for all further experiments. This cell line also had the added advantage of being a *Drosophila melanogaster* cell line so that any results may be directly related to the organism of study. Although UAS-CAT was not to be the construct used in the final assay, this was an important test to determine the amount of UAS-driven construct in this particular cell line, a general conclusion from this experiment was 5μg of a UAS-driven construct was sufficient to produce CAT expression (either directly via UAS-CAT or indirectly via UAS-Rev).

4.4.3 Expression of Rev Responsive CAT constructs.

The second stage of the assay was to assess whether the Rev activity assay (figure 4.3) works efficiently and Rev responsive CAT constructs could be expressed in S2 cells.

Before the assay was carried out, the pTK34 plasmid was partially sequenced in order to verify that there was no mutations present which affect expression of the construct. This sequence is shown in appendix 10.1 I (the relevant sequences are highlighted). There appeared to be no mutations in the construct that may affect the assay.

As a preliminary experiment, S2 cells were transiently transfected with 0.2-5μg of pTK34 (the rev responsive CAT reporter construct shown in figure 4.2) or 0.2-5μg of pTK53 (a derivative of pTK34 containing a deletion in the RRE site) (data not shown) to ensure that no basal activity (or at least low enough to be insignificant) could be observed as this may have confused further experiments.

With up to 5μg of each plasmid no leakage could be observed (data not shown), suggesting that export and translation of the plasmid RNA was repressed in the absence of Rev. In order to test if expression of pTK34 could be observed in the presence of Rev, 5μg of Adh-GAL4, 5μg of UAS-Rev and 5μg pTK34 were used to transfect S2
Figure 4.6

Table and histogram of increasing amounts of Adh-GAL4 and UAS-CAT in S2 cells.

(A) Table showing the results from the transfections.
The experiment from figure 4.5 was repeated with S2 cells. Cells were transfected, harvested and assayed as in figure 4.4.

(B) The data from the table was plotted as a histogram.
There appeared to be an increase in CAT activity with an increase in the amount of each construct added. The overall CAT activities in this cell line appear higher than in Dh33 cells. Key: 1: 5μg UC; 2: 5μg AG; 3: 2μg UC/5μg AG; 4 3μg UC/ 5μg AG; 5: 2μg AG/ 5μg UC; 6: 3μg AG/ 5μg UC; 7: 5μg UC; 5μg AG.

Abbreviations: as in figure 4.4.
(A)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Reading</th>
<th>βGAL activity</th>
<th>Protein in assay (µg)</th>
<th>Reading/µg of protein</th>
<th>βGAL activity/µg of protein</th>
<th>Units CAT/units βGAL/µg of protein</th>
<th>Average Units CAT</th>
<th>% CAT activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>(X/Z) A</td>
<td>(Y/Z) B</td>
<td>(A/B) C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg UC/5µg AG</td>
<td>37809471</td>
<td>187</td>
<td>4.1</td>
<td>9221822.2</td>
<td>45.6</td>
<td>202232.9</td>
<td>170490.1</td>
<td>39.2</td>
</tr>
<tr>
<td>2µg UC/5µg AG</td>
<td>29678045</td>
<td>214</td>
<td>2.3</td>
<td>12903498</td>
<td>93.0</td>
<td>138747.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg UC</td>
<td>347189</td>
<td>195</td>
<td>2.7</td>
<td>128588.5</td>
<td>72.2</td>
<td>1785.9</td>
<td>1545.9</td>
<td>0.36</td>
</tr>
<tr>
<td>5µg UC</td>
<td>220960</td>
<td>170</td>
<td>1.8</td>
<td>122755.6</td>
<td>94.4</td>
<td>1305.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg UC/5µg AG</td>
<td>26093021</td>
<td>150</td>
<td>1.7</td>
<td>15348836</td>
<td>88.2</td>
<td>174023.1</td>
<td>203083.3</td>
<td>46.6</td>
</tr>
<tr>
<td>3µg UC/5µg AG</td>
<td>30902941</td>
<td>133</td>
<td>2.6</td>
<td>11885747</td>
<td>51.2</td>
<td>232143.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µg AG/5µg UC</td>
<td>28679567</td>
<td>167</td>
<td>4.0</td>
<td>7169891.8</td>
<td>41.8</td>
<td>171528.5</td>
<td>189653.1</td>
<td>43.6</td>
</tr>
<tr>
<td>2µg AG/5µg UC</td>
<td>41378906</td>
<td>199</td>
<td>3.5</td>
<td>11822545</td>
<td>56.9</td>
<td>207777.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg AG</td>
<td>6697</td>
<td>107</td>
<td>3.2</td>
<td>2092.8</td>
<td>33.4</td>
<td>62.7</td>
<td>53.4</td>
<td>0.01</td>
</tr>
<tr>
<td>5µg AG</td>
<td>5073</td>
<td>115</td>
<td>1.7</td>
<td>2984.1</td>
<td>67.6</td>
<td>44.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µg AG/5µg UC</td>
<td>44089671</td>
<td>179</td>
<td>1.7</td>
<td>25935101</td>
<td>105.3</td>
<td>246297.3</td>
<td>332857.2</td>
<td>76.4</td>
</tr>
<tr>
<td>3µg AG/5µg UC</td>
<td>39089674</td>
<td>93</td>
<td>4.0</td>
<td>9772418.5</td>
<td>23.3</td>
<td>419417.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µg AG/5µg UC</td>
<td>48890856</td>
<td>100</td>
<td>2.8</td>
<td>17461020</td>
<td>35.7</td>
<td>489104.2</td>
<td>435307.1</td>
<td>100</td>
</tr>
<tr>
<td>5µg AG/5µg UC</td>
<td>40089067</td>
<td>105</td>
<td>3.7</td>
<td>10834883</td>
<td>28.4</td>
<td>381509.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(B)
cells (Figure 4.7 A). 5μg of each plasmid was used for transfection (unless otherwise stated) using pUASSt to make up the DNA amount to 20μg for each experiment. As a negative control the experiment was repeated using the defective plasmid, pTK54, in order to ensure that any mutation in the RRE would prevent CAT expression (presumably by preventing Rev binding and export of the construct RNA from the nucleus). However, when CAT activity was assayed, there was no significant activity observed from pTK34 (figure 4.7 B and C). In order to control the experiment, each plasmid was transfected alone (Figure 4.7 B and C: Adh-GAL4 (AG); UAS-Rev (UR); pTK34 (TK34) or pTK53 (TK53)) and then with each of the other plasmids in turn (Adh-GAL4 and pTK34; Adh-GAL4 and pTK53; UAS-Rev (UR) and pTK34; UAS-Rev and pTK53; or UAS-Rev and Adh-GAL4). When each of the cell extracts were analysed by TLC (data not shown), no CAT activity was observed (figure 4.7 B and C).

There may be a number of reasons why no CAT activity was observed using this construct. One explanation may be the control of expression of the plasmid. Expression of CAT is controlled by the SV40 promoter/enhancer and it is essential that this promoter works efficiently in this particular system. Some recent work (Ratzui et al., 1998; Mehlen et al., 1995; Angelichio et al., 1991) suggest that the SV40 promoter does not promote efficient transcription of plasmids transfected into *Drosophila* cells, although there are other experiments which dispute this idea (Pfeifer et al., 1997).

4.4.4 Expression of the Rev responsive plasmids under UAS control.

In order to alleviate the possible problem of the SV40 promoter not working efficiently in this cell line, the construct was placed under the control of the UAS promoter. It is known from this experiment and others that the UAS-promoter works highly efficiently when transfected in *Drosophila* tissue culture cells (Toba et al., 1999; Phelps and Brand, 1998). pTK43 and pTK53 (in order to perform a negative control also under UAS control) were digested with *AvrII* and *XhoI* and a 4kb fragment was ligated into pUASSt (digested with *XbaI* and *Xhol*). The resulting UAS-RRE (the
Figure 4.7.
Schematic, table and histogram of transfections of S2 cells with pTK34.

(A) Constructs used in the transfections
For control experiments: 5μg of Adh-GAL4, UAS-Rev and pTK34 (Rev responsive construct under the control of the SV40 promoter/enhancer) and pTK53 (derivative of pTK34 with a mutation in the RRE-Rev binding site) were all transfected alone, or with each other construct in a pair.
In the final assays 5μg of UAS-REV, Adh-GAL4 and pTK34/pTK53 were all transfected into the same cells.
Transfections were carried out as in figure 4.4.

(B) Table of the results from the transfections.
Cells were harvested, and assayed as in figure 4.4. The constructs did not appear to produce any measurable CAT activity in the final assays.

(C) The data from (B) was plotted as a histogram.

Abbreviations: (as in figure 4.4 with the following additions) UR: UAS-Rev; SV: Simian Virus promoter/enhancer-driven construct.
<table>
<thead>
<tr>
<th>Construct</th>
<th>Reading</th>
<th>βGAL activity</th>
<th>Protein in assay (µg)</th>
<th>Reading/µg of protein</th>
<th>βGAL activity/µg of protein</th>
<th>Units CAT/units βGAL</th>
<th>Average Units CAT/units βGAL</th>
<th>% CAT activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5µg AG</td>
<td>4586</td>
<td>406</td>
<td>2.6</td>
<td>1763.8</td>
<td>156.2</td>
<td>11.29</td>
<td>11.9</td>
<td>0.04</td>
</tr>
<tr>
<td>5µg AG</td>
<td>8956</td>
<td>705</td>
<td>4.0</td>
<td>2239</td>
<td>176.3</td>
<td>12.7</td>
<td>8.5</td>
<td>0.03</td>
</tr>
<tr>
<td>5µg UR</td>
<td>5565</td>
<td>499</td>
<td>2.5</td>
<td>2226</td>
<td>199.6</td>
<td>11.2</td>
<td>191</td>
<td>0.60</td>
</tr>
<tr>
<td>5µg UR</td>
<td>2310</td>
<td>396</td>
<td>1.6</td>
<td>1443.75</td>
<td>247.5</td>
<td>5.8</td>
<td>13.9</td>
<td>0.37</td>
</tr>
<tr>
<td>5µg TK34</td>
<td>80931</td>
<td>406</td>
<td>4.0</td>
<td>20232.8</td>
<td>101.5</td>
<td>199.3</td>
<td>3.0</td>
<td>0.30</td>
</tr>
<tr>
<td>5µg TK34</td>
<td>67810</td>
<td>371</td>
<td>3.6</td>
<td>18836.1</td>
<td>103.1</td>
<td>182.7</td>
<td>19.1</td>
<td>0.30</td>
</tr>
<tr>
<td>5µg TK34</td>
<td>3420</td>
<td>544</td>
<td>3.6</td>
<td>950</td>
<td>151.1</td>
<td>6.3</td>
<td>13.9</td>
<td>0.37</td>
</tr>
<tr>
<td>5µg TK54</td>
<td>6453</td>
<td>300</td>
<td>2.5</td>
<td>2581.2</td>
<td>120</td>
<td>21.5</td>
<td>8.9</td>
<td>0.03</td>
</tr>
<tr>
<td>5µg AG/5µg TK34</td>
<td>2318</td>
<td>271</td>
<td>3.8</td>
<td>610</td>
<td>71.3</td>
<td>8.5</td>
<td>8.9</td>
<td>0.03</td>
</tr>
<tr>
<td>5µg AG/5µg TK34</td>
<td>4528</td>
<td>483</td>
<td>2.9</td>
<td>1561.4</td>
<td>166.6</td>
<td>9.4</td>
<td>11.5</td>
<td>0.04</td>
</tr>
<tr>
<td>5µg AG/5µg TK53</td>
<td>6009</td>
<td>299</td>
<td>3.0</td>
<td>2003</td>
<td>99.6</td>
<td>20.1</td>
<td>11.5</td>
<td>0.04</td>
</tr>
<tr>
<td>5µg AG/5µg TK53</td>
<td>1345</td>
<td>473</td>
<td>2.6</td>
<td>517.3</td>
<td>181.9</td>
<td>2.8</td>
<td>4.2</td>
<td>0.013</td>
</tr>
<tr>
<td>5µg UR/5µg TK34</td>
<td>1571</td>
<td>991</td>
<td>2.9</td>
<td>541.7</td>
<td>341.7</td>
<td>1.6</td>
<td>13.6</td>
<td>0.04</td>
</tr>
<tr>
<td>5µg UR/5µg TK34</td>
<td>6051</td>
<td>693</td>
<td>2.6</td>
<td>2327.3</td>
<td>266.5</td>
<td>8.7</td>
<td>7.9</td>
<td>0.025</td>
</tr>
<tr>
<td>5µg UR/5µg TK53</td>
<td>4633</td>
<td>274</td>
<td>3.3</td>
<td>1403.9</td>
<td>83.0</td>
<td>16.9</td>
<td>13.6</td>
<td>0.04</td>
</tr>
<tr>
<td>5µg UR/5µg TK53</td>
<td>5097</td>
<td>500</td>
<td>4.0</td>
<td>1274.3</td>
<td>125</td>
<td>10.2</td>
<td>7.9</td>
<td>0.025</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3622</td>
<td>588</td>
<td>2.7</td>
<td>1341.5</td>
<td>217.8</td>
<td>6.2</td>
<td>24</td>
<td>0.75</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3821</td>
<td>400</td>
<td>4.7</td>
<td>812.9</td>
<td>85.1</td>
<td>9.6</td>
<td>24</td>
<td>0.75</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3008</td>
<td>555</td>
<td>3.2</td>
<td>940</td>
<td>85.1</td>
<td>11.0</td>
<td>24</td>
<td>0.75</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3652</td>
<td>394</td>
<td>3.8</td>
<td>961.1</td>
<td>103.7</td>
<td>9.3</td>
<td>24</td>
<td>0.75</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>2045</td>
<td>550</td>
<td>2.7</td>
<td>757.4</td>
<td>203.7</td>
<td>3.7</td>
<td>5.6</td>
<td>0.018</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3000</td>
<td>794</td>
<td>4.9</td>
<td>612.2</td>
<td>162.0</td>
<td>3.7</td>
<td>5.6</td>
<td>0.018</td>
</tr>
<tr>
<td>5µg UR/5µg AG</td>
<td>3721</td>
<td>495</td>
<td>4.4</td>
<td>845.7</td>
<td>112.5</td>
<td>7.5</td>
<td>5.6</td>
<td>0.018</td>
</tr>
<tr>
<td>5µg AG/5µg UC</td>
<td>20584912</td>
<td>863</td>
<td>2.7</td>
<td>7624041.2</td>
<td>319.6</td>
<td>23854.9</td>
<td>31895.9</td>
<td>100</td>
</tr>
<tr>
<td>5µg AG/5µg UC</td>
<td>19804739</td>
<td>496</td>
<td>3.0</td>
<td>6601579.7</td>
<td>165.3</td>
<td>39936.9</td>
<td>31895.9</td>
<td>100</td>
</tr>
</tbody>
</table>
fragment from pTK43 under the control of the UAS promoter) and UAS-mRRE (the fragment from pTK53 under the control of the UAS promoter). 5μg of Adh-GAL4, 5μg of UAS-Rev and 5μg of UAS-RRE were used to transflect S2 cells (figure 4.8A). A identical experiment was set up using 5μg of UAS-mRRE as a negative control.

As controls, each plasmid alone was used for transfection (figure 4.8 B and C: Adh-GAL4; UAS-Rev; UAS-RRE; or UAS-mRRE) and then with each other plasmid in turn (Adh-GAL4 and UAS-RRE; Adh-GAL4 and UAS-mRRE; UAS-Rev (UR) and UAS-RRE; UAS-Rev and UASmRRE; or UAS-Rev and Adh-GAL4) as for the previous experiment.

In both this and the previous experiment (4.4.3) 5μg of Adh-GAL4 and 5μg of UAS-CAT were used to transflect cells and the extract loaded onto each TLC plate as a positive control for the CAT assays (data not shown). No significant amount of CAT activity was observed in extracts from either of the Rev responsive plasmids, UAS-RRE or UAS-mRRE (figure 4.8B and C). This suggests that either there was a problem with expression of the plasmids other than promoter control or for some reason Rev was not expressed or did not bind to the RRE in UAS-RRE/UAS-mRRE.

4.5 Discussion

A co-transfection assay in Drosophila tissue culture cells has been utilised and has shown that GAL4 can activate a standard CAT reporter plasmid under UAS control, attempts have been made to assess whether a Rev responsive plasmid can be used to determine if Drongo had a function in tissue culture cells in enhancing Rev activity. Two sets of Rev responsive plasmids were used, one under the control of the SV40 promoter and the other under the control of the UAS promoter. Both sets of plasmids showed no Rev responsive CAT activity, and so the influence of the Drongo protein on Rev activity could not be assessed.
Figure 4.8:
Schematic, table and histogram of transfection of S2 cells with UAS-RRE and UAS-mRRE.

(A) Constructs used in the assays.
For control experiments: 5μg UAS-RRE (a subclone of pTK34 with the Rev responsive fragment under the control of the UAS promoter), UAS-mRRE (a subclone of pTK53 under the control of the UAS promoter), Adh-GAL4 or UAS-Rev were transfected alone or with 5μg of each other plasmid.
In the final assays, 5μg UAS-RRE, UAS-mRRE, Adh-GAL4 and UAS-Rev were all transfected into the same cells.
Cells were transfected as in figure 4.4.
The experiment was a repeat of figure 4.8 but using the constructs under UAS control.

(B) The data from (C) was plotted as a histogram.
Cells were harvested and assayed as in figure 4.4.

(B) Table of results from the CAT assays.
The constructs in the final assays do not appear to produce any measurable CAT activity in S2 cells.
Abbreviations: as in figure 4.4.
<table>
<thead>
<tr>
<th>Construct</th>
<th>Reading 1</th>
<th>βGAL activity</th>
<th>Protein in assay (μg)</th>
<th>Reading / μg of protein (X/Z)</th>
<th>βGAL activity/ μg of protein (Y/Z)</th>
<th>Units CAT/units βGAL/μg of protein (A/B)</th>
<th>Average Units CAT/units βGAL</th>
<th>% CAT activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>3078</td>
<td>180</td>
<td>4.9</td>
<td>628.2</td>
<td>36.7</td>
<td>17.1</td>
<td>29.95</td>
<td>0.05</td>
</tr>
<tr>
<td>AG</td>
<td>4967</td>
<td>116</td>
<td>3.6</td>
<td>1379.7</td>
<td>32.2</td>
<td>42.8</td>
<td>17.9</td>
<td>0.28</td>
</tr>
<tr>
<td>UR</td>
<td>1057</td>
<td>70</td>
<td>5.8</td>
<td>182.2</td>
<td>12.1</td>
<td>15.1</td>
<td>303.9</td>
<td>0.26</td>
</tr>
<tr>
<td>UR</td>
<td>4078</td>
<td>197</td>
<td>2.0</td>
<td>2039</td>
<td>98.5</td>
<td>20.7</td>
<td>11.1</td>
<td>0.02</td>
</tr>
<tr>
<td>URRE</td>
<td>6079</td>
<td>20</td>
<td>2.7</td>
<td>2251.5</td>
<td>7.4</td>
<td>303.9</td>
<td>170.9</td>
<td>0.26</td>
</tr>
<tr>
<td>URRE</td>
<td>7045</td>
<td>186</td>
<td>1.7</td>
<td>4144.1</td>
<td>109.4</td>
<td>37.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UmRRE</td>
<td>4068</td>
<td>500</td>
<td>5.9</td>
<td>689.5</td>
<td>84.7</td>
<td>8.1</td>
<td>11.1</td>
<td>0.02</td>
</tr>
<tr>
<td>UmRRE</td>
<td>2298</td>
<td>164</td>
<td>3.7</td>
<td>621.1</td>
<td>44.3</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG/URRE</td>
<td>2067</td>
<td>112</td>
<td>5.4</td>
<td>382.8</td>
<td>20.7</td>
<td>18.5</td>
<td>64.8</td>
<td>0.09</td>
</tr>
<tr>
<td>AG/URRE</td>
<td>3330</td>
<td>30</td>
<td>7.8</td>
<td>426.9</td>
<td>3.8</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG/UmRRE</td>
<td>4035</td>
<td>109</td>
<td>5.0</td>
<td>807</td>
<td>21.8</td>
<td>37.0</td>
<td>23.5</td>
<td>0.03</td>
</tr>
<tr>
<td>AG/UmRRE</td>
<td>2057</td>
<td>205</td>
<td>4.3</td>
<td>478.4</td>
<td>47.7</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/URRE</td>
<td>6079</td>
<td>113</td>
<td>6.9</td>
<td>881.0</td>
<td>16.4</td>
<td>53.7</td>
<td>50.4</td>
<td>0.08</td>
</tr>
<tr>
<td>EUR/URRE</td>
<td>9022</td>
<td>164</td>
<td>6.5</td>
<td>1388</td>
<td>25.2</td>
<td>55.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/UmRRE</td>
<td>3065</td>
<td>185</td>
<td>2.6</td>
<td>1178.8</td>
<td>71.2</td>
<td>16.6</td>
<td>11.6</td>
<td>0.02</td>
</tr>
<tr>
<td>EUR/UmRRE</td>
<td>2007</td>
<td>300</td>
<td>3.0</td>
<td>669</td>
<td>100</td>
<td>6.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/AG</td>
<td>3076</td>
<td>278</td>
<td>4.8</td>
<td>640.8</td>
<td>57.9</td>
<td>11.1</td>
<td>28.6</td>
<td>0.04</td>
</tr>
<tr>
<td>EUR/AG</td>
<td>3958</td>
<td>123</td>
<td>2.9</td>
<td>1364.8</td>
<td>42.4</td>
<td>32.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/AG/URRE</td>
<td>9784</td>
<td>206</td>
<td>5.6</td>
<td>1747.1</td>
<td>36.8</td>
<td>47.5</td>
<td>52.4</td>
<td>0.08</td>
</tr>
<tr>
<td>EUR/AG/URRE</td>
<td>10897</td>
<td>135</td>
<td>5.8</td>
<td>1878.8</td>
<td>23.3</td>
<td>80.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/AG/URRE</td>
<td>3960</td>
<td>137</td>
<td>3.9</td>
<td>1015.4</td>
<td>35.1</td>
<td>28.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/AG/UmRRE</td>
<td>1108</td>
<td>145</td>
<td>7.0</td>
<td>158.3</td>
<td>20.7</td>
<td>7.6</td>
<td>28.7</td>
<td>0.04</td>
</tr>
<tr>
<td>EUR/AG/UmRRE</td>
<td>5947</td>
<td>263</td>
<td>5.7</td>
<td>1043.3</td>
<td>46.1</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUR/AG/UmRRE</td>
<td>7957</td>
<td>142</td>
<td>8.7</td>
<td>914.6</td>
<td>16.3</td>
<td>56.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG/UC</td>
<td>1098057</td>
<td>165</td>
<td>3.0</td>
<td>3660192</td>
<td>55</td>
<td>66548.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG/UC</td>
<td>8605000</td>
<td>200</td>
<td>6.5</td>
<td>1323846</td>
<td>30.8</td>
<td>42982.0</td>
<td>64876.3</td>
<td>100</td>
</tr>
</tbody>
</table>
4.5.1. Assessment of the Rev activity assay.

These experiments were carried out in order to enable us to use a reporter system in which a change in activity of the reporter gene could be measured, this was achieved successfully.

The second objective of the assay was to test the Rev responsive plamids in order to ascertain whether we could indirectly measure Rev activity via measuring CAT activity. This was not possible using the constructs available and the constructs produced in the laboratory.

The reason this did not work is unclear. There are several possible reasons why the assay could not be carried out using either pTK34 or UAS-RRE in this study:

(A) There has been several lines of evidence that the SV40 promoter driving pTK34 may not work very efficiently in *Drosophila* cells although other research disputes this. The plasmid used for checking the efficiency of transfection is also under the control of the SV40 plasmid and this appears to transcribe efficiently in this system.

(B) A mutation in any of the sequences required for the assay to work in this system may produce a non functional transcript. However, the *rev* gene and pTK34 were sequenced and the relevant sequences were analysed including the SV40 promoter, the CAT gene, the RRE and the splice sites. None of these sequences appeared to contain any mutations/deletions.

(C) The Rev protein may not be expressed or may be expressed at a level insufficient to promote RRE binding, this was not been verified and would need to be if the experiment is repeated.

(D) Expression was also not possible using UAS-RRE. The ligation junctions after production of this clone were also sequenced (data not shown) and this also appeared to contain no mutations.
Poor codon usage (McPherson, 1988) may present another factor which puts constraints on the assay. We have no indication of the codon usage. This has not been tested but could be measured by the method of Grantham et al (1980).

Previous experiments did not find it necessary to include the addition of a co-factor in order to assay Rev function in *Drosophila* (Ivey Hoyle and Rosenberg, 1990), so this is not likely to be a limiting factor in this study (although it is likely that different Rev clones were used in our study and in others), it remains a possibility that Rev requires a basal level of an endogenous co-factor in the cells in which it functions.

Other co-transfection assays reported have used successfully different types of reporter systems, such as the metallothionein (Mt) assay for measuring Rev activity (Ivey-Hoyle and Rosenburg, 1990). Cells stably transfected with the reporter gene under the control of the Mt promoter will express protein upon metal induction of the promoter. Although the plasmids used in this study have previously been reported to work efficiently in human cells it seemed that expression and subsequent measurement of Rev activity was not possible.

The ultimate objective of the assay was to determine if the Drongo protein could affect Rev activity *in vitro*, it was not possible to test this in this assay and so the result of this is not yet known. It would be interesting to analyse different inducible vectors in this particular line and observe any effects of Drongo in this way. It is known that a co-factor is required for Rev *in vivo* and the identification of hRIP in human suggests that a conserved co-factor(s) may be will be found in *Drosophila*. No other molecule has yet been identified in *Drosophila* that fulfils this role, we have a case therefore to analyse whether the Drongo has an analogous function to hRIP.

4.5.2. Analysing Drongo function *in vivo*.

From this study, it has not yet been possible to observe if Drongo has a function *in vitro*, via tissue culture experiments. Prior to attempts to try a different set of vectors in the cell line established in this study, it would be wise to assess as much as possible if
a function can be assigned to Drongo *in vivo*. This could be performed by analyses of any mutations of the gene, this being one of the principal aims of the study.

Production of an antibody to the Drongo may also establish the location of the protein in the cell. The use of tissue culture studies to may then be re-examined with a revised view on the function of the Drongo protein.
Chapter 5:

EMS Mutagenesis
Chapter 5: RESULTS AND DISCUSSION: EMS Mutagenesis.

5.1 Introduction.

One of the most informative ways of determining the function of a gene in *Drosophila* is to isolate a mutation of the gene and analyse the mutant phenotype. Initial attempts to produce deletions of the *drongo* gene by excision of the P-element were unsuccessful (section 1.2.2) therefore a mutagenesis screen of the region was carried out in an attempt to produce lethal alleles of *drongo*.

This screen was initiated after a review of Roberts *et al.* (1985) in which EMS mutagenesis was carried out on the second chromosome, in the region 21C6-D1-22A6-22B1, an interval which encompasses the *drongo* gene and its neighbours. This work offered us a starting point from which to proceed with the mutagenesis as we could obtain the deficiencies (the *asteroid* deficiencies) they produced. Roberts *et al.* (1985) established four mutable regions (complementation groups) which may correspond to four transcribed regions, one of which may have been *drongo*. Unfortunately these stocks were lost and so it was not possible for us to test them in our study.

5.2 Analysis of the 21D region.

When this screen was initiated, we had obtained some information on the genetics of the 21D region on the second chromosome (figure 5.1) from a number of sources (Harris, 1995 and *pers. comm.* Edwin Chan). The original enhancer trap (B75.1M2) screen (Harris, 1995) and hybridisation of B75.1M2 genomic clones to the ninaA genomic walk (Schneuwly *et al.*, 1989) (section 1.2) placed B75.1M2 between the left breakpoints of deficiencies Df(2L)ast4 and Df(2L)ast6 (Roberts *et al.*, 1985) (figure 5.1). Reverse northerns identified 3 transcripts. The first gene isolated was *drongo*. The second gene, *arouser*, encoded a putative eps8 homologue; and the third, *kracken*, encoded a putative atropine diesterase
Figure 5.1
Molecular map of the 21D region.

drongo is situated between the breakpoints of two deficiencies, Df(2L)ast4 and Df(2L)ast6. Localisation of the enhancer trap B75.1M2 identified two other genes in the region, *arouser* and *kracken*. Further sequencing of the surrounding area isolated nearby transcripts, *dribble* and *dorphan*. EST sequences from cDNA libraries arranged into clots (homologous EST sequences) were also positioned on the map (clot 500, clot3590, clot 1865)

Key: —— = Deficiency breakpoints; CK, HL and LD are cDNA libraries (see http://www.fruitfly.org). \(\wedge \) = represent intronic region. Numbers represent bases in the genomic DNA. Shaded boxes represent transcribed regions. Arrows indicate direction of transcription.

\(\forall \) = P-element enhancer trap. pkg= Plakaglobin; dock: dreadlocks; lsp1\(\beta \): larval serum protein \(\beta \). Map compiled by Edwin Chan.
homologue (Harris et al., in press). Plasmid rescue (section 1.2.1) and cytological mapping of these cDNAs placed them in relative positions to each other on the walk near to known transcripts. These transcripts include *dreadlocks* (dock), a gene required in axon guidance of photoreceptor cells in the eye (Garrity et al., 1996) (situated about 750 bp to the left of drongo); *ninaA* (Schneuwly et al., 1989) (which is approximately 25kb to the right of drongo); and *clipper*, an endonuclease (Bai and Tolias, 1996). Further sequencing around the region (Edwin Chan *pers. comm.*) identified two other regions of transcribed DNA, named *dribble* and *dorphan*. *dribble* maps to approximately 18 kb to the right of drongo and *dorphan* maps to approximately 2.5 kb to the right of *dribble*. The whole of this region (120kb) of the map has now been sequenced (BDGP: contig pkg21D (http://www.fruitfly.org/sequence/drosophila-regions.html).

Localisations of lethal P-element deletions in *dock* (l(2)05423) and *dribble* (l(2)k06708) are also shown in figure 5.1. EP elements (Rorth, 1996) have also been mapped to the region (figure 5.1). EP elements are insertion lines which carry a regulatable promoter for misexpression of the endogenous genes at the site of insertion. Many of these elements have been mapped by *in situ* hybridisation to polytene chromosomes and, in many, the flanking genomic DNA has been sequenced (BDGP, Berkeley Fly database).

Further analysis with Expressed Sequence Tags (ESTs) have also identified other possible transcripts in the region. An EST is the sequence of the 5’ or 3’ end of a cDNA used to identify expressed genes in the genome and these are available on EST databases (http://www.fruitfly.org/EST/index.html#ESTs). cDNA clones from each library have been compared to other clones in the library using nucleotide sequence searches using a BLAST tool and clones homologous to each other are grouped as “clots”. The position of known clots in the 21D region is shown on figure 5.1.

The molecular map obtained was sufficient to consider initiating a mutagenesis screen as we could use this information to screen the mutants and identify mutant alleles, primarily in *drongo* and secondarily in any other genes in the region.
5.3 Isogenisation of the original stock.

The mutagenesis screen consisted of finding new lethal mutations in homozygous lines and so it was important the WCS strain to be mutagenised did not contain any lethal mutations already in the stock. Spontaneous mutations may occur in any culture, some of these may be recessive and present in a heterozygous state, and thus would usually go unnoticed. A spontaneous mutation frequency of 1% of flies in a stock subsequently used for mutagenesis would lead to the majority of ‘new’ variants being pre-existing mutations (Greenspan, 1997) and a new lethal phenotype may be incorrectly assumed.

Isogenisation meant starting a new stock from a single chromosome and using the stock before it acquired any natural lethal mutations. The isogenisation scheme used in this study was carried out as shown in figure 5.2 (see section 2.8.1).

\[\begin{align*}
\text{F1} & \quad \frac{\text{w}^+ \times \text{X}}{} \\
\text{F2} & \quad \frac{\text{F1} \times \text{X}}{} \\
\text{F3} & \quad \frac{\text{F2} \times \text{X}}{}
\end{align*} \]

and select: \(\text{w}^+ \)
Figure 5.2
Crossing scheme for isogenisation of the second chromosome.

The crossing scheme was performed as in Greenspan (1997). At F1 a single w; +/+ chromosome was propagated by selecting CyO males (more than one vial was set up as some may be lethals). All of the progeny in the F2 generation, carry the wild type (+) chromosome. This chromosome cannot recombine with its homologue, the balancer In(2LR)O,Cy. F2 siblings were then crossed together. The first of these crosses was designated bottles 4D and 3A (the numbering system is explained in the text). By F3 the stock was isogenic. See section 2.8.1.

5.4 RESULTS

5.4.1 EMS mutagenesis.

The mutagenesis was performed using EMS (section 2.8.2). This is an alkylating agent which binds to one strand of the DNA double helix, usually producing point mutations and sometimes small deletions. Flies were mutagenised with 25 mM of EMS (this should induce 4.3 x 10^6 alkylations/sperm as reviewed in Ashburner, 1989). Males to be mutagenised were briefly starved for 12 hours before treatment to increase the frequency of recovered mutations. The mutagenesis was performed in bottles using 100 males in each. Bottles were organised into a series for ease of labelling the origin of the mutants. Bottles were labelled according to the isogenisation stock from which they originated, and isogenisation stocks used were 4D and 3A. Bottles were labelled 4DA-4DZ; 4EA-4EQ and 3AA-3AZ; 3BA-3BN and used in alternate order for example, 4DA, 3AA, 4DB, 3AB. Males were mutagenised, crossed to virgin females (figure 5.3a) and the progeny were used for further analysis.
Mutagenize

(a) \(w ; +* ; \pm \) \(> + + \) X \(w ; CyO ; + \) \(w ; Sp + \)

\(\frac{b}{b} \)

(b) F1 \(w ; +* ; \pm \) \(> CyO + \) X \(+ ; ast4 ; + \) \(+ CyO + \)

\(\frac{b}{b} \)

(c) F2 \(ast4 , +* , +* , CyO \) \(CyO \) \(CyO \)

(d) \(+ ; +* ; \pm \) \(> CyO + \) X \(w ; CyO ; + \) \(w ; Sp + \)

\(\frac{b}{b} \)

(e) \(w ; +* ; \pm \) \(> CyO + \) X \(w ; +* ; \pm \) \+ CyO +

Balanced mutant stock.
Figure 5.3
Crossing scheme for mutagenesis and screening of mutants over Df(2L)ast4.

(a) Males from the isogenised stock (section 5.3) were mutagenised with 25mM EMS (section 2.8.2) and crossed to virgins of a balanced stock (w; CyO/Sp)
(b) The mutations balanced over CyO were then crossed to Df(2L)ast4.
(c) In cases of non-complementation crosses were set up as in (D)
(d) Mutations balanced over CyO were used to backcross to w; CyO/Sp virgins.
(e) The progeny were balanced over CyO and used to generate a stock.

7120 mutant males were isolated by this screen. 55 mutations did not complement Df(2L)ast4 and thus were in the region of interest.

Key: — balancer chromosome, ——— = EMS induced mutation, < > = Deficiency (Df(2L)ast4). For progeny numbers see section 10.2 B.

5.4.2 Analysis of the mutants.
Male progeny from the above cross were then analysed for any lethal mutations in the 21D region.

5.4.1 Deficiency analysis of the mutants.

Males were screened over a deficiency (for deficiency breakpoints see table 2.6) which uncovers the drongo locus, Df(2L)ast4 (figure 5.3b), in order to select any mutations in the 21D region (figure 5.1). Mutants in the region (lethal over Df(2L)ast4; figure 5.3c) were recovered at a rate of about 1/150 male progeny screened. 7120 chromosomes were screened over Df(2L)ast4 and 55 mutants did not complement Df(2L)ast4. The progeny of the deficiency cross, balanced over CyO (figure 5.3d) were then used to generate a stock (figure 5.3e). A white eye phenotype was introduced to this stock (using allele w¹¹⁸) in order to attempt
subsequent rescue of any mutant alleles by using cloned transgenes marked with \(w^+ \). Stocks were then used for further analysis.

Mutant stocks were then tested for complementation over another deficiency, \(\text{Df(2L)ast6} \) (figure 5.4), the breakpoints of which map further downstream of \(\text{drongo} \) (table 2.6 and figure 5.1). Non-complementation was taken as the absence of \(\text{Cy}^+ \) flies in over 100 progeny. Mapping the breakpoints of \(\text{Df(2L)ast4} \) and \(\text{Df(2L)ast6} \) had determined that they overlap further downstream of the 21D region (Roberts et al., 1985). Complementation testing over both deficiencies would therefore attenuate the number of mutants down to those in the 21D region (figure 5.1).

Mutants which complemented \(\text{Df(2L)ast6} \) (and thus were not in the \(\text{Df(2L)ast6} \) region (figure 5.4) were then chosen for further analysis. Of the 55 mutants lethal over \(\text{Df(2L)ast4} \), 47 mutants were viable over \(\text{Df(2L)ast6} \). These were therefore in the region of interest. Mutants which did not complement \(\text{Df(2L)ast6} \) were kept as stocks but not used further is this study.

\[
\begin{array}{c}
\text{w}^+ ; +* ; \pm \\
> \text{CyO} \ + \\
\text{X} & + ; \text{ast6} ; + \\
& + \SM1 +
\end{array}
\]

\[
\begin{array}{c}
\text{ast6} \ , \ +* \ , \ +* , \text{CyO} \\
\SM1 \ , \ ast6 \SM1 \ SM1 \ SM1
\end{array}
\]

Figure 5.4

Crossing scheme for complementation testing over \(\text{Df(2L)ast6} \).

Males from mutant stocks which were lethal over \(\text{Df(2L)ast4} \) were crossed to \(\text{Df(2L)ast6} \), in a test for complementation. Non-complementation was taken as the
absence of CyO* flies in over 100 progeny. Mutants were crossed to Df(2L)ast6 virgin females in single pair matings. Df(2L)ast6 was balanced over SM1 in order to assess the lethality of the mutation. Alleles which were lethal over Df(2L)ast4 and viable over Df(2L)ast6 were used for further analysis. Any alleles which were lethal over Df(2L)ast6 were kept as stocks but not analysed any further. Using this scheme, 47 mutants did not complement Df(2L)ast4 but complemented Df(2L)ast6 and thus were in the region of interest.

5.4.4 Complementation analysis.

5.4.4.1 Classification of mutants into lethal complementation groups.

Selected mutant stocks were then organised into allelic groups by lethal complementation analysis. This was performed in order to determine the number of lethally mutable regions and thus the number of essential transcripts in the genomic area. Mutant stocks were crossed as single pair matings (section 2.8 2), taking virgins of the first mutant obtained (4DA-122) and crossing them to males of all of the other mutant stocks (figure 5.5). In this way, the first complementation group was established by grouping alleles which did not complement 4DA-122 (figure 5.5). Group two was determined by taking the next mutant which was not in group one (thus this mutant complemented 4DA-122) and crossing it to all the other mutants which did not fit into this group. This was continued in the same manner until all of the mutants had been grouped (For progeny numbers see section 10.2 C). This scheme determined that there were at least six complementation groups with at least two mutants in each group (Table 5.1).

Crossing the mutants in each group inter se showed that there appeared to be some mutants which existed in more than one group (3AC-184, 4DI-1893 and 4EC-3906) and some in more than two groups (4DS-2678, 4DS-2715 and 4DS-2716) (Table 5.1). 4DS-2678, 4DS-2715 and 4DS-2716 may have contained deletions as a consequence of the mutagenesis.
Virgin females of the first mutant (4DA-122) were crossed to males of all of the other mutant stocks, any which did not complement 4DA-122 were placed into group one. The next mutant (in order of those obtained) was then crossed to all of the other mutants which complemented 4DA-122, thus any which showed non-complementation were placed into group two. In this way 6 complementation groups were established and all of the mutants were placed into at least one group.
<table>
<thead>
<tr>
<th>One</th>
<th>Two</th>
<th>Three</th>
<th>Four</th>
<th>Five</th>
<th>Six</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DA-122</td>
<td>3AC-184</td>
<td>4DG-1524</td>
<td>3AC-184</td>
<td>4DL-1801</td>
<td>4DS-2715</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td>(HV)</td>
<td>(HL)</td>
<td>(HV)</td>
<td>(HL)</td>
</tr>
<tr>
<td>4DD-418</td>
<td>4DG-777</td>
<td>3AL-1872</td>
<td>4DD-201</td>
<td>4DL-1893</td>
<td>4DS-2716</td>
</tr>
<tr>
<td>(HY)</td>
<td>(HL)</td>
<td>(HV)</td>
<td>(HV)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>(HV)</td>
<td>(HL)</td>
<td>(HV)</td>
<td>(HV)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td>4DI-1367</td>
<td>4DS-2705</td>
<td></td>
<td>4DS-2678</td>
<td>4DN-2014</td>
<td>4EB-3455</td>
</tr>
<tr>
<td>(HV)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>4DS-2678</td>
<td>4DS-2678</td>
<td></td>
<td>4DS-2715</td>
<td>4DS-2678</td>
<td>3BC-3677</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>4DS-2715</td>
<td>4DS-2715</td>
<td></td>
<td>4DS-2716</td>
<td>4DS-2715</td>
<td>4EC-3906</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>4DS-2716</td>
<td>4DS-2716</td>
<td></td>
<td>3AU-2858</td>
<td>4DS-2716</td>
<td>4EF-4391</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>3AZ-3013</td>
<td>3BL-5823</td>
<td></td>
<td>4DY-3071</td>
<td>3BC-3629</td>
<td>3BE-4401</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>3BK-5333</td>
<td>3BL-6666</td>
<td></td>
<td>3AY-3216</td>
<td>3BC-3677</td>
<td>4EC-4540</td>
</tr>
<tr>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td>(HL)</td>
</tr>
<tr>
<td>4EQ-6548</td>
<td></td>
<td></td>
<td>4DY-3291</td>
<td>4EC-3742</td>
<td></td>
</tr>
<tr>
<td>(HL)</td>
<td></td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EC-3781</td>
<td>3BF-4311</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HV)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EC-3906</td>
<td>3BE-4331</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3BE-4178</td>
<td>3BK-5476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EH-4705</td>
<td>3BK-5587</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HV)</td>
<td>(HL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EK-4975</td>
<td>3BN-6246</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td>(HV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EK-5076</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4EP-6332</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4ER-6893</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1
EMS complementation groups.

Six groups were established by lethal complementation crossing (as performed in figure 5.5). Those in plain type are probably point mutations. Those in bold are in more than one group and so possibly have more than one point mutation or contain a small deletion. (HV= homozygous viable (these mutants were hemizygous lethal over the deficiency), HL=homozygous lethal). (For full details of progeny numbers see appendix 10.2C)
5.4.4.2 Complementation of mutants over P-element deletions.

Once the complementation groups were established, the task was set to specify if any of the groups were *drongo* alleles. This was facilitated by production of a number of P-element deletions/insertions in the region (*pers. comm.* Edwin Chan; Table 5.2). Unfortunately, none of the deletions uncovered the *drongo* locus alone, which made assignment of a *drongo* group more abstruse. However a number of the EMS alleles thought to be deletions (4DS-2678, 4DS-2715 and 4DS-2716) were shown to be in five of the six complementation groups (Table 5.1) and so there is a strong possibility these uncovered the *drongo* gene. The P-element deletions were also used in an attempt to assign the complementation groups to known transcripts in 21D region (figure 5.1). Table 5.2 shows the results of these complementation crosses (*pers. comm.* Edwin Chan) These were performed in single pair matings to virgins of the P-element deletion/insertion stocks.

Details of the P-element insertions and deletions are as follows (*Pers. Comm.* Edwin Chan): lethal 4723 is a P element insertion into the *Dreadlocks (Dock)* allele; 5428 is a lethal Pelement insertion into *dribble (dbe)*. C16 is an precise excision unovering *arouser* and *dbe* and 32/16 uncovers *dbe*. There are also two Pelement excisions uncovering *dbe*, D120 extends leftwards from *dbe* and D125 extends rightwards.

The molecular breakpoints of all the deletions and insertions have not yet been molecularly defined.
<table>
<thead>
<tr>
<th>Comp. Group</th>
<th>Allele</th>
<th>Insertion</th>
<th>C16</th>
<th>32/16</th>
<th>D120</th>
<th>D125</th>
<th>D128</th>
<th>D131</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DD-418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DH-1251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DI-1367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3AZ-3013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BK-5333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EQ-6548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>3AC-184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DG-777</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DI-1893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BL-5823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BL-6666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3AL-1872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. Group</td>
<td>Allele</td>
<td>Insertion</td>
<td>Deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four</td>
<td>3AC-184</td>
<td>4723</td>
<td>C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5428</td>
<td>32/16</td>
<td>D120</td>
<td>D125</td>
<td>D128</td>
<td>D131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DD-201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DD-288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3AU-2858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DY-3071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3AY-3216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DY-3291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EC-3781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EC-3906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BE-4178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EH-4705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EK-4975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EK-5076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EP-6332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4ER-6893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five</td>
<td>4DL-1801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DI-1893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DL-1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DN-2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BC-3629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BC-3677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EC-3742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BF-4311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BE-4331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BK-5476</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BK-5587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BN-6246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six</td>
<td>4DS-2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4DS-2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EB-3455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BC-3677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EC-3906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EF-4391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3BE-4401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4EC-4540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.2

Complementation analysis with P-element deletions/insertions.

Males from mutant stocks in each lethal complementation group were crossed (as single pair matings) to virgins of each of the P-element lethals. Non-complementation was taken as the absence of CyO+ flies in over 100 progeny and shown as a red box. 4DS-2678, 4DS-2715 and 4DS-2716 appear to be deletions (see appendix 10.2 for progeny numbers). Insertion 4723 is a lethal insertion into the \textit{dock} gene. No mutants thought to be point mutations showed non-complementation over 4723 or in 5428, suggesting no alleles were in \textit{dock} alone. A number of alleles from group two did not complement C16 (a deletion in \textit{arouser} and \textit{dribble}) but not D120 (a deletion which extends leftwards from \textit{dribble}), suggesting putative \textit{arouser} alleles. Three mutants from group six and a number from group four did not complement D125 (an excision which extends outwards from \textit{dribble} into \textit{kraken}) or D120. These data suggest that groups one, three and five were candidates for \textit{drongo} mutations. For progeny numbers see appendix 10.2D.

All of the mutations affecting single complementation groups complemented \textit{dock} (4723) and \textit{dribble} (32/16). This suggested that none of the groups we found were alleles of either of these two genes. The imprecise excision C16 fails to complement two alleles in different groups, 4DI-1893 and 3EC-3906. These alleles do not overlap. Additionally C16 does not complement any other alleles in these two groups, suggesting another group may exist which may also include the \textit{dribble} gene (does not complement C16). 3AC-184, however does not fit easily into this model as it affects alleles in both groups two and four.

These results may place group two as a possible \textit{arouser} group, as all complement C16 but not D120 (uncovers \textit{dribble}). Group six may contain alleles of \textit{kraken}, they are lethal over D120 (extends leftwards from \textit{dribble}) and D125,
but viable over C16. The excision D125 extends outwards from *dribble*, and does not complement 4EC-3906 (groups six and four). The results of some of the complementation suggest that groups one, two and five were candidates for *drongo*. However given the tentative nature of these results, groups three, four and six were not ruled out.

5.4.5.1 Phenotypic analysis of each group.

Two homozygous lethal stocks were chosen from each group, in order to determine the earliest lethal phase of the alleles in each group and thus determine a scheme for rescuing possible *drongo* mutants. Alleles considered to be most likely contain point mutations were selected. Flies were crossed in three ways in order to determine the earliest lethal phases (table 5.3). Firstly, the alleles were crossed to produce homozygous progeny which were subsequently scored for stage of lethality. Secondly each mutant was then crossed to Df(2L)ast4 stock to produce progeny with the mutation over the deficiency. This was performed to ensure no mutations in a different region to the one under study on the chromosome were producing lethality thus confusing the results. Thirdly, a second potential complication may also arise from crossing the mutants to a deficiency. The original chromosome from which the *asteroid* deficiencies (Roberts *et al.*, 1985) were made could not be isogenised and so may also contain 'background' mutations. Therefore finally the first mutant chosen from each group was crossed with the second mutant chosen from that group and the progeny scored (section 2.8.3). The results are shown in Table 5.3. For progeny numbers see section 10.2E.
<table>
<thead>
<tr>
<th>Group No.</th>
<th>Allele.</th>
<th>Cross analysed.</th>
<th>Earliest Lethal Phase of progeny</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122</td>
<td>4DA-122/4DA-122</td>
<td>Larval (1st instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DA-122/ast4</td>
<td>Larval (1st instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DA-122/3BK-5333</td>
<td>Larval (1st instar)</td>
</tr>
<tr>
<td></td>
<td>3BK-5333</td>
<td>3BK-5333/3BK-5333</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5333/ast4</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5333/4DA-122</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666</td>
<td>3BL-6666/3BL-6666</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BL-6666/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BL-6666/3BL-5823</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td>3BL-5823</td>
<td>3BL-5823/3BL-5823</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BL-5823/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BL-5823/3BL-6666</td>
<td>Embryonic</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524</td>
<td>4DG-1524/4DG-1524</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DG-1524/ast4</td>
<td>Larval (1st instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DG-1524/3AL-1872</td>
<td>Larval (1st instar)</td>
</tr>
<tr>
<td></td>
<td>3AL-1872</td>
<td>3AL-1872/3AL-1872</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3AL-1872/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3AL-1872/4DG-1524</td>
<td>Embryonic</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216</td>
<td>3AY-3216/3AY-3216</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3AY-3216/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3AY-3216/4EP-6322</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EP-6322/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EP-6322/3AY-3216</td>
<td>Embryonic</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588</td>
<td>3BK-5588/3BK-5588</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5588/ast4</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5588/3BK-5476</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td>3BK-5476</td>
<td>3BK-5476/3BK-5476</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5476/ast4</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3BK-5476/3BK-5588</td>
<td>Larval (3rd instar)</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391</td>
<td>4EF-4391/4EF-4391</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EF-4391/ast4</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EF-4391/4EC-4540</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td>4EC-4540</td>
<td>4EC-4540/4EC-4540</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EC-4540/ast4</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4EC-4540/4EF-4391</td>
<td>Larval</td>
</tr>
</tbody>
</table>
Table 5.3
First lethal phase of alleles from each complementation group.

Two representative mutant alleles were chosen from each group to analyse when the earliest lethal phase of the mutation arose. Siblings from each vial were crossed and scored, noting that 1/4 of the progeny would be CyO/CyO and embryonic lethal. For progeny numbers see section 10.2E.

5.4.5.2 Rescue of potential drongo alleles.

Arrangement of the mutants into complementation groups and complementation testing over the P-element excisions offered some intimation of which groups to analyse in order to find an alleles which may contain a drongo mutation. I decided to perform a rescue experiment using the hs-drongo flies produced earlier in this study (section 3.2). Rescue of a mutant phenotype with expression of the wild type gene can offer strong evidence for a role of the gene in development. I wanted to observe whether we could rescue any of the mutant alleles isolated in this screen by expression of drongo. Rescue may indicate that we had isolated one or more alleles of the gene. Determination of the earliest lethal phase gave some indication of when to perform the heat shocks, if these were necessary. Rescue of mutant flies was performed as in figure 5.6. Heat shocks were performed before the earliest lethal phase of each alleles studied. Results from these crosses are shown in table 5.4. Rescue was not achieved using this crossing scheme, neither was rescue successful after heat shocks treatment (for progeny numbers see sections 10.2 F and G).
A. Generation of stock no. 1: Rescue of each mutant allele as a homozygote

(1) \[\pm ; \pm^* ; \pm \]
\[> \text{CyO} + \]
\[X \quad w; \text{CyO}; \text{TM6B} \]
\[\text{Sp} \quad \text{rf10} \]
\[\pm; \pm^*; \text{TM6B} \]
\[+ \text{CyO} + \]

(2) \[\pm; \pm; \text{HSD} \]
\[> + \text{TM6B} \]
\[X \quad w; \text{CyO}; \pm \]
\[+ \text{Sp} + \]

(2a) \[\pm; \text{CyO}; \text{HSD} \]
\[> + + \]
\[X \quad \pm; \text{Sp}; \text{TM6B} \]
\[+ + + \]
\[\pm; \text{CyO}; \text{HSD} \]
\[+ \text{Sp} \text{TM6B} \]

(3) \[\pm; \pm^*; \text{TM6B} \]
\[> \text{CyO} + \]
\[X \quad \pm; \text{CyO}; \text{HSD} \]
\[+ \text{Sp} \text{TM6B} \]
\[\pm; \pm^*; \text{HSD} \]
\[> \text{CyO} \text{TM6B} \]
\[+ \text{CyO} \text{TM6B} \]
B. Rescue of mutant alleles over Df(2L)ast4.

1. \(\pm; \) *ast4; \(\pm; \) X \(+; \) CyO \(+; \) HSD
2. \(\pm; \) *ast4; HSD \(+; \) X \(+; \) CyO \(+; \) TM6B

3. \(+; \) *ast4; HSD \(>; \) CyO \(TM6B \)
4. \(\pm; \) *ast4; HSD \(+; \) CyO \(TM6B \)

5. \(\pm; \) *ast4; HSD \(+; \) TM6B
A: Rescue of each mutant allele in a homozygous state. (1) Males from each mutant stock balanced over CyO were crossed to a third chromosome balancer stock. (2) Hs-drongo males, balanced over TM6B were then crossed to a second chromosome balanced stock. In order to produce flies which were balanced on the second and the third chromosome. (3) The progeny of cross 1 was then crossed to the progeny of cross 2a producing siblings with both the mutation balanced over CyO and hs-drongo balanced over TM6B. When males and females of stock was crossed all of the resulting progeny would contain a balancer except for flies containing both hs-drongo and mutation in a homozygous state.

B: (1) Males from Df(2L)ast4 were crossed to the balanced hs-drongo stock. (2) The progeny of cross 1 was then crossed to each other to produce the progeny some of which contained the ast4 deficiency and hs-drongo in the same fly, the progeny of which all contain a balancer except those which carry hs-drongo in the homozygous state and the deficiency over the mutation.

C: The crossing scheme in A was repeated for the other allele chosen from each group. Males from one mutant stock were then crossed to females of the other, to produce flies containing hs-drongo in the homozygous state and both mutations in a transheterozygous state.
<table>
<thead>
<tr>
<th>Group number</th>
<th>Allele</th>
<th>Cross</th>
<th>No heat shock</th>
<th>Heat shock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 min. 1 hour 3 x 30 min. 30 min. 1 hour</td>
<td>Embryo</td>
<td>Larval</td>
</tr>
<tr>
<td>One</td>
<td>4DA-122</td>
<td>4DA-122/4DA-122</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4DA-122/ast4</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>4DA-122/3BK-5333</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>3BK-5333</td>
<td>3BK-5333/3BK-5333</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5333/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5333/4DA-122</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666</td>
<td>3BL-6666/3BL-6666</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BL-6666/ast4</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>3BL-6666/3BK-5823</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>3BL-5823</td>
<td>3BL-5823/3BL-5823</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BL-5823/ast4</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>3BL-5823/4DA-6666</td>
<td>X</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524</td>
<td>4DG-1524/4DG-1524</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4DG-1524/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4DG-1524/3AL-1872</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3AL-1872</td>
<td>3AL-1872/3AL-1872</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3AL-1872/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3AL-1872/4DG-1524</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216</td>
<td>3AY-3216/3AY-3216</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3AY-3216/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3AY-3216/4EP-6322</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EP-6322/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EP-6322/3AY-3216</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588</td>
<td>3BK-5588/3BK-5588</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5588/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5588/3BK-5476</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5476</td>
<td>3BK-5476/3BK-5476</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5476/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3BK-5476/3BK-5588</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391</td>
<td>4EF-4391/4EF-4391</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EF-4391/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EF-4391/4EC-4540</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EC-4540</td>
<td>4EC-4540/4EC-4540</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EC-4540/ast4</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4EC-4540/4EF-4391</td>
<td>X</td>
<td>nt</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5.4
Rescue of potential drongo alleles with hs-drongo.

Flies containing the mutant allele and hs-drongo insert were produced as in figure 9 and the progeny from these crosses were scored. A lethal phenotype (i.e. no rescue) was recorded as a red cross (\square), Group two alleles were homozygous viable and so could not be tested for rescue in the homozygous state (N/A). Progeny were scored primarily without heat shock and then heat shock regimes were applied. Progeny which had previously presented a lethal phenotype at embryonic stages (table 5.3) were heat shocked at this stage (groups 2, 4, 3 and 6) and those which presented a lethal phenotype at larval stage given a heat shock at this stage (groups 1 and 5). Rescue was not possible with the crossing scheme shown in figure 5.6 or when the mutants were subject to heat shock.

It was found that neither the basal level or overexpression of the drongo transcript in these flies at the heat shock time points chosen was enough to rescue mutants from any of the six groups.

5.5 Discussion

A mutagenesis screen was performed using the alkylating agent EMS, at 21D on the second chromosome. This is the region where drongo has been previously mapped (Harris, 1995). Mutant chromosomes were tested for non-complementation over the Df(2L)ast4 deficiency, which covered the region of interest. Over 7,000 chromosomes were screened and 55 mutants were obtained. 47 of these mutants were in the region of interest (they did not complement Df(2L)ast4 but they complemented Df(2L)ast6). It was then determined if mutants were homozygous lethal or homozygous viable. Mutants which were viable as
homozygotes but lethal when heterozygous with the deficiency may be hypomorphic alleles, or haplo-insufficient lethals. Previous studies suggest that this occurs relatively frequently in mutagenesis screens (reviewed in Ashburner, 1989).

These mutants were then placed into six lethal complementation groups by allelic analysis. Analysis of each of the complementation groups was performed by complementation crosses within each group and also against a number of P-element deletions/insertions in order to determine if any of the groups may contain drongo alleles. These data were used in conjunction with molecular information about the region to assign complementation groups to identified transcripts. For this study I was particularly interested in isolating a mutation at the drongo locus. From these crosses it appeared a number of point mutations and possibly a number of deletions had been isolated.

It is thought that base pair substitutions and chromosomal aberrations (deletions) may be a consequence of excision-repair mechanism in the DNA following depurination of the DNA after EMS treatment. Previous studies show that the relative proportions of aberrations to point mutations after EMS mutagenesis depends upon the extent to which the breeding protocol allows sperm storage in the female (Ashburner, 1989). For unstored sperm the number of chromosomal aberrations in one study was shown to 3.7% of the total number of mutants. In this study there was estimated to be 6.3% deletions to point mutations. I suggest that mutations that appeared to be in two groups probably contain two point mutations rather than a small deletion.

The complementation data appeared a little confusing as some of the mutations did not complement the excisions expected. Thus excisions may be more complicated than the simple deletions they seem to be. These deletions may also contain other unknown local rearrangements/deletions in the region.

In light of previous studies (Roberts et al., 1985), this study has provided evidence that although we may have not saturated the region with mutagenesis, all the mutants we have recovered fit into at least one of 6 groups, each group having more than one member. Data from Southern blotting experiments around the region, suggests that there may be at least 16 transcripts (pers. comm. Edwin Chan). It is not known whether it is possible to obtain lethals of any of these
transcripts. It is also not known whether all the loci are equally mutable. The data from Roberts et al. (1985) suggest that there are only four complementation groups in the region but this only tested 4,000 chromosomes in a region of 120kb uncovered by Df(2L)ast4 or Df(2L)S2. We also noted that some of the complementation groups in the study of Roberts et al. (1995) contain only one allele.

This study obtained a mutant in the region (lethal over Df(2L)ast4) approximately 1 in 130 chromosomes screened, this was a lower rate to the one obtained by Roberts et al. (1985) (1 in 75 chromosomes screened) this was probably because I screened over one deficiency whereas Roberts et al. (1985) screened over two, and thus had a higher chance of finding a mutant of interest.

The EMS mutagenesis method used in general provides an effective, low toxicity approach for recovering mutants. The method of administering EMS used in this study is not without its drawbacks, however. It is difficult to administer an accurate dose of the mutagen by feeding EMS to the male flies. The uptake of the mutagen may occur by contact or vapour from the source. Non-palatability is also a source of artifactual results, that is, less mutants are recovered than expected (Ashburner, 1989). The data suggested, however, that the mutants appeared to be evenly spread across the total number of flies screened and the complementation groups all contained more than one mutant in the region of interest suggesting that we had isolated mutant alleles of at least some of the genes in the 21D region.

As the complementation results on the whole appeared very tentative, and the analysis could not unequivocally define drongo mutant alleles, two representatives from each group were chosen to perform rescue with hs-drongo. The earliest lethal phase of the two members was determined to offer an idea of when the mutations were lethal and so a starting point for rescue experiments.

Attempted rescue with hs-drongo by a variety of heat shock regimes of all of the groups was unsuccessful and no drongo mutant was identified. This does not necessarily indicate that no drongo mutant alleles have been isolated. It may indicate that the heat shock regimes were incorrect or that overexpression of the cDNA was not enough to rescue a drongo mutation. Construction of the genomic fragment including regions of the promoter that may not be in the cDNA may be
necessary for rescue. There was not time however to produce this construct, make transgenic flies and perform the rescue but it would be one of an interesting number of future experiments.

The timings of the heat shocks may also not have been correct to rescue the mutation. The earliest lethal phase of each complementation group measured in this study only reflects the time at which the cumulative abnormalities resulting from the mutation become too severe for development to proceed any further and may not be the ideal guide to the function of the wild type allele during development (Ashburner, 1989). Previous studies have also shown that the penetrance of a lethal mutation is influenced by genetic and environmental variation and should not be taken to be an absolute property of a particular mutant (Ashburner, 1989). Another reason for the absence of rescue could be the level of expression produced by the hs-drongo transcript, although this may be enough to produce an overexpression effect (section 3.2.2), it may not be enough to rescue a mutation in the gene.

Finally upon observation from northern analysis of the gene (Harris, 1995) there appears to be two transcripts produced from drongo, which may occur via alternate splicing or alternate transcriptional start sites. There may be the possibility that the hs-drongo construct may produce only one of these transcripts, and perhaps one transcript is less active than the other, preventing rescue of a mutation in this way. Again, this may be overcome by overexpression of the genomic fragment of drongo.

In summary, a drongo mutant was not identified using this mutagenesis screen. Further analysis may be required to reach this goal by other means. In the absence of a mutant, another method of studying the function of a gene may be to observe the properties of the protein encoded by the gene of interest.
Chapter 6:

Expression of the Drongo protein.
6.1 Introduction.

Analysis of the predicted amino acid sequence encoded by the *drongo* gene (section 1.2.2), suggested that Drongo contains a putative zinc finger motif at its N-terminus and numerous repeat sequences at the C-terminal end of the protein. *In vitro* translation of the gene also suggested that there may be two potential start sites at + 605 and + 958 (Harris, 1995), it was not known which of these are utilised.

Overexpression of the gene had been shown to cause an effect during oogenesis and embryogenesis (chapter 3). In order to analyse the function of *drongo* further, it was beneficial to purify the full length protein encoded by the gene and to use the protein for generation of an antibody. An antibody to the protein could be used to observe the expression and localisation of the protein *in vitro* and *in vivo*.

A number of different bacterial purification systems were utilised in this chapter, although it was not possible to isolate a sufficient amount of full length or partial length protein. I will describe and discuss the approaches used and consider alternative ways of generating an antibody to the protein.

6.2 Choosing an expression system: affinity purification.

There are a number of different expression systems utilised in *E.coli* to express and purify eukaryotic proteins. The requirements of the system to express and purify Drongo were as follows: firstly, to be able to produce a minimum amount of protein to enable subsequent purification of the protein. Secondly, the purification would be aided by production of soluble protein. Finally, a single step purification of the protein under non-denaturing conditions would be an advantage. Affinity purification systems have been used to purify numerous
proteins in *E.coli* and have been shown to fit all of these requirements for other proteins.

6.3 RESULTS

6.3.1 Production of Glutathione-S-Transferase (GST)-fusion proteins.

The glutathione-S-transferase (GST)-fusion system (Smith and Johnson, 1988) was the primary system chosen as it has previously been shown to fulfil the above requirements for a number of different eukaryotic proteins (Toye *et al.*, 1990, Kaelin *et al.*, 1991).

An inducible pGEX vector (Promega) (Appendix 10.1) was used containing a multiple cloning site (MCS) which enabled production of a fusion protein when transformed into *E.coli*. The expression of this protein was promoted by induction of an otherwise repressed *tac* promoter with IPTG. The fusion protein was then bound to a matrix of glutathione-sepharose beads, washed with buffer and eluted with reduced glutathione. The pure protein of interest can then be separated from GST by cleavage with endoproteases factor X or thrombin (Smith and Johnson, 1988).

6.3.1.1 Cloning of *drongo* into pGEX-5X-1.

The *drongo* cDNA was cloned into the pGEX-5X-1 vector Smith and Johnson, 1988) via *Eco*RI sites (section 2.9.1). DH5α cells were then transformed with this construct (section 2.2.6). Prior to any expression analysis, the plasmid DNA from these cells was prepared (section 2.2.3) and restriction digests were performed (section 2.2.4) in order to ensure authenticity of the plasmid (appendix 10.1).

6.3.1.2 Expression of GST-Drongo fusion proteins.
DH5α cells transformed with pGEX-5X-1/drongo were cultured to an A$_{600}$ of 0.6, then induced with 1mM IPTG (section 2.9.1). An induction timecourse was carried out by taking samples over 0.5-4 hours after induction. Samples were subsequently analysed by SDS-PAGE (Figure 6.1A; section 2.9.3). The cDNA fragment used for expression contained both predicted translational start sites. Translation was predicted to begin at the first ATG at position 604 in the cDNA, producing a protein of approximately 84kDa.

Induction of the tac promoter with IPTG in cells transformed with pGEX-5X-1-drongo resulted in the synthesis of a 110kDa protein (figure 6.1A), 84kDa Drongo protein plus 25kDa GST. The size of Drongo in the fusion protein was in agreement with the predicted size from the cDNA. By estimation of protein amount from the SDS PAGE gels, 500μg -1.5mg of Drongo-fusion protein were produced from 500mls of culture. As a control, DH5α cells were also transformed with pGEX-5X-1 vector alone. These cells were cultured and induced in an identical way to pGEX-5X-1-drongo (figure 6.1A). The Drongo fusion protein was, however, insoluble and most of the protein was present in the pellet of cells lysed by sonication (section 2.9.2) and subjected to centrifugation (figure 6.1A). In an attempt to determine if any of the GST-Drongo fusion protein was soluble and could be purified, the supernatant was used to attempt purification, by incubation with glutathione-sepharose beads (section 2.9.2). Any unbound material was collected, the beads were washed and then any bound material was eluted with reduced glutathione (figure 6.1A). The absence of any protein in the eluate, however, suggested that the purification was unsuccessful or that there was not enough GST-fusion protein in the soluble fraction. (figure 6.1A).After an identical cell lysis and purification with pGEX-5X-1 transformed and induced cells, the GST protein was observed in the eluate suggesting that there were no problems with the purification system (figure 6.1A). It has previously been documented that many eukaryotic proteins, especially full length proteins, are produced in E.coli as insoluble aggregates (inclusion bodies). The formation of inclusion bodies may be caused by the production of “inappropriate” protein-protein interactions due to the lack of proper protein folding. Previous studies co-expressing fusion proteins with the
Figure 6.1

SDS-PAGE analysis of the full length GST-Drongo fusion protein.

A: Expression and affinity purification of GST-Drongo fusion protein.

DH5α cells transformed with pGEX-5X-1 or pGEX-5X-1-drongo (section 2.2.6) were cultured to A600 of 0.5, induced with 1mM IPTG and grown for a further 4 hours taking timed samples at 0.5h, 2h and 4h (section 2.9.1). Total lysate from cells induced with pGEX-5X-1-drongo was prepared and centrifuged to separate the soluble (s/n) and insoluble (pt) fractions. The soluble fraction was then incubated with glutathione beads and any unbound material removed (un). The beads were then washed and bound material was eluted from the beads with reduced glutathione (et).

Sonication, centrifugation and purification was repeated with cells transformed with pGEX-5X-1 alone and the eluant also analysed (e).

Samples were analysed on 10% SDS PAGE (section 2.9.3) and stained with Coomassie blue.

Cells transformed with pGEX-5X-1-drongo expressed a 110kDa band (84kDa Drongo protein and 26kDa GST: arrow a). After cell lysis the 110kDa protein was present mostly in the insoluble fraction (pt). When purification was attempted most of the protein was observed in the unbound fraction (un) and none could be purified in the eluate (e).

As a test of the purification method, pGEX-5X-1 alone was induced. A 26kDa band was expressed (arrow b) which could be purified on glutathione sepharose (e).

M= molecular weight markers.

B: Co-expression of GST-Drongo/ GroESL and GST-Drongo/Thioredoxin.

DH5α cells transformed with pGEX-5X-1-drongo/T-groE and cells transformed with pGEX-5X-1-drongo/pT-Trx were grown up, induced (For GST alone (arrow e, timed samples taken at 1 hour and 4 hours: T1 T4). Cells were lysed and purification was attempted as in A except GST alone was not tested. Samples were analysed as in A.

Cells transformed with pGEX-5X-1-drongo and pT-groE expressed a 110kDa GST-Drongo fusion protein (arrow a), a 60kDa GroEL (arrow b), and a 14kDa GroES protein band (arrow c). Co-expression with GroESL resulted in an increase in the GST-Drongo fusion band in the soluble fraction (s/n), although none of the fusion protein could be purified (e) and the majority was observed in the unbound (un) fraction. Co-expression of the Drongo-GST fusion protein was with Trx (15kDa band: arrow d) also resulted in an increase in the Drongo GST fusion protein in the soluble fraction (s/n), but again none was observed in the eluate (e) after incubation with glutathione-sepharose beads.

M= molecular weight markers.
E. coli chaperone, GroESL can increase the solubility significantly (Yasukawa et al., 1995).

A second parameter that may affect the solubility of eukaryotic proteins could be the difference in redox potential between E. coli cells and eukaryotic cells. It has been suggested that E. coli cells have a relatively oxidative environment compared to mammalian cells. This may induce the formation of abnormal intramolecular disulfide bonds that aggregate the protein (Yasukawa et al., 1995). Co-expression with the reducing agent thioredoxin has been shown to increase solubility in some cases (Yasukawa et al., 1995). Increasing the solubility of the GST-Drongo fusion protein may enable successful purification via glutathione-sepharose.

In light of these previous studies, DH5α cells were co-transformed with pGEX-5X-1-drongo and either pTgroE or pT-Trx plasmids (appendix 10.1: Yasukawa et al., 1995). Induction of these plasmids results in expression of GroESL or Trx from the strong T7 promoter. Inductions were carried out as described, cells were lysed and separated into soluble supernatant and insoluble pellet fractions (figure 6.1B).

Co-expression of GST-Drongo with GroESL and Thioredoxin increased the solubility of Drongo substantially. Co-expression with thioredoxin increased the amount of protein in the soluble fraction by at approximately 60% (figure 6.1B) and co-expression with GroESL increased the solubility by approximately 50% (figure 6.1B).

The soluble protein from these cells were used for purification on glutathione-sepharose beads. The eluant from the beads in both experiments, however, contained no detectable protein (figure 6.1B). Purification of the GST-Drongo fusion protein was therefore unsuccessful when co-expressed with either Trx or GroESL.

Inability of the GST-fusion protein to interact with the glutathione-sepharose beads may be due to a number of reasons. As the GST fusion protein folds, Drongo may have masked the GST site(s) available for binding to glutathione-sepharose thus producing steric hindrance. This is likely due to the size of the Drongo protein (84kDa).
In an attempt to reduce the steric hindrance of the fusion protein and enable binding to the glutathione-sepharose beads for purification, a deletion was produced in the Drongo protein by digestion of the plasmid pGEX-5X-1-drongo with SstI (section 2.9.1), leaving 1Kb cDNA (coding for mostly N-terminal amino acids) fragment in pGEX-5X-1 which was subsequently ligated. DH5α cells were again transformed with this deleted construct.

Induction of the deleted protein produced a 80kDa band on an SDS PAGE gel (figure 6.2A) and at least 50% of the protein was soluble (figure 6.2B). However, when purification was attempted with this deleted GST-fusion protein, two bands were observed in the eluant running at approximately 27kDa and 30kDa (figure 6.2B), as if two degradation products had been purified. Isolation of these proteins on glutathione-sepharose beads would have the required presence of the GST protein, which is 25kDa. The purified products therefore did not contain an adequate amount of the Drongo protein fused to GST to warrant any further investigation. In order to overcome this degradation problem, pGEX-5X-I-Drongo and pGEX-5X-I-DrongoΔS were used to transform a protease deficient strain of E.coli, BL21(DE3). Expression was improved in these cell lines (figure 6.3A), and degradation was not observed. GST-DrongoΔS was, however, unable to bind to the glutathione-sepharose beads and purification was unsuccessful (figure 6.3A).

6.3.2 Production of Maltose binding protein (MBP)-fusion proteins.

The GST-fusion system produced a good level of expression of a Drongo-fusion and after modification of conditions, produced an adequate amount of soluble fusion protein, however purification of the GST-fusion product or a deleted derivative (GST-DrongoΔS) was not possible.

The second expression system utilised was the MBP-fusion protein expression approach (Maina et al., 1988). This was similar to the GST-fusion system in that it utilised affinity purification of a fusion protein and a linked support, but the two differed in two main ways. The MBP-fusion protein is
Figure 6.2

SDS-PAGE analysis of the GST-DrongoΔS fusion protein.

A: Expression of GST-DrongoΔS fusion protein.

DH5α cells transformed with pGEX-5X-1-drongoΔS and were grown up and induced as in figure 6.1A. Samples were analysed as in figure 6.1A.

GST-DrongoΔS, the deleted form of Drongo was expressed as a 75kDa band on SDS-PAGE gel (arrow a). In order to test induction, GST-Drongo was also induced (arrow b). M=molecular weight markers.

B: Purification of GST-DrongoΔS.

Total lysates (T₁ and T₄) from DH5α cells expressing pGEX-5X-1-drongoΔS were centrifuged and separated into soluble (s/n) and insoluble (pt) fractions. The soluble fraction was incubated with glutathione-sepharose and bound material was eluted (e). Samples were analysed as in figure 6.1A.

The majority of the GST-DrongoΔS protein (arrow a) was observed in the soluble fraction (s/n) although some was seen in the insoluble fraction (pt). Upon purification two bands of approximately 27kDa and 29kDa (arrow b) were observed in the eluate (e). However if both contained the 26kDa GST protein, the size of the additional Drongo protein did not suffice any further analysis.

C: Expression of GST-DrongoΔS in BL21 cells.

BL21 cells transformed with pGEX-5X-1 and pGEX-5X-1-drongo were grown up, induced (0.5h, 1h, 4h), sonicated and separated into soluble (s/n) and insoluble pellet (pt) fractions as in figure 6.1A. The soluble fraction was incubated with glutathione-sepharose, unbound proteins (un) were washed through, and any proteins bound were eluted with reduced glutathione (e). Samples were analysed as in figure 6.1A.

GST-DrongoΔS was expressed as a 75kDa band in BL21 cells. The protein was mostly soluble (s/n) but could not be purified after incubation with glutathione sepharose (e) and was observed in the unbound (un) fraction.

M= molecular weight markers; h = hours.
Induction time.

kDa

<table>
<thead>
<tr>
<th></th>
<th>0.5h</th>
<th>1h</th>
<th>4h</th>
<th>0.5h</th>
<th>1h</th>
<th>4h</th>
<th>s/n</th>
<th>pt</th>
<th>un</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

GST-Drongo

GST-DrongoDS
exported to the periplasm of the cell in which it is expressed. This aids release of the fusion protein upon cell lysis and it is therefore more likely to be soluble. The MBP also utilises a maltose resin through which it binds the fusion protein. One can then elute the purified fusion protein with free amylose (and cleave in the same way as GST-fusion proteins). The MBP-fusion system has been utilised for purification of a number of proteins, particularly large fusion proteins (Maina et al., 1988; Tear et al., 1996).

6.3.2.1 Cloning of drongo into pMAL-p2.

The drongo cDNA was cloned into the pMAL-p2 vector via EcoRI sites (section 2.9.1). The ligation junctions were again sequenced to ensure that the protein was in the correct translational frame. As previous experiments (section 5.4.2) suggested that the level of expression of Drongo fusion proteins may be improved by expressing them in BL21(DE3) rather than in DH5α, BL21(DE3) cells were transformed with the ligated plasmid. Plasmids from transformed cells were checked as previously (section 5.4.1). As before an induction control was set up by transforming BL21 cells with pMAL-p2 alone.

Induction of a culture of BL21(DE3) cells transformed with pMAL-p2-drongo grown to A₆₀₀ of 0.6 with IPTG resulted in the synthesis of a 124kDa fusion protein (84 kDa Drongo plus 40 kDa MBP) which was released in a soluble form after cell lysis by sonication (data not shown). However when purification an amylose resin was attempted (section 2.9.2) no protein were observed in the eluant (data not shown). Again it appeared that steric hindrance may be the rationale for unsuccessful purification.

6.3.3 Production of Drongo-6 x His tagged fusion protein.

Both GST-fusion and MBP-fusion systems did not facilitate successful purification of Drongo. Therefore a third affinity purification system was employed. The 6 x His tag system again involved induction of Drongo fusion
protein via IPTG and single step purification via an affinity resin, in this case, a Ni-NTA nickel resin (Chen et al., 1994)

6.3.3.1 Cloning of drongo into pQE-32.

The drongo cDNA was cloned into pQE-32 (appendix 10.1) via SmaI and XmaI sites (section 2.9.1). XA90 cells were transformed with the ligated plasmid (section 2.2.6). XA90 cells contain the pREP4 plasmid which acts to repress the T5 promoter until the cells are induced with IPTG. Transformed cells were again induced over a time course with IPTG and samples of the induction were analysed on SDS-PAGE (data not shown). However induction of the 6 x His tag-Drongo fusion protein (predicted size approximately 84kDa) was not observed and induction was unsuccessful (data not shown). Induction procedures were revised so that the fusion protein was induced at different temperatures, 37°C and 30°C. However induction at these different temperatures was still unsuccessful.

6.3.4 Other methods of purification.

6.3.4.1 Purification of GST Drongo fusion protein on an SDS-PAGE gel filtration column.

Following unsuccessful attempts to purify Drongo by affinity purification methods, the supernatant from induced GST-Drongo transformed cells after lysis was further utilised. The Mini-Prep Cell gel purification system was used. The supernatant was run through an 8% SDS-PAGE column gel (section 2.9.3) and fractions were collected at 0.2ml/minute. Although this technique resulted in excellent separation of the Drongo-fusion protein, the yield of protein from the column was poor (data not shown) and could not be used for further analysis of the protein or immunisations.
6.3.4.2 Purification of GST-Drongo on an anti-GST/protein A column.

As mentioned previously one theory for the unsuccessful binding and elution of the fusion protein to the glutathione-sepharose beads, was that of steric hindrance. In order to resolve this problem a different strategy was tried. A polyclonal anti-GST antibody would recognise more than one epitope on the GST protein, therefore if only a percentage of the active site(s) were masked by Drongo in the fusion protein; immunoaffinity purification with the antibody may be possible. The GST antibody was linked to a solid support for ease of purification, in this case protein A beads. Protein A has been previously been shown to bind IgG type antibody (Harlow and Lane, 1988). The supernatant was then passed through the beads and eluted using a low pH buffer (section 2.9.2). Binding of the fusion protein to the anti-GST/Protein A beads was not observed however (data not shown), showing that more sites may be masked by Drongo than originally conceived.

6.4 Discussion.

With a view to studying the interactions of the protein and to observe the expression and localisation of the protein by subsequently producing an antibody, the Drongo protein was expressed in E.coli via a fusion protein and purification was attempted.

Drongo was expressed successfully as a GST-fusion protein and, after modifications of the expression and cell lysis, the protein was 50% soluble following cell lysis but could not be purified by binding and elution from glutathione-sepharose beads. This technique has been successfully used for other proteins, however most of these tend to be smaller proteins, for example, GST-fusions to MOMP (Major outer membrane protein) of Chlamydia trachomatis, 32kDa (Toye et al., 1990), and a series of 25-50kDa deleted forms of the retinoblastoma protein (pRB) produced as a fusion protein with GST (Kaelin et al., 1991). A different pGEX vector (pGEX-2T) was used on both of these
studies but the expression cell lysis and purification method were similar to this study.

A soluble MBP fusion protein was also expressed but could not be affinity purified. From this data it appeared that the Drongo protein was masking the binding sites of GST to the glutathione-sepharose beads.

Previous studies have shown that if inclusion bodies are formed by expressed fusion proteins, high concentrations of chaotrophic agents in the presence of sulphhydril reducing agents can be used to unfold the chains, which can then be refolded (Schein, 1990). The drawback to this is that many partially folded proteins are excellent protease substrates. Thus a technique such as the 6 x his-tag method which can be performed in the presence of a detergent may have been alternative method of purifying the Drongo protein. The 6x His tag method of purification (Chen et al., 1994) also utilised a smaller linker in the fusion protein to overcome the problem of steric interference, however induction of a 6 x His-tagged fusion protein was not observed for this protein and so purification could not be attempted.

Although affinity purification via fusion proteins was unsuccessful in these three cases, the expression of the protein confirmed the predicted size of the protein calculated from translation of the cDNA from the first predicted start site (AUU) at +604 in the cDNA of 84kDa. As affinity purification experiments yielded substantial amounts of soluble protein a number of other experiments were attempted. Purification was attempted with an anti-GST/protein A column, in order to resolve the problem of steric hindrance, binding and elution were again unsuccessful.

There are many alternatives ways of producing a pure protein sample although in light of the unsuccessful attempts in this study using an N-terminal fusion protein, a fusion to the C-terminus may produce better results. The Drongo protein can be expressed in E.coli successfully but it proved difficult to purify the protein. This chapter has provided some information on the protein size in a prokaryotic expression system and it’s relative stability and solubility, but has not proved useful in providing a large amount of pure sample for generation of antibodies.
Production of an anti-Drongo antibody for observing the cellular localisation and the interactions of the Drongo protein could be attempted by synthesis of a peptide and subsequent immunisations.

Another method of analysing the in vivo/in vitro location of a protein is to produce a tagged version of the protein, for example using a GFP (green fluorescent protein) fusion. This non-invasive technique has been used to observe proteins and label cells by genetically marking with a reporter gene encoding GFP, which emits green light at a certain wavelength (e.g Chalfie et al., 1994). GFP has been expressed in various organisms including E.coli, Drosophila, plant and mammalian cells (Chalfie et al., 1994; Brand, 1995; Yeh et al., 1995; Haseloff and Amos, 1995; Pines, 1995). This technique has also undergone many modifications in order to improve sensitivity in detection by, for example, producing nuclear directed GFP to define the signal (Shiga et al., 1996).
Chapter 7:
Production of peptide antibodies to the Drongo protein.
Chapter 7: RESULTS AND DISCUSSION: Production of peptide antibodies against the Drongo protein.

7.1 Introduction

Generation of an antibody to a specific protein and immunological analysis *in vitro* and *in vivo* can offer information about the role of a protein.

In order to further analyse the role of *drongo* during development, I wished to determine whether the Drongo protein was regulated developmentally in the fly. Furthermore an analysis of the expression domains of the protein could be carried out to determine whether or not they were similar to the mRNA expression domains determined by wholemount *in situ* hybridisation (Harris, 1995). An antibody to Drongo would also enable analysis of the subcellular localisation of the protein and offer indications of its role in the cell and therefore the possible types of protein Drongo may interact with.

Previous attempts made to purify the full length Drongo protein via affinity isolation with a view to raising an antibody to the whole of the Drongo protein were unsuccessful (chapter 6).

7.2 RESULTS: Production of an anti-Drongo peptide antibody.

7.2.1 Selection of a peptide sequence for Drongo antisera production.

A pure sample of the Drongo protein had not been isolated using the expression systems described in chapter 6, therefore a peptide antibody was produced. A 20 amino acid peptide from the Drongo sequence was chosen (figure 7.1). The peptide stretch located from amino acid 310 to 329 was chosen for two reasons. Firstly the peptide showed high antigenicity (figure 7.1A) on peptide plots, therefore making it more likely to raise a response in rabbits than other regions of the protein. It also displayed low hydrophobicity and high surface probability (figure 7.1B and C) and therefore was more likely to be exposed.
Peptide plots of Drongo showing location of the peptide chosen to generate antibody.

The *drongo* cDNA sequence was translated and analysed for hydropathy, surface characteristics and antigenicity in order to select a suitable peptide (Green box and sequence under plots) to generate an antibody.

A: Hydropathy values according to the Kyte-Doolittle index (Kyte *et al*, 1982) were assigned for all amino acids, where positive is hydrophilic and negative is hydrophobic, and the average is plotted at the midpoint of the window.

B: The Jameson-Wolf (Jameson and Wolf, 1988) antigenic index predicts potential antigenic determinants using composite values from hydrophilicity, surface probability and secondary structure.

C: The surface probability (Emini *et al*, 1985) predicts the probability that a particular region lies on the surface of the protein.

Numbers along the top represent amino acid numbers.

[20 amino acids]
The second reason the peptide was chosen was due to its position within the protein. The peptide was not situated in the zinc finger and did not contain any of the FG or Opa repeats. We wanted the antibody raised from this peptide to be specific to Drongo and not cross react with any other proteins which contained homology to either the zinc finger or the repeat sequences in the protein located at the C-terminal end (section 1.1: figure 1.2).

The peptide was then coupled to Keyhole Limpet haemocyanin (KLH) (section 2.10.1), a highly antigenic carrier molecule, in order to raise an immediate response upon immunisation.

7.2.2 Production of the antiserum.

A rabbit was immunised with the KLH-linked peptide (section 2.10.1) every 4 weeks. Two weeks after each injection, 2ml bleeds were taken (section 2.10.3) and the serum was tested by western blotting (section 2.11.5) and ELISA (section 2.11.1).

Four injections were given to the rabbit as the immunogenic response was enhanced after each boost. The serum was titered by ELISA (data not shown). The final bleed was tested on western blots (figure 7.2 A) containing extracts from DH5α cells expressing GST-Drongo fusion protein (section 5.3). The anti-Drongo antiserum recognised a 110 kDa band in the lanes containing GST-Drongo fusion protein but not in the lanes containing extracts from cells expressing GST alone. The antibody appeared to be specific to the Drongo protein as the pre immune serum (figure 7.2 B) and secondary antibody only (figure 7.2 C) did not recognise any non specific proteins in the extracts.

7.3 Characterisation of the antiserum.

7.3.1 Analysis of the developmental expression of Drongo.

In order to decrease background detection, the IgG antibodies from anti-Drongo antiserum were first purified on a protein A column (section 2.11.2) (data
Figure 7.2:
Western blot analysis with antiserum raised against the Drongo peptide.

A-C, Western blots with unpurified serum. D Coomassie stain.

DH5α cells transformed with pGEX-5X-1drongo or pGEX-5X-1 alone (GST) were grown to an O.D of A_{600} = 0.6, induced with IPTG and cultured for a further 4 hours (0h-4h). Samples were lysed in SDS loading buffer (section 2.10.2) and electrophoresed on 10% SDS-PAGE gels (Section 2.10.2). 20μg of total protein was loaded per lane.

Proteins were transferred onto nitrocellulose membrane (2.11.5) and the blot was probed with either:

(A) Pre immune serum. No response was seen with the pre immune serum from the rabbit.

(B) anti-drongo peptide antiserum

The anti-Drongo antiserum (the 4th bleed from the rabbit) recognises a 110kDa band on the western blot in extracts of cells expressing GST-Drongo fusion protein (0h-4h) but not in extracts from cells expressing GST only.

(C) secondary antibody alone (HRP-conjugated Goat anti-Rabbit).

No response was seen with the secondary antibody alone in either cells expressing GST or GST-Drongo.

(D) Coomassie Stain of the samples from (A).

Protein amounts were calibrated on a Coomassie Blue stained gel with the samples from 1A. Protein concentrations were also determined using the BioRad protein assay.

This figure shows that the peptide antiserum appeared specific to Drongo and response was not due to non-specific binding of the secondary antibody or from antibodies already present in the rabbit before immunisation to any bacterial proteins. The 110 kDa band seen was also the size expected of the GST-Drongo fusion protein.
not shown). This IgG fraction will be referred to as the anti-Drongo peptide antibody.

The anti-Drongo peptide antibody was used to observe the developmental profile of the protein by western blotting (section 2.11.5). The western blot shown in figure 7.3 contained homogenised WCS embryos, larvae, male and female adults (section 2.11.4) and was probed using the anti-Drongo peptide antibody.

In order to determine the specificity of the antiseraum, proteins extracted from embryos homozygous for the deficiency Df(2L)ast4 were also transferred onto the western blot and probed with the anti-Drongo antibody. These embryos have a deficiency on the second chromosome (section 2.8) that corresponds to a deletion in the region where drongo has been previously mapped. Crosses carried out to produce homozygous Df(2L)ast4 embryos are shown in figure 7.3B. These embryos should not produce any Drongo protein. The antiserum does not recognise any proteins in this lane (figure 7.3A).

As an additional control, bacterial extracts from a timed induction of GST-Drongo fusion protein were also on the western blot (figure 7.3), the antibody recognises a protein band of approximately 110kDa, a similar molecular weight to the induced GST-Drongo fusion protein seen previously (section 5.3.2).

Analysis of the western blot shows the presence of an 86 kDa protein band at all stages of development and an additional 60kDa band is seen in the embryo fraction (figure 7.3A). Other bands are observed at 73kDa (faint band) and 53kDa at all stages (figure 7.3A).

Two of the bands observed (86kDa and 60kDa) have similar molecular weights to those seen in vitro translation experiments (84kDa and 61kDa) (Harris, 1995). This western blot also indicates that the protein is developmentally expressed and the lower molecular weight protein is specifically observed in embryos at a higher abundance.

The presence of a number of additional bands in each fraction may indicate that degradation of the proteins during preparation had occurred. The extra bands were also not observed in the extracts from Df(2L)ast4 embryos. This indicated that the additional bands are more likely to be Drongo products/degradation products rather than non-specific bands.
Western analysis with purified antibody throughout development.

(A) Western blot of different developmental stages using IgG purified anti-Drongo peptide antibody.

Tissues from a WCS stock at different stages of development (embryos: lane 1; larvae: lane 2; male adults: lane 3; female adults: lane 4) were homogenised (section 2.11.4), filtered and separated by SDS PAGE (section 2.9.3). 15mg of protein (determined using the Bio Rad protein assay) was loaded into each lane. A western blot was performed with (as in figure 2) the anti-Drongo peptide antibody.

As a positive control, an induction timecourse (0h: lane 6; 1h: lane 7; 3h: lane 8; 4h: lane 9) was run of DH5α cells expressing the GST-Drongo fusion protein (see section 5.x). As a negative control, embryos homozygous for Df(2L)ast4 (see cross adjacent to western blot) were also homogenised and loaded on the gel. These embryos contain a deletion in the 21 D region were drongo has previously been mapped and so should not produce any Drongo protein (ast 4: Lane 5).

The antiserum recognised proteins of approximately 86kDa at all developmental stages (arrow A) and a 60kDa band (arrow B) was also seen in embryos. Less intense bands at approximately 54kDa and 73kDa were also in all stages (em, la, ma, and fe). These may be degradation products. No bands were detectable in the lane containing Df(2L)ast4 embryos (ast4). The antibody also recognised a 110kDa band (arrow C) in the lanes containing the induced GST-Drongo fusion protein, which is similar in size to that seen during expression experiments (section 6.3.1.2).

Key: em: embryos; la: larvae; ma: male adults; fe: female adults; h: hours post induction with IPTG; ast4: embryos homozygous for the deficiency Df(2L)ast4.

B) Crossing scheme to generate homozygous Df(2L)ast4 (ast4) embryos.

Virgin females from Df(2L)ast4 balanced over CyO were crossed with WCS males. Df(2L)ast4/+ flies were collected (Straight wings, rough eyes) and siblings were crossed. Homozygous Df(2L)ast4 embryos were collected from this cross. embryos were checked to ensure that they had fertilised.
A

Stage
em la ma fe ast4 0h 1h 2h 4h

Timecourse

kDa
175
83
62
47.5
32.5
25

B

ast4
CyO
+ →

ast
+ →

ast

±

+
7.3.2 Analysis of the expression of the Drongo protein in vivo.

In order to further analyse the role of the drongo gene, we needed to know where the protein was expressed and its localisation in the cell. This has the potential to offer a clearer indication of the role of the gene than in situ hybridisation experiments.

In order to observe the expression pattern of the native protein, antibody staining was performed to embryos and ovaries, as drongo mRNA had previously been observed during embryogenesis and oogenesis (Harris, 1995 and this work: section 3.2). No staining was seen however, possibly due to an inability of the antibody to recognise the native protein in these tissues. Various fixing and permeabilisation techniques were attempted but we were still unable to observe staining with the antibody (data not shown).

7.3.3 Analysis of the subcellular localisation of Drongo.

7.3.3.1 Examination of subcellular fractions by western analysis.

Due to difficulties observing expression and cellular localisation of the Drongo protein in Drosophila tissues, the anti-Drongo antibody was used on a western blot containing subcellular fractions from homogenised embryos (figure 7.4). The homogenised embryos were filtered and a sample taken as whole cells. The remaining filtrate was then centrifuged and separated into a soluble and an insoluble crude nuclei fraction and a soluble cytoplasmic fraction. A fraction enriched in cellular membranes was also prepared from the cytoplasmic fraction (figure 7.4A, B and C; see section 2.11.3 for subcellular fractionation technique).

The fraction enriched in nuclei was washed and treated with 1μg/ml DNAse, 1μg/ml RNAse and subjected to a high salt wash (1M NaCl). This 'nuclear matrix' fraction represented the proteinaceous structure left after the removal of nucleic acids and any proteins bound (e.g. histones) and has been described by other researchers (Wan et al., 1999) (figure 7.4A, B and C).
Figure 7.4:
Western blotting to determine the Subcellular localisation of Drongo.

(A,B) Western blots of subcellular fractions. (C) Coomassie stain.

Embryos were homogenised, filtered and fractionated as described in section 2.11.3.
Fractions were loaded onto a 10% SDS-PAGE gel (5 μg of total protein per lane), electrophoresed and transferred onto nitrocellulose membrane.

Two identical blots were produced and probed with:

(A) Affinity purified anti-Drosophila Lamin.
This antibody recognised protein of molecular weight of 75kDa in fractions enriched in whole cells, nuclei and nuclear matrix.
Protein markers on each side indicate that all bands were 75 kDa (markers not shown).

(B) IgG purified anti-Drongo peptide antibody.
The anti-Drongo protein recognised proteins of molecular weights 60kDa and 86kDa in the fractions enriched in whole cells, nuclei and nuclear matrix.

(C) Protein amounts per track were calibrated on a Coomassie Blue stained gel with the same samples. All lanes are from the same gel.

Prior to analysis of Drongo localisation in the cell, it was necessary to determine the contents of each of the fractions, therefore three identical SDS-PAGE gels were run; two were used to perform western blots and one was stained with Coomassie blue in order to quantify the protein loading.

The first western blot was probed using an anti-*Drosophila* lamin antibody (figure 7.4A) (a kind gift from Paul Fisher: Lin and Fisher, 1990). This antibody has been shown to recognise lamin Lo, an 75kDa intermediate filament protein located underneath the inner nuclear membrane. As predicted, the antibody recognised a protein band of approximately 75kDa in the whole cell fraction, the fraction enriched in nuclei and the fraction enriched in nuclear matrix (figure 7.4A). Lamin has previously been shown to be present after a high salt wash of the nuclei (Lin and Fisher, 1990).

Although this does not show that the fractions are pure it does suggest that the majority of the nuclei are contained in the ‘nuclear’ fraction (figure 7.4A, B and C) and are absent from the cytoplasmic fraction. It also shows that the nuclear matrices are still intact after the salt wash and still contain components of the inner and outer nuclear membranes. Although a number of antibodies to *Drosophila* cytoplasmic/membrane proteins were tested, none of them gave a good enough response on the western blot in order to validate the identity/contents of the other fractions.

The second western blot was then probed using the anti-Drongo peptide antibody. Two bands of 86kDa and 60kDa were observed in the whole cell fraction in the fraction enriched in nuclei and also in the fraction enriched with nuclear matrix (figure 7.4B). The antibody did not recognise any proteins in the cytoplasmic or membrane fractions.

From the western data, it appeared that Drongo was probably localised to the fraction enriched in nuclei and was not cytoplasmically localised.

7.3.3.2 Analysis of the subcellular localisation on tissue culture cells.

To verify the data observed on the western blot of subcellular fractions derived from embryos (section 7.3.3.1), the anti-Drongo antibody was then used on
S2 cells (section 2.7.9, also used in chapter 4), a *Drosophila melanogaster* embryonic primary cell line. The hypothesis from the western blot data was that Drongo may be observed in or around the nucleus, perhaps on the nuclear envelope. This may support the idea that Drongo is an hRIP/Rab homologue which has also been shown to be localised around the nuclear envelope in a punctate pattern (Fritz *et al.*, 1985).

In order to check that the anti-Drongo peptide antibody specifically recognised the Drongo protein in S2 cells, the pre immune serum and secondary antibody alone were used alongside the peptide antibody in cell staining experiments. Whilst there was no specific expression in the cells treated with pre immune serum (figure 7.5A) nor secondary antibody alone (figure 7.5B), the peptide antibody recognised the Drongo protein in a perinuclear pattern which extended out into the cytoplasm (figure 7.5C). The staining appeared to be excluded from the nucleus.

In order to characterise the location of this staining further, S2 cells were double stained with anti-Drongo peptide antibody and Hoechst #33258 (section 2.7.9; figure 7.6C) (section 3.2.2). The anti-Drongo peptide antibody and the Hoechst stain did not co-localise (figure 7.6C), and there appeared to be a gap between where Drongo localised around the nucleus and the Hoechst stain suggesting that Drongo did not localise to the nuclear membrane. However, when cells were also double labelled with anti-*Drosophila* lamin, an antibody to a cytoskeletal protein known to be localised to the inner nuclear membrane (figure 7.6E see section 7.3.3.1; Lin and Fisher, 1990) and Hoechst (figure 7.6F), this gap was still present (figure 7.6G) and is probably a artifact caused by nuclei shrinkage after methanol fixing. Double labelling experiments with the anti-lamin antibody and the anti-Drongo peptide antibody would have been difficult to perform as both antibodies were raised in rabbit.

In summary staining S2 cells with anti-Drongo antibody, a nuclear marker (Hoechst # 33258) and an inner nuclear membrane marker (anti-*Drosophila* lamin antibody) demonstrated that Drongo was excluded from the nucleus. These experiments showed that Drongo was localised in close proximity to the nucleus, and the staining pattern extended out into the cytoplasm.
Figure 7.5.

Immunostaining of S2 cells with anti-Drongo peptide antibody and analysis of its subcellular localisation.

(A-C) Analysis of Drongo localisation in S2 cells.

S2 cells (a Drosophila melanogaster embryonic primary cell line) were plated out, fixed and washed as described in section 2.7.9. Cells were then immunostained (as described in section 2.7.9) and viewed under the microscope using the FITC filter.

Cells were stained with:

(A) Pre immune serum

(B) Secondary antibody alone (FITC-conjugated goat anti-rabbit).
Both pre-immune serum and secondary antibody showed low level non-specific staining.

(C) Anti-Drongo peptide antibody (with goat anti-rabbit secondary)
Drongo appeared to be localised in a punctate pattern around the nucleus (arrow) which often extended out into the cytoplasm (arrowheads).

Scale bar: A-C = 10μm.
Figure 7.6.
Further characterisation of Orongo localisation.

(A-C) Co-localisation analysis of Drongo with Hoechst (section 2.7.9).
(D-F) Co-localisation of lamin and Hoechst.

In order to characterise this staining cells were treated with:

(A) Anti-Drongo peptide antibody,
(B) Hoechst #33258, and
(C) Double stained with anti-Drongo peptide antibody and Hoechst #33258.

Drongo and Hoechst did not co-localise and Drongo appeared to be present as a ring outside the nucleus (arrow a). There appears to be a gap between the two staining patterns (arrow b).

The cells were also stained with:

(D) Anti-lamin antibody,
(E) Hoechst #33258, and
(F) Anti-lamin and Hoechst #33258.

Anti-lamin localises as a tight ring around the nucleus (D: arrows), (there is also a high level of background staining).
This demonstrated that there was also a gap between the inner nuclear membrane in the nucleoplasm (F: arrow), probably as an artifact of the pretreatment of the cells.

Scale bar: A-F = 10μm
The Drongo staining pattern appeared to be similar to that observed when mammalian cells were stained with markers of the rough endoplasmic reticulum (RER) or Golgi complex (GC). In mammalian cells the RER is a membranous structure continuous with the nuclear envelope. The GC is a set of stacked membranes located further out into the cytoplasm (Skoufias et al., 1990). Communication between the RER and the GC is via numerous vesicles which transport proteins and lipids between the two (figure 7.7).

In Drosophila, however, previous analysis of the GC (Thomopoulos et al., 1992) and identification of proteins localised to the GC, such as the protein Commisureless (Tear et al., 1996) suggest that in Drosophila cells, rather than the peri-centriolar localisation observed in mammalian cells, the Golgi complex exists as vesiculated cisternae located in between the membranous RER (Thomopoulos et al., 1992; Ripoche et al., 1994) (figure 7.7).
Figure 7.7.
Comparison of the RER and the Golgi complex in mammalian and Drosophila cells.

Schematic of the secretory apparatus in (A) a typical mammalian cell and (B) in a typical Drosophila cell. In a mammalian cell, the RER is continuous with the nuclear membrane and a single Golgi apparatus forms a set of stacked cisternae in a pericentriolar region. Cycles of vesicle budding and fusion permit communication between the RER and the Golgi. In Drosophila, the RER still appears to be continuous with the nuclear envelope but extends further out into the cytoplasm. The Golgi complex consists mainly of vesiculated cisternae located throughout the cytoplasmm (schematics derived from diagrams in Thomopoulos et al., 1992 and Skoufias et al., 1990).
Figure 7.8:

Effects of Colchicine on Drongo localisation.

A-C Immunostained untreated cells. **D-I** colchicine treated immunostained cells.

S2 cells were plated out, and fixed as in figure 7.5 (section 2.7.9) or plated out and treated incubated with 0.2\(\mu\)g/ml of Colchicine for 4 hours then fixed as before (figure 7.5: section 2.7.9).

A-C Immunostained untreated cells (- colchicine)

A: Untreated cells immunostained with anti-Drongo peptide antibody.
B: Cells stained with Concanavalin A (Con A)
C: Cells double labelled with Con A and anti-Drongo peptide antibody.

Drongo displays a similar localisation to Con A around the nucleus and emanating into the cytoplasm, and upon double labelling shows partial co-localisation with Con A, but the extent of the staining is slightly different for Con A and Drongo. Drongo is localised more tightly around the nucleus (A and C arrows and Con A extends further into the cytoplasm (B arrow and C arrowhead).

D-I Colchicine treated cells (+ colchicine)

D and G: Cells treated with colchicine and immunostained with anti-Drongo peptide antibody.
E and H: Cells stained with Con A.
F and I: Cells double labelled with anti-Drongo antibody and Con A.

Upon treatment with colchicine, Drongo and Con A staining is dispersed into vesicles around the nucleus and into the cytoplasm. Upon double labelling, Drongo and Con A appear to stain some of the same vesicles but again the extent of the staining into the cytoplasm is different to Con A staining. Drongo has a slightly different localisation pattern to Con A (D arrows and F arrows compare to E; and H arrows and I arrows compare to G).

Scale bars: A+B =5\(\mu\)m
\[C = 3.5\mu m \]
\[D-I = 3\mu m \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Anti-Drongo</th>
<th>ConA</th>
<th>Anti-Drongo + ConA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colchicine:
- Colchicine
- + Colchicine
The Commissureless (COMM) protein, which is known to be involved in axon guidance in the *Drosophila* CNS (Tear *et al*., 1996), has been shown to localise to vesicular structures distributed in the cytoplasm of COMM expressing S2 cells. COMM co-localises with the *Drosophila* β-COP homologue as small vesicles in the cytoplasm. A myc-tagged version of COMM also co-localises with Mab 23C (a monoclonal antibody raised to a Golgi associated fragment in Monkey cells) in COS cells but displays a different localisation in mammalian cells, surrounding the nucleus as a single Golgi complex. (Tear *et al*., 1996)

The staining pattern seen in S2 cells with the anti-Drongo peptide antibody appeared significantly different to that observed with the COMM antibody. This may suggest that Drongo is not localised to the Golgi complex. However it may be localised to the rough endoplasmic reticulum (RER) or to another structure in a similar location in the cell.

Indeed the location of the antibody staining appears similar to that of the Porcupine (Pore) protein, a putative multi-transmembrane protein involved in wingless signalling (Kadowaki *et al*., 1996). The 59kDa Porcupine protein co-localises with the ER lumenal protein BiP in Kc cells (a *Drosophila* embryonic line) cells in a perinuclear pattern which extends out into the cytoplasm (Kadowaki *et al*., 1996)

To test the hypothesis that Drongo may be located in the RER, Concanavalin A (Con A), a marker used in previous studies for the endoplasmic reticulum (Parkkinen *et al*., 1997) was used. Con A is a lectin molecule which binds to glycosylated mannose residues in the RER. It can also bind to similar residues in the Golgi and plasma membrane.

Cells were stained with anti-Drongo peptide antibody (figure 7.8A) and with Con A (figure 7.8B). Both Drongo and Con A appear to be localised around the nucleus and extend into the cytoplasm, but upon double labelling (figure 7.8 C) and comparison of the two, the extent of the staining is different. Drongo shows tight localisation around the nucleus and extends into the cytoplasm (figure 7.8A
and figure 7.8C), whilst Con A shows more cytoplasmic staining (figure 7.8B and figure 7.8C).

Drongo co-localised with the Con A pattern partially, the extents of the staining patterns covering different parts of the cell. This warranted further investigation. I therefore attempted to disrupt the RER and the Golgi apparatus to observe if Drongo staining could be disturbed.

Both the RER and the Golgi show sensitivity to the microtubule disrupting drug, colchicine. Upon treatment of mammalian cells with colchicine, the endoplasmic reticulum is seen to collapse onto the nuclear envelope and the Golgi has been observed to dissipate into vesicles throughout the cytoplasm (Thyberg and Moskalewski, 1985).

Upon treatment of S2 cells with colchicine (figure 7.8D-I) cells were immunostained with the anti-Drongo peptide antibody (Figure 7.8D and G) and stained with Con A (figure 7.8E and H). When observed, Drongo and Con A staining appeared to be affected by colchicine treatment with both becoming localised to vesicles surrounding the nucleus and emanating from the cytoplasm. Double labelling of the cells (figure 7.8F and I) revealed that the majority of the Drongo staining co-localised with that of Con A but the extent of the staining was slightly different. Drongo was localised to different regions of the cell to those seen with the Con A staining (figure 7.8D arrows and figure 7.8F compared to figure 7.8E and figure 7.8H and figure 7.8I compared to figure 7.8G).

These data suggest that the organelle(s) in which Drongo is localised is sensitive to colchicine treatment and so is maintained in the cell by microtubules. The data also demonstrates that the organelle to which Drongo is localised can be stained with Con A, a marker which localises to the RER, the Golgi and the plasma membrane.

7.3.3.3 Is Drongo localised to the RER?

The cell staining experiments raised the possibility that Drongo was localised to the RER in S2 cells. Previous western data (section 6.3.3.1), however,
suggested that Drongo was localised to a fraction enriched in nuclei and a fraction enriched in nuclear matrices. As the RER is continuous with the nuclear envelope, some or all of the RER may have still been attached to the nucleus and even the nuclear matrix when the fractions were made as no detergent was used in these steps. Other studies which utilised subcellular fractionation to localise proteins, suggest that treatment of a ‘crude’ nuclear fraction with detergent may solublise the RER (Stuart Allen pers. comm.). The nuclear fraction made in section 7.3.3.1 was therefore treated with 0.1% Triton X-100 ranging between 10 and 40 times the volume of the fraction (as described in section 2.11.3). These were incubated at 4°C for 20 minutes and the fractions then centrifuged for 10 minutes at 6,000 rpm and separated into soluble and insoluble fractions. These fractions were then analysed by western blotting (figure 7.9) using the anti-Drongo peptide antibody. Firstly, in order to ensure that nuclear proteins were not removed by addition of Triton X-100 to the fraction, the experiment was performed using anti-Lamin antibody on the western blot. Lamin was present as a 75 kDa band in the pellets from all treated fractions but was not released in any of the supernatants (figure 7.9A) after treatment with Triton X-100, suggesting that the nuclei in the fraction were largely undamaged by the detergent treatment.

Using anti-Drongo peptide antibody on the western (figure 7.9B) showed that the amount of Drongo protein decreased in the pellet as more Triton X-100 was added (figure 7.9B: compare 40x volume to 10x volume). The amount of protein in the supernatant also increased when the nuclear fraction was incubated in 40x the volume of Triton X-100 (figure 7.9B: compare 40x vol to 10 x vol). These data suggest that the treatment with detergent releases the fraction in which Drongo is contained, but does not appear to disrupt any nuclear proteins, stipulating a location for Drongo in an organelle in close proximity to the nucleus, such as the RER.

7.4 Discussion.

In order to analyse the expression profile of Drongo to investigate the subcellular location of the protein, an antibody was raised to a synthetic peptide.
Figure 7.9
Western analysis of the nuclear fraction after treatment with detergent.

(A,B) Western blots of nuclei treated with varying amounts of Triton X-100.
The fraction enriched in nuclei from figure 3 was incubated with 10x, 20x, 30x,
40x the volume (of fraction) with lysis buffer (section 2.11.3) containing 0.2%
Triton X-100.
The samples were then centrifuged and separated into pellet (pt) and supernatant
(s/n) fractions and run on a 10% SDS-PAGE gel. The proteins were then
transferred to nitrocellulose and probed with:

(A) Anti-lamin antibody

(B) Anti-Drongo peptide antibody.

There appears to be increase in the amount of Drongo protein (B: arrows) in the
supernatant as more of the lysis buffer is added (compare lane 4 to lanes 1-3) and a
slight decrease in the amount pelleted (compare lane 8 with lanes 5-7).
There is no decrease in the amount of nuclear lamin upon treatment with lysis
buffer (A: arrow).
A

<table>
<thead>
<tr>
<th>kDa</th>
<th>10x vol.</th>
<th>20x vol.</th>
<th>30x vol.</th>
<th>40x vol.</th>
<th>10x vol.</th>
<th>20x vol.</th>
<th>30x vol.</th>
<th>40x vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>kDa</th>
<th>10x vol.</th>
<th>20x vol.</th>
<th>30x vol.</th>
<th>40x vol.</th>
<th>10x vol.</th>
<th>20x vol.</th>
<th>30x vol.</th>
<th>40x vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The peptide was chosen as it displayed high predicted scores both hydrophilicity and antigenicity. An antiserum to the full length Drongo protein was also produced but this antiserum showed non-specific binding and so was not used further (data not shown). An IgG purified fraction of the antibody used for western analysis specifically recognised Drongo and showed that Drongo was developmentally expressed. A number of proteins were observed including proteins with molecular weights of approximately 86 kDa and 60 kDa. These proteins appear similar in size to those seen by previous in vitro translation experiments (Harris, 1995). Interestingly, the 60 kDa band appears to be more abundant than the 86 kDa protein. The presence of these two proteins in vivo may indicate a number of possibilities. The first is that there are two possible translation start sites, (assuming that the other bands observed are degradation products). This idea was first suggested by Harris (1995) following deletion experiments and in vitro translation, where the two proteins seen were initiated from two different translational start sites, one being a non-AUG start codon (Harris, 1995). Previous reports, however, suggest that non-AUG codons are highly inefficient in vivo and are only utilised in exceptional cases (Kozak, 1989). The second possibility is that alternative splicing occurs. This seems unlikely as no splice sites have been found within the genomic sequence that may generate proteins of this size.

The antibody did not recognise the native protein in whole mount embryos and ovaries, so western analysis was used to determine the subcellular localisation of the protein. Due to the high identity of Drongo to the hRIP/Rab protein, it was postulated that Drongo may be localised to the nucleus/nuclear matrix. Indeed observations with the anti-Drongo peptide antibody on western blots of fractionated embryos localised Drongo to a fraction enriched in nuclei and nuclear matrix, primarily suggesting a nuclear function. An anti-lamin antibody was used to validate the fractions. Assuming that all nuclei remained whole (and were not themselves fractionated) using this antibody showed that the fractions enriched in cytoplasmic constituents and membranes contained no detectable levels of the particular lamin protein recognised by the antibody. We may therefore also postulate that the cytoplasmic and membrane fractions do not contain nuclear proteins.
Observation of the antibody staining pattern in S2 cells, however, and comparison to the nuclear localised Hoescht #33258 and anti-lamin antibody appears to exclude Drongo from the nucleus. Drongo is localised as a punctate pattern around the nuclear membrane and emmanating out into the cytoplasm. In comparison to the localisation of the hRIP/Rab protein (Fritz et al., 1995; Bogerd et al., 1995) Drongo showed a similar punctate localisation around the nucleus but hRIP was more tightly localised when observed in S2 cells and did not show the cytoplasmic staining (Fritz et al, 1995). The antibody to Rab showed that the protein was primarily located in the nucleus and nuleolus, but this analysis used CV1, a primate cell line (Bogerd et al, 1995).

There is evidence that Drongo may localise to the endoplasmic reticulum in these cells. As in mammlian cells the RER can be observed as a reticular perinuclear structure in Drosophila cells, Drongo partially co-localises with an ER/Golgi marker Con A, consistent with a localisation to the ER. Drongo shows a pattern different to that of Drosophila Golgi specific proteins (e.g COMM) and similar to that of Drosophila proteins located to the RER (e.g Porcupine).

Western data after treating the fractions with detergent (0.1% Triton X-100) supports the theory that Drongo is localised to the RER, but although the experiment was controlled by using a nuclear antibody, it would interesting to observe if an RER specific antibody would also show an increase in RER specific proteins as more detergent was added to the nuclear preparation.

There are no specific domains in the predicted Drongo protein sequence that suggest it is a resident ER protein, such as the KDEL sequence. For example, a similar sequence (KEEL) is present in the Windbeutel (Wind) protein a homologue of the rat endoplasmic reticulum protein Erp29 (Konzolaki and Schüpbach, 1998). Wind also contains, a thioredoxin-like catalytic motif (Cys-X-X-Cys) a domain known to mediate the function of a family of ER-resident proteins such as Protein Disulphide Isomerase (PDI). Neither does Drongo contain any transmembrane domains or signal sequences suggestive of either a receptor/transport channel (e.g Porcupine; Kadowaki et al., 1996 and COMM; Tear et al., 1996) or a secreted protein.
Although we have some evidence that Drongo may be localised to the RER in S2 cells, we were not able to use an ER specific antibody for co-localisation experiments due to the lack of availability of ER specific antibodies in *Drosophila*. The ER antibodies available were raised in rabbit or the antibodies were monoclonal to the protein raised and would not have recognised the homologous protein in *Drosophila*. This problem appears to be widespread in the *Drosophila* field and a lack of ER markers has prompted other researchers to take different approaches to localisation experiments. For example, in the absence of a high affinity antibody specific to the Porcupine protein, a HA-tagged version of the protein was expressed in Kc cells (Kadowaki *et al*., 1996) and localised via an antibody to the tag. Indeed a similar experiment was performed for localisation of COMM protein in S2 and Cos cells. This may be performed with the Drongo protein in order for a more detailed analysis of its localisation. In conclusion therefore observations of the subcellular localisation of the Drongo protein may offer implications firstly about its role in the cell and secondly about the dynamics of the endoplasmic reticulum in *Drosophila* cells. The organelle(s) labelled by Drongo appeared to include the endoplasmic reticulum. A caveat to this is that upon treatment with colchicine, the organelles were not affected in the way expected. This may be because the endoplasmic reticulum in *Drosophila* cells may be stabilised in a different way to that of mammalian cells.

Although *Drosophila* is not as well established as the yeast *S. cerevesiae* for studies in vesicle transport, it has been proved useful as an additional model for studying the ER (Konzolaki and Scüpbach, 1988; Wickham *et al*., 1999) As I have discussed, the secretory apparatus is quite different to that in a mammalian cell. Any markers of the ER and Golgi in *Drosophila* must therefore be of some benefit in aiding our understanding of the structure of this apparatus and the communication between the ER and the Golgi. Drongo may represent a *Drosophila* marker for the endoplasmic reticulum, markers of which are rare at present. Further analysis with Drongo may also offer information on the compartments of the ER in *Drosophila* cells.
Chapter 8:

General discussion.
Chapter 8. General Discussion.

8.1 Introduction.

This thesis incorporates the results of an analysis into the functions of a Drosophila gene, drongo. The results of the experimental work (chapters 3-7) have been discussed and analysed at the end of each chapter. The thesis was divided into the following analyses: effects of overexpression of the gene via heat shock and UAS-GAL4 mis-expression; the analysis of the role of the gene in Drosophila tissue culture cells; generation and analysis of an antibody to the Drongo protein and mutational analysis of the gene and its chromosomal region.

This discussion will outline the experimental work overall, its advantages and limitations, and determine how much further we have come in understanding a role for the drongo gene.

8.2 The role of drongo during development.

8.2.1 Does drongo have a role during oogenesis and neurogenesis?

drongo is expressed during both early and late oogenesis and also during early neurogenesis (Harris, 1995) so both stages of development were obvious places to look for a role for the protein.

Overexpression experiments (chapter 3) showed that mis-expression of the drongo gene behind a heat shock promoter resulted in defects during early and late oogenesis.

drongo overexpression during early oogenesis resulted in the delayed migration of the follicle cells across the germarium to produce supernumary nurse cells in affected cysts. During late oogenesis, overexpression of drongo resulted in the production of abnormal embryos with denticle belts missing. Many of these embryos had posterior defects of varying degrees of severity. It was shown through
antibody staining that this was likely to be due to the mislocalisation of the posterior determinant oskar.

The cause of the overexpression defect during early oogenesis may be different to that seen during late oogenesis. Both early and late stages of oogenesis are involved in establishing the polarity of the egg (Grunert and St Johnston, 1996).

The polarisation of the two major body axes in Drosophila depends on a number of stages during oogenesis, the position of the fusome/spectrosome is thought to determine the oocyte (deCuevas and Spradling, 1997; Lin and spradling, 1994); the position of the oocyte determines the posterior of the egg chamber (Rüsbaum et al., 1998; Sapir et al., 1998), and the position of the oocyte nucleus determines the dorsal side (Sapir et al., 1998; Tomancak et al., 1997). These cytological asymmetries result in the polarisation of the cytoskeleton which directs the localisation of specific mRNAs to subsequently set up axis formation (St Johnston, 1995; Gonzalez-Reyes et al., 1995; Roth et al., 1995).

From analysis it appeared that the polarity of the egg chamber is not affected by drongo mis-expression during early oogenesis but may be affected during late oogenesis. drongo may directly or indirectly act to inhibit the domain of oskar localisation; overexpression of the gene may expand this domain, producing the abnormal embryo. If drongo has a role during early oogenesis it may act as a part of a negative signal normally preventing migration of follicle cells until a 16 cell cyst has been formed.

Experiments were also carried out using the UAS-GAL4 system in an attempt to mis-express the gene in a more defined manner. Overexpression of drongo in the CNS via GAL4 line AB31 lead to lethality at the first larval instar stage, although I have not characterised this further.

It is unclear at present therefore whether drongo has a role during neurogenesis. If we analyse where drongo has been shown to be expressed, we can observe common signalling pathways such as the EGF receptor signalling, Notch/Delta and Wingless signalling. The role of the EGF receptor has been established during oogenesis (Sapir et al., 1998), early neurogenesis (Udolph et al., 1998; Skeath, 1998), and also during early eye development (another system where drongo is expressed). Notch/Delta and Wingless signalling have also been shown to
function in these systems with different consequences in each (Cooper et al., 1999; Gonzalez-Reyes et al., 1998; Zhang et al., 1998; Forbes et al., 1996; Bhat et al., 1998). It is too early in this analysis, however, to confer a role in any signalling pathway at present. It should also be noted that production of a defect by overexpression is not necessarily an indication that the gene has a role in these systems.

8.2.2 How might the protein act?

Analyses using a specific anti-Drongo peptide antibody have shown that Drongo is developmentally regulated, and a number of different proteins are recognised by the antibody on western blots including two main proteins of approximately 60kDa (being abundant in embryos only) and a larger band of approximately 86kDa. These proteins are similar in size compared to those seen in in vitro translations, suggesting the concept of two translational start sites.

The nucleotide sequence surrounding the initiator codon(s) in the drongo cDNA is GGCAAGAUUCAO (at 604) or CAGUUCGUGUAC (at 613). These are similar (although not identical) to the consensus sequence for translation from non-AUG codons (Imataka et al., 1997). The rule states that purines are favourable at positions -3 and +4 (the first nucleotide being defined as +1). Kozak (1989) also suggests that adenines at the +5 position, a G at +4 and an A at +5 are important for efficient translation.

Many regulatory genes (Hann et al., 1988 and Ackland et al., 1990) have non-AUG initiators in addition to downstream in-frame AUG codons so that translation from the non-AUG codon generates amino terminally extended proteins. Some of these proteins show intracellular localisations different to their shorter counterparts (Ackland et al., 1990). Post translational processing of a full length protein or alternative termination sites would also remain a possibility. It may be that different forms of the protein are involved at different stages of development.

Do any other genes that are involved in oogenesis and neurogenesis show a similar modifications in the proteins expressed? The Brainiac protein, for example, contains two potential N-and O-linked glycosylation sites which aid its function as a
secreted protein, signalling to the follicular epithelium (Goode et al., 1996). An example of a gene where more than one protein is produced is that of the *Drosophila maternal nuclear kinase (Dmnk)* gene. Two proteins are also seen on western blots using antibodies to the protein (Oishi et al., 1998). The long (Dmnk-L: 56KDa) and short (Dmnk-S: 54KDa) forms of Dmnk are thought to be produced by alternative splicing of the transcript. The two forms appear to be functionally distinct and although it is not possible to distinguish between the forms on whole mount tissues. *Dmnk-S* mRNA is abundant in ovaries and *Dmnk-L* mRNA is rather constant throughout embryogenesis. Although no developmental role as yet has been assigned to the gene, the restricted expression pattern of Dmnk proteins during oogenesis and in the posterior pole plasm/germ line cell lineages is characteristic of a maternal effect posterior group gene and suggests a role for Dmnk in pole cell formation (Oishi et al., 1998).

If two translational start sites are used for the Drongo protein, there do not seem to be any sites that are likely to be post translationally modified between the two codons used, so it is unlikely that the two proteins are functionally distinct although this would require further analysis.

8.3 Is Drongo a hRIP orthologue?

A running theme throughout this thesis is the idea that Drongo may act as a hRIP orthologue. Sequencing of the gene (Harris, 1995 and this work) and comparisons of the predicted amino acid sequence to others in the databases (using Blast search tool) also determined a number of other homologues (see chapter 1). These included the yeast family of Zinc finger proteins GTS1/GCS1/Glo3 and the mammalian and *Drosophila* ARF-1 GAP. The human Rev interacting protein hRIP, however, showed the highest amino acid identity and so it seemed logical to study this protein and to determine if Drongo had a similar role in nuclear transport in the cell.

A number of analyses carried out in this thesis have offered information on whether Drongo acts in a similar way to hRIP. Western analysis suggested Drongo may be localised in the nucleus, a similar location to that of hRIP/Rab, however
upon further analysis in tissue culture cells, a more likely location of the protein was the rough endoplasmic reticulum and it became clear that the subcellular fractions produced were not as homogenous as originally thought.

Alternatively Drongo may not be exclusively localised to the RER and may be found on the nuclear membrane. Indeed, western analysis showed that Triton X-100 treatment of nuclei does not remove all of the protein from the nuclear fraction. GTP binding proteins of the Rab family are thought to translocate through membranes and have been found to accumulate in the cytoplasm and the nucleus of cells in culture (Perez et al., 1994), although no nuclear transport role has yet been attributed to Rab.

We were not able to determine if Drongo could enhance Rev function in vitro by using a Rev activity assay in tissue culture, therefore we could not confirm or rule out an interactions with Rev and a role in nuclear transport. The majority of the Drongo protein appears to be localised to the rough endoplasmic reticulum, however the protein may well interact with Rev with additional functions in the RER.

Interestingly Drongo also displays amino acid homology to GTPase activating protein (GAP), which regulates the small GTP binding protein ARF1 (ADP-ribosylation factor) in mammals (Section 1.1; Huber et al., 1998). ARF1 is required for both anterograde vesicle transport from the ER to Golgi and retrograde transport from the Golgi to the ER. Retrograde transport retrieves escaped material or recycles transport components for continued anterograde transport.

In an active GTP bound state, ARF recruits vesicle protein such as COPI (for coatamer coated vesicles) and AP1-1 and AP-3 (for clathrin coated vesicles; Kim et al., 1997) to the membrane. A number of ARF1 GAPs have recently been cloned in yeast (Zhang et al., 1998; Poon et al., 1999), in mammals (Randazzo, 1997) and in Drosophila (Frolov, 1997).

Recently both Gcs1 and Glo3, also Drongo homologues identified from the yeast S. cerevisiae, have been reported to have GAP activity by in vivo and in vitro assays (Poon et al., 1996; Poon et al., 1999). Gcs1 and Glo3 form an essential pair of overlapping ARF-GAPs required for retrograde transport (from the Golgi to the ER) (Poon et al., 1999).
Interestingly, the GAP activity domain has also been studied in a number of GTPase activating proteins. For the ARF1-GAP protein, ARD1 (Vitale et al., 1998) for example, the putative amino terminal GAP domain contains a single zinc finger and two essential arginines located near the zinc finger. A N-terminal zinc finger may also be found in the *drongo* gene sequence (figure 1.1) although whether any of the arginine present in the sequence are in the correct place and are essential is yet to be determined.

There is also a sequence found in ARD1-GAP domain which is similar to a consenses sequence found in the Rho/Rac GAPs, KXXXXXLPXPL (where X is any amino acid), although in ARD1, only the first lysine and the last two amino acids of the sequence, proline and leucine (underlined) appear essential for GAP activity (Vitale et al., 1998). A similar sequence to this can be located in the Drongo protein sequence at lys119 to leu129 (KRYYLEPASPL). In view of this sequence similarity, especially as many of these sequences have been shown in other proteins to be required for GTP hydrolysis, and given the localisation of the Drongo protein it would be interesting to assay Drongo for ARF1-GAP activity in a similar method to those described (Cuckierman et al., 1995; Poon et al., 1999), although a pure sample of the protein would be required for this procedure.

An EMS mutagenesis screen (Chapter 4) was also carried out in this study in an attempt to produce a mutation in the *drongo* gene. A *drongo* mutant was not identified, however, this may indicate that the region was not saturated by mutagenesis, although this is unlikely as more than one allele was found in each complementation group (section 5.4.4.1). Of course, the gene may not be lethally mutable and other phenotypes such as male/female sterility have not been analysed. In view of the possible evidence that Drongo may function as an ARF-GAP and that many previous ARF-GAPs have been found to be functionally redundant (e.g. Gcs1 and Glo3 as discussed above), it is likely that *drongo* also may show redundancy (and may not be lethally mutable) but be able to produce an effect after overexpression. It is also interesting to note that a null mutant of *Gap69C*, ARF-GAP cloned from *Drosophila* has not yet been identified (Frolov, 1997).

Functioning as an ARF1-GAP may explain the reason that Drongo has an effect after overexpression in the central nervous system via GAL4 line 31.1. If
vesicular transport is affected in the neurons it may well be lethal. There are two problems with this theory, however, an effect on vesicular transport might produce an effect earlier in the embryo (not larval as was reported in this study); also a deletion in the C-terminal of the protein does not have any deleterious effect when overexpressed via GAL4 31.1 and yet this protein would still contain an intact N-terminal (and so putative ARF GAP) domain.

8.5 How do we determine a more defined role for Drongo in Drosophila.

Further attempts to isolate a mutant have been carried out (Pers.Comm. Edwin Chan) by X-ray mutagenesis and P-element localisation. Recently, two P-element inserts have been identified by PCR (Pers. Comm. Edwin Chan) and are thought to be located within the drongo gene, both of these inserts are lethal, although neither are in the coding region. Analysis of these inserts with the anti-Drongo peptide antibody suggests that the insertion may result in a reduced amount of protein expressed by the gene. Further studies with these inserts may yield some exciting information about the role of the drongo gene.

ER markers recently obtained (a kind gift from David Roberts, University of Oxford) used on tissue culture cells with confocal analysis may also elucidate the localisation of the Drongo protein further.

Another method of defining the function of a gene in Drosophila is that of double stranded RNA gene interference (dsRNA-i). This technique has been established in C. elegans to produce specific genetic interference in the worm (Montgomery et al., 1998) and has been used recently in the fly to study the function of many genes (Kennerdell and Carthew, 1998; Misquitta and Paterson, 1999). Studies have shown that the introduction of dsRNA corresponding to either a portion or the entire coding region of a gene can interfere with the function of the endogenous gene to give a phenotype similar to the known genetic mutation. Surprisingly results from studies suggest that the dsRNA may be acting catalytically after injection into embryonic cells (Misquitta and Paterson, 1999). As no mutant
has yet been identified in *drongo* it would be interesting to apply this technique in future analyses.

8.6 Concluding remarks

The analysis of the *drongo* gene has provided interesting information about possible roles for the gene in *Drosophila*, further study of the *drongo* gene and its protein may reveal exciting information about oogenesis and neurogenesis as well as offering more clues about the dynamics of the rough endoplasmic reticulum the *Drosophila* cell.
References

206

A) pCaSpeR-*drongo*.

drongo cDNA was cloned into the pCaSpeR vector using EcoRI digestion sites.
B) UAS-drongo and deletion constructs.

1) Agarose gel to show successful cloning.

2) Plasmid map and insert site of drongo cDNA.

UAS-drongo was cut from pBluescript with EcoRI and cloned into pUASt. UAS-drongo was also digested with FspI and religated (UAS-drongoΔF). PGEX-5X-1-drongo ΔS (10.2 a) was digested with EcoRI and NotI and cloned into pUASt (UAS-drongoΔS).

In order to validate the vector, cutting pUASt with SalI releases a 0.9 kb fragment; cutting with EcoRI, ClaI and FspI all linearises the vector to give a 9kb band. Cutting UAS-drongo with SalI gives a 0.9kb fragment, and two 6kb bands so the fragment has inserted in the correct orientation. Cutting with EcoRI excises the 3.5kb drongo insert in addition to the 9kb pUASt fragment. Cutting with FspI gives fragments of 2.8kb and 6.2kb if the insert is in the correct orientation. Cutting with ClaI gives a 3.5 kb and a 9kb fragment showing that the insert is in the correct orientation.

Cutting UAS-drongoΔF with SalI, EcoRI, ClaI and FspI result in a similar pattern to the restriction digestsof UAS-drongo, but the lower molecular weight band are slightly smaller. Cutting UAS-drongoDF demonstrates that the FspI site has reformed after cloning.

Digestion of UAS-drongoΔS with EcoRI and NotI gives a fragment of 1.1kb showing the 3' end of the drongo fragment has been deleted. Digestion with ClaI gives a 5kb and a 6kb fragment showing a deletion has been made.
C) UAS-drongo deletions.

See B for details of deletions of UAS-drongo.
D) pBS-drongo

1) restriction digest of pBS-drongo.

2) Plasmid map of pBS-drongo.

Digestion of pBS-drongo with Kpn I linearises the construct, demonstrating pBluescript is present.

Digestion with EcoRI excises the 3.5kb drongo cDNA fragment and results in the production of 2 x 3kb fragments demonstrating the presence of the drongo cDNA in pBluescript.

Digestion with Sst I results in a 1.1kb fragment demonstrating the drongo cDNA is in the correct orientation in the vector.
E) UAS-Rev

1) Agarose gel showing digestions of UAS-rev
2) Restriction map

Digestion with HindIII gives 6kb and 3kb vector fragments. rev has been excised in a 350bp fragment. XhoI (which does not cut in pUAST but cuts in the original plasmid, pGEMt) demonstrates that Rev has been cloned into pUAST. BamH I digestion results two bands at approximately 750bp and a 7.5kb band demonstrating the presence of the pUAST and an additional BamH site in the rev cDNA.

Digestion of UAS-rev with Sal I results in fragments of 0.8kb, 3kb and 6kb demonstrating that pUAST is present and demonstrating a Sal I site in rev.
F) pGEX-5X-1 *drongo* and pGEX-5X-1 *drongo* ΔS.

1) Agarose gel of restriction digests.

2) Plasmid map showing location of the *drongo* cDNA and restriction sites

pGEX-5X-1 *drongo* cut with EcoRI gives a 3.5kb *drongo* fragment and a 6kb vector band showing *drongo* has been excised from the vector.

pGEX-5X-1 *drongo* ΔS cut with EcoRI excises a deleted 1.1kb band (and a 6kb vector band) from this construct, showing the successful deletion of the 3'end of the *drongo* gene after digestion with Sst I.
G) pMAL-p2-drongo.

drongo was cloned into pMAL-p2 via EcoR I sites.
10.1 I

Sequence of ptk34.

ptk34 was partially sequenced in this study to check the sequence highlighted. The sequences checked were the SV40 promoter, all four splice sites. The CAT gene, the RRE site in the env gene and the SV40 poly A. No mutations were found in the sequence that would appear to affect the transcription or translation of the plasmid.
10.2 Raw data from EMS screen

A) Crosses to assess the effectiveness of EMS treatment by looking for male lethals.

\[
\begin{align*}
&w; \quad \text{FLP} \quad \text{FRT} \\
> & \quad \text{FLP} \quad \text{FRT} \\
\downarrow \\
&w; \quad \text{FLP}; \quad \text{FRT} \\
FM7 & + \quad + \\
\downarrow \\
&w; \quad +; \quad + \\
> & \quad + \quad +
\end{align*}
\]

Ratio of FM7 males to normal from each single pairmating. If mutation is lethal will only get white males. Expect 30% lethals from X chromosome.

Results from control crosses (pers. comm. Marcus Allen)

<table>
<thead>
<tr>
<th>Cross number</th>
<th>Number of viables</th>
<th>Number of lethals</th>
<th>Total</th>
<th>Percentage lethal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>30</td>
<td>96</td>
<td>31.3%</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>7</td>
<td>25</td>
<td>28.0%</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>17</td>
<td>35</td>
<td>48.6%</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>42</td>
<td>107</td>
<td>39.2%</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>21</td>
<td>87</td>
<td>24.1%</td>
</tr>
</tbody>
</table>
B) Collection of CyO males from bottles and screening of males over Df(2L)ast4.

<table>
<thead>
<tr>
<th>Bottle</th>
<th>No. of flies</th>
<th>No. sterile</th>
<th>No. of mutants</th>
<th>Bottle</th>
<th>No. of flies</th>
<th>No. sterile</th>
<th>No. of mutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DA</td>
<td>145</td>
<td>35</td>
<td>2</td>
<td>3AA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4DB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3AB</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4DC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3AC</td>
<td>263</td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>4DD</td>
<td>260</td>
<td>50</td>
<td>3</td>
<td>3AD</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4DE</td>
<td>203</td>
<td>47</td>
<td>1</td>
<td>3AE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4DF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3AF</td>
<td>76</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>4DG</td>
<td>132</td>
<td>26</td>
<td>2</td>
<td>3AG</td>
<td>85</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>4DH</td>
<td>52</td>
<td>9</td>
<td>1</td>
<td>3AH</td>
<td>79</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>4DI</td>
<td>52</td>
<td>10</td>
<td>2</td>
<td>3AI</td>
<td>70</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>4DJ</td>
<td>39</td>
<td>8</td>
<td>0</td>
<td>3AJ</td>
<td>58</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>4DK</td>
<td>81</td>
<td>14</td>
<td>0</td>
<td>3AK</td>
<td>92</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>4DL</td>
<td>95</td>
<td>18</td>
<td>2</td>
<td>3AL</td>
<td>41</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4DM</td>
<td>87</td>
<td>16</td>
<td>0</td>
<td>3AM</td>
<td>53</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>4DN</td>
<td>75</td>
<td>15</td>
<td>1</td>
<td>3AN</td>
<td>77</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>4DO</td>
<td>92</td>
<td>16</td>
<td>1</td>
<td>3AO</td>
<td>69</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>4DP</td>
<td>58</td>
<td>10</td>
<td>0</td>
<td>3AP</td>
<td>81</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>4DQ</td>
<td>42</td>
<td>10</td>
<td>0</td>
<td>3AQ</td>
<td>38</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4DR</td>
<td>34</td>
<td>7</td>
<td>0</td>
<td>3AR</td>
<td>27</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4DS</td>
<td>32</td>
<td>5</td>
<td>4</td>
<td>3AS</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4DT</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>3AT</td>
<td>42</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4DU</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>3AU</td>
<td>37</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>4DV</td>
<td>72</td>
<td>18</td>
<td>0</td>
<td>2AV</td>
<td>38</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4DW</td>
<td>71</td>
<td>14</td>
<td>0</td>
<td>3AW</td>
<td>21</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4DX</td>
<td>21</td>
<td>5</td>
<td>0</td>
<td>3AX</td>
<td>89</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>4DY</td>
<td>105</td>
<td>21</td>
<td>3</td>
<td>3AY</td>
<td>75</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>4DZ</td>
<td>84</td>
<td>13</td>
<td>0</td>
<td>3AZ</td>
<td>92</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Bottle</td>
<td>No. of flies</td>
<td>No. sterile</td>
<td>No. of mutants</td>
<td>Bottle</td>
<td>No. of flies</td>
<td>No. sterile</td>
<td>No. of mutants</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4EA</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>3BA</td>
<td>75</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>4EB</td>
<td>49</td>
<td>9</td>
<td>1</td>
<td>3BB</td>
<td>60</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4EC</td>
<td>135</td>
<td>24</td>
<td>3</td>
<td>3BC</td>
<td>84</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4ED</td>
<td>53</td>
<td>8</td>
<td>0</td>
<td>3BD</td>
<td>40</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4EE</td>
<td>140</td>
<td>25</td>
<td>0</td>
<td>3BE</td>
<td>98</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>4EF</td>
<td>149</td>
<td>30</td>
<td>1</td>
<td>3BF</td>
<td>41</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4EG</td>
<td>49</td>
<td>7</td>
<td>0</td>
<td>3BG</td>
<td>80</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4EH</td>
<td>88</td>
<td>12</td>
<td>1</td>
<td>3BH</td>
<td>109</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4EI</td>
<td>48</td>
<td>6</td>
<td>0</td>
<td>3BI</td>
<td>42</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4EJ</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>3BJ</td>
<td>75</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>4EK</td>
<td>125</td>
<td>23</td>
<td>2</td>
<td>3BK</td>
<td>151</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>4EL</td>
<td>162</td>
<td>42</td>
<td>0</td>
<td>3BL</td>
<td>128</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>4EM</td>
<td>79</td>
<td>19</td>
<td>0</td>
<td>3BM</td>
<td>102</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>4EN</td>
<td>26</td>
<td>6</td>
<td>0</td>
<td>3BN</td>
<td>41</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>4EO</td>
<td>116</td>
<td>36</td>
<td>0</td>
<td>3BO</td>
<td>67</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>4EP</td>
<td>57</td>
<td>18</td>
<td>1</td>
<td>3BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4EQ</td>
<td>108</td>
<td>20</td>
<td>0</td>
<td>3BQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4ER</td>
<td>168</td>
<td>23</td>
<td>1</td>
<td>3BR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C) Complementation analysis of the EMS mutation lines (1): Or2anisin2 the
mutants into lethal complementation groups

4DA-59
4DA-122
3AC-184
4DD-201
4DD-288
4DD-418
4DG-777
4DH-1251
4Dl-1367
4DG-1524
4DL-J801
3AL-1872
4Dl-1893
4DL-1980
4DN-2014
4DS-2678
4DS-2705
4DS-2715
4DS-2716
3AU-2858
3AZ-3013
4DY-307J
3AY-3216
4DY-3291
4EB-3455
3BC-3629
3BC-3677
4EC-3742
4EC-3781
4EC-3906
3BE-4178
3BF-4311
3BE-4331
4EF-4391
3BE-4401
4EC-4540
4EH-4705
4EK-4975
4EK-5076
3BK-5333
3BK-5476
3BK-5587
3BL-5823
3BN-6246
4EP-6332
4EQ-6548

4DG-777

4DH-1251

n/a

n/a

n/a

0;85
32;40
37;66
35;64
18;39
21;34
0;98
0;87
32;46
35;67
32;58
11;22
40;74
48;35
0;104
12;19
0;105
0;68
19;25
32;66
13;30
26;68
32;67
32;69
40;70
24;66
11;54
24;57
23;98
21;47
17;34
2;5
17;37
23;46
2;8
40;68
18;37
22;41
0;86
18;35
22;35
13;45
34;67
21;25
0;108

21;40
0;57
34;67
36;51
36;64
0;106
3;7
9;19
18;37
26;48
32;50
0;68
12;23
35;60
0;96
0;103
0;103
0;104
20;40
0;100
21;47
16;45
22;36
19;39
24;51
19;46
26;58
16;43
30;59
17;35
28;55
18;31
34;58
37;83
32;40
17;49
18;30
22;59
17;23
22;35
14;22
0;98
30;56
28;65
29;55

0;98
22;56
25;37
35;55
0;97
1;7
37;85
0;100
17;46
23;51
34;58
15;46
21;55
9;29
0;93
9;30
0;86
0;95
23;40
0;96
18;24
23;54
34;58
29;47
2;17
4;30
25;47
29'45
2;36
18;46
22;58
22;40
16;32
17;32
21'34
17;48
24;48
17;30
0;97
17;43
26;43
34;60
23;53
18;31
0;95

4DA-59

4DA-l11

3AC-184

4DD-201

4DD-188

4DD-418

21;36
27;42
13;50
25;70
18;33
2;5
15;27
29;53
37;48
2;10
29;33
21;55
7;18
7;9
19;22
27;54
32;43
17;60
12;52
33;65
12;40
14;50
31;62
11;51
17;35
10;21
35;64
17;46
21;40
5;17
50;68
30;41
32;34
40;61
21;60
16;51
40;71
39;63
5;18
30;59
34;50
21;38
40;46
20;23
40;58
14;28

20;51
0;120
21;55
18;20
12;59
0;59
17;52
0;79
0;105
8;19
17;67
21;59
11;25
19;37
21;38
0;122
22;47
0;103
0;104
9;17
0;89
14;26
22;59
18;34
22;41
28;30
6;13
12;42
18;50
19;42
17;46
19;27
42;75
32;66
21;39
18;72
20;30
13;29
42;61
0;85
19;58
20.48
18;34
17;37
15;47
0;102

21;32
22;41
0;92
0;48
0;71
17;37
0;85
15;30
41;80
12;28
19;37
23;38
0;112
12;18
27;41
0;72
0;85
0;92
0;78
0;108
22;45
0;97
0;100
0;85
22;38
19;39
28;42
35;51
41;57
0;106
0;119
17;47
14;29
15;31
21;27
27;65
0;103
0;94
0;105
21;35
17;46
31;50
0;98
19;43
0;97
21;40

22;31
23;41
0;89
25;50
0;73
17;24
18;27
22;41
23;55
17;34
30;42
14;27
15;31
17;35
27;58
0;102
27;61
0;95
0;96
0;97
27;48
30;64
21;36
22;42
30;79
1;5
22;33
17;28
18;52
32;50
19;42
20;30
22;41
12;33
20;34
26;55
0;90
0;65
0;48
28;46
13;29
27;30
30;47
21;45
0;69
30;60

20;32
21;41
0;82
0;72
7;13
34;58
13;46
4;17
15;36
7;20
12;25
15;27
12;32
7;13
21;39
0;95
9;13
0;103
0;85
0;76
23;55
0;96
0;106
0;97
23;50
2;12
23;46
32;48
0;70
0;98
0;85
21;30
22;40
6;13
40;59
21;20
0;105
0;100
0;90
21;23
17;34
35;55
16;32
17;46
0;95
23;39

,


<table>
<thead>
<tr>
<th>3BP-6666</th>
<th>38.59</th>
<th>38.61</th>
<th>0.017</th>
<th>12.30</th>
<th>32.39</th>
<th>24.30</th>
<th>0.78</th>
<th>21.28</th>
<th>23.50</th>
</tr>
</thead>
</table>

| 4ER-6893 | 21.38 | 21.25 | 0.96 | 0.78 | 0.104 | 30.40 | 21.28 | 23.50 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>0.95</td>
<td>18.32</td>
<td>29.57</td>
<td>19.40</td>
<td>10.17</td>
<td>22.49</td>
<td>21.45</td>
<td>0.68</td>
</tr>
<tr>
<td>4DA-122</td>
<td>22.48</td>
<td>17.48</td>
<td>27.65</td>
<td>39.70</td>
<td>0.90</td>
<td>12.30</td>
<td>22.37</td>
<td>0.90</td>
</tr>
<tr>
<td>3AC-184</td>
<td>12.33</td>
<td>20.46</td>
<td>27.61</td>
<td>x</td>
<td>17.38</td>
<td>16.50</td>
<td>35.69</td>
<td>0.70</td>
</tr>
<tr>
<td>4DD-201</td>
<td>20.47</td>
<td>18.53</td>
<td>13.46</td>
<td>17.20</td>
<td>18.40</td>
<td>x</td>
<td>x</td>
<td>0.98</td>
</tr>
<tr>
<td>4DD-418</td>
<td>0.67</td>
<td>17.45</td>
<td>10.30</td>
<td>27.69</td>
<td>23.58</td>
<td>12.47</td>
<td>6.16</td>
<td>0.94</td>
</tr>
<tr>
<td>4DG-777</td>
<td>16.45</td>
<td>27.56</td>
<td>22.60</td>
<td>42.79</td>
<td>0.106</td>
<td>0.110</td>
<td>0.97</td>
<td>0.78</td>
</tr>
<tr>
<td>4DH-1251</td>
<td>0.87</td>
<td>31.56</td>
<td>7.18</td>
<td>18.31</td>
<td>19.39</td>
<td>11.41</td>
<td>26.74</td>
<td>0.77</td>
</tr>
<tr>
<td>4DI-1367</td>
<td>32.68</td>
<td>18.61</td>
<td>121.35</td>
<td>23.59</td>
<td>x</td>
<td>x</td>
<td>26.46</td>
<td>0.67</td>
</tr>
<tr>
<td>4DG-1524</td>
<td>40.89</td>
<td>15.38</td>
<td>13.96</td>
<td>0.83</td>
<td>12.32</td>
<td>19.38</td>
<td>x</td>
<td>12.40</td>
</tr>
<tr>
<td>4DL-1801</td>
<td>40.74</td>
<td>38.60</td>
<td>22.71</td>
<td>x</td>
<td>0.106</td>
<td>0.119</td>
<td>0.97</td>
<td>0.78</td>
</tr>
<tr>
<td>3AL-1872</td>
<td>26.59</td>
<td>0.98</td>
<td>20.48</td>
<td>30.55</td>
<td>x</td>
<td>x</td>
<td>3.16</td>
<td>13.40</td>
</tr>
<tr>
<td>4DI-1893</td>
<td>34.57</td>
<td>12.50</td>
<td>0.100</td>
<td>17.40</td>
<td>0.100</td>
<td>1.12</td>
<td>0.103</td>
<td>0.105</td>
</tr>
<tr>
<td>4DL-1980</td>
<td>23.45</td>
<td>16.59</td>
<td>0.104</td>
<td>19.49</td>
<td>0.94</td>
<td>20.41</td>
<td>x</td>
<td>1.103</td>
</tr>
<tr>
<td>4DN-2014</td>
<td>34.59</td>
<td>5.15</td>
<td>0.96</td>
<td>11.22</td>
<td>0.92</td>
<td>0.109</td>
<td>0.101</td>
<td>0.90</td>
</tr>
<tr>
<td>4DS-2678</td>
<td>0.95</td>
<td>2.39</td>
<td>0.119</td>
<td>x</td>
<td>0.97</td>
<td>0.100</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>4DS-2705</td>
<td>25.47</td>
<td>29.50</td>
<td>17.35</td>
<td>10.13</td>
<td>0.97</td>
<td>31.50</td>
<td>18.20</td>
<td>0.105</td>
</tr>
<tr>
<td>4DS-2715</td>
<td>0.76</td>
<td>20.48</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4DS-2716</td>
<td>0.87</td>
<td>18.67</td>
<td>0.90</td>
<td>19.39</td>
<td>0.75</td>
<td>0.97</td>
<td>0.89</td>
<td>0.99</td>
</tr>
<tr>
<td>3AU-2858</td>
<td>45.68</td>
<td>32.79</td>
<td>1.8</td>
<td>8.26</td>
<td>19.30</td>
<td>13.29</td>
<td>18.34</td>
<td>0.86</td>
</tr>
<tr>
<td>3AZ-3013</td>
<td>0.78</td>
<td>30.57</td>
<td>4.9</td>
<td>13.45</td>
<td>39.68</td>
<td>17.26</td>
<td>x</td>
<td>0.93</td>
</tr>
<tr>
<td>4DY-3071</td>
<td>17.46</td>
<td>32.61</td>
<td>36.70</td>
<td>11.58</td>
<td>39.68</td>
<td>17.26</td>
<td>39.68</td>
<td>0.58</td>
</tr>
<tr>
<td>3AY-3216</td>
<td>30.62</td>
<td>13.35</td>
<td>13.40</td>
<td>10.30</td>
<td>21.30</td>
<td>28.38</td>
<td>37.80</td>
<td>0.58</td>
</tr>
<tr>
<td>4DY-3291</td>
<td>18.45</td>
<td>8.40</td>
<td>20.48</td>
<td>11.37</td>
<td>32.40</td>
<td>11.51</td>
<td>25.63</td>
<td>0.95</td>
</tr>
<tr>
<td>4EB-3455</td>
<td>22.43</td>
<td>18.65</td>
<td>29.68</td>
<td>16.34</td>
<td>31.55</td>
<td>15.23</td>
<td>27.51</td>
<td>0.77</td>
</tr>
<tr>
<td>3BC-3629</td>
<td>19.56</td>
<td>32.48</td>
<td>0.115</td>
<td>25.50</td>
<td>0.72</td>
<td>0.106</td>
<td>0.98</td>
<td>0.58</td>
</tr>
<tr>
<td>3BC-3677</td>
<td>17.35</td>
<td>1.6</td>
<td>0.96</td>
<td>2.19</td>
<td>0.92</td>
<td>x</td>
<td>1.18</td>
<td>0.90</td>
</tr>
<tr>
<td>3BE-4178</td>
<td>5.11</td>
<td>22.46</td>
<td>12.34</td>
<td>13.47</td>
<td>22.32</td>
<td>x</td>
<td>7.28</td>
<td>x</td>
</tr>
<tr>
<td>3BF-4311</td>
<td>20.45</td>
<td>20.39</td>
<td>0.57</td>
<td>11.27</td>
<td>0.101</td>
<td>0.94</td>
<td>x</td>
<td>0.27</td>
</tr>
<tr>
<td>3BE-4331</td>
<td>22.34</td>
<td>36.70</td>
<td>0.100</td>
<td>x</td>
<td>0.87</td>
<td>0.76</td>
<td>x</td>
<td>0.39</td>
</tr>
<tr>
<td>4EF-4391</td>
<td>12.40</td>
<td>18.31</td>
<td>30.68</td>
<td>22.37</td>
<td>21.50</td>
<td>23.47</td>
<td>5.30</td>
<td>0.90</td>
</tr>
<tr>
<td>3BE-4401</td>
<td>28.43</td>
<td>23.40</td>
<td>17.41</td>
<td>30.48</td>
<td>50.107</td>
<td>40.87</td>
<td>16.25</td>
<td>x</td>
</tr>
<tr>
<td>3BE-4540</td>
<td>35.55</td>
<td>17.37</td>
<td>36.52</td>
<td>16.38</td>
<td>22.41</td>
<td>x</td>
<td>14.23</td>
<td>0.99</td>
</tr>
<tr>
<td>4EC-4705</td>
<td>17.46</td>
<td>19.42</td>
<td>17.47</td>
<td>12.37</td>
<td>23.41</td>
<td>19.37</td>
<td>x</td>
<td>0.77</td>
</tr>
<tr>
<td>4EK-4975</td>
<td>34.46</td>
<td>18.68</td>
<td>23.54</td>
<td>13.67</td>
<td>20.39</td>
<td>30.69</td>
<td>x</td>
<td>0.69</td>
</tr>
<tr>
<td>4EK-5076</td>
<td>12.43</td>
<td>28.61</td>
<td>36.60</td>
<td>13.17</td>
<td>14.26</td>
<td>x</td>
<td>x</td>
<td>0.105</td>
</tr>
<tr>
<td>3BK-5333</td>
<td>0.89</td>
<td>25.80</td>
<td>17.48</td>
<td>10.21</td>
<td>x</td>
<td>30.68</td>
<td>23.53</td>
<td>0.86</td>
</tr>
<tr>
<td>3BK-5476</td>
<td>20.45</td>
<td>32.66</td>
<td>0.68</td>
<td>2.7</td>
<td>0.100</td>
<td>0.95</td>
<td>0.100</td>
<td>0.39</td>
</tr>
<tr>
<td>3BK-5587</td>
<td>23.34</td>
<td>31.69</td>
<td>0.96</td>
<td>9.17</td>
<td>x</td>
<td>x</td>
<td>0.94</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>4DS-2705</td>
<td>4DS-2715</td>
<td>4DS-2716</td>
<td>3AU-2858</td>
<td>3AZ-3013</td>
<td>4DY-3071</td>
<td>3AY-3216</td>
<td>4DY-3291</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>4DA-59</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4DL-100</td>
<td>21;50</td>
<td>0;96</td>
<td>0;94</td>
<td>7;16</td>
<td>0;68</td>
<td>9;17</td>
<td>19;35</td>
<td>6;16</td>
</tr>
<tr>
<td>34C-184</td>
<td>0;72</td>
<td>0;103</td>
<td>0;89</td>
<td>0;97</td>
<td>15;32</td>
<td>0;105</td>
<td>0;95</td>
<td>0;66</td>
</tr>
<tr>
<td>4DD-201</td>
<td>0;84</td>
<td>0;106</td>
<td>0;107</td>
<td>18;40</td>
<td>0;118</td>
<td>x</td>
<td>0;99</td>
<td>x</td>
</tr>
<tr>
<td>4DD-288</td>
<td>0;72</td>
<td>0;94</td>
<td>0;99</td>
<td>31;98</td>
<td>0;110</td>
<td>x</td>
<td>0;106</td>
<td>x</td>
</tr>
<tr>
<td>4DD-418</td>
<td>x</td>
<td>0;96</td>
<td>7;40</td>
<td>0;90</td>
<td>12;30</td>
<td>20;44</td>
<td>22;40</td>
<td>x</td>
</tr>
<tr>
<td>4DG-777</td>
<td>0;114</td>
<td>0;89</td>
<td>0;103</td>
<td>6;30</td>
<td>37;80</td>
<td>12;37</td>
<td>23;53</td>
<td>19;44</td>
</tr>
<tr>
<td>4DH-1251</td>
<td>10;18</td>
<td>0;91</td>
<td>0;95</td>
<td>x</td>
<td>x</td>
<td>3;12</td>
<td>8;38</td>
<td>12;38</td>
</tr>
<tr>
<td>4DI-1367</td>
<td>x</td>
<td>0;82</td>
<td>0;120</td>
<td>19;40</td>
<td>13;26</td>
<td>16;46</td>
<td>9;20</td>
<td>50;68</td>
</tr>
<tr>
<td>4DG-1524</td>
<td>5;15</td>
<td>20;67</td>
<td>15;31</td>
<td>31;70</td>
<td>4;19</td>
<td>26;50</td>
<td>x</td>
<td>37;82</td>
</tr>
<tr>
<td>4DL-1801</td>
<td>7;19</td>
<td>0;98</td>
<td>0;113</td>
<td>40;86</td>
<td>13;62</td>
<td>x</td>
<td>12;34</td>
<td>40;86</td>
</tr>
<tr>
<td>3AI-1872</td>
<td>18;32</td>
<td>9;19</td>
<td>13;40</td>
<td>21;59</td>
<td>26;78</td>
<td>40;69</td>
<td>18;29</td>
<td>x</td>
</tr>
<tr>
<td>4DI-1893</td>
<td>0;105</td>
<td>0;92</td>
<td>0;95</td>
<td>34;50</td>
<td>x</td>
<td>2;4</td>
<td>21;46</td>
<td>17;34</td>
</tr>
<tr>
<td>4DL-1980</td>
<td>x</td>
<td>0;107</td>
<td>0;102</td>
<td>17;66</td>
<td>11;37</td>
<td>23;49</td>
<td>38;69</td>
<td>x</td>
</tr>
<tr>
<td>4DN-2014</td>
<td>22;55</td>
<td>0;98</td>
<td>0;119</td>
<td>23;56</td>
<td>13;47</td>
<td>15;28</td>
<td>20;37</td>
<td>10;40</td>
</tr>
<tr>
<td>4DS-2678</td>
<td>0;51</td>
<td>0;95</td>
<td>0;113</td>
<td>0;80</td>
<td>4;40</td>
<td>0;90</td>
<td>x</td>
<td>0;90</td>
</tr>
<tr>
<td>4DS-2705</td>
<td>26;60</td>
<td>0;58</td>
<td>0;73</td>
<td>12;50</td>
<td>20;36</td>
<td>13;40</td>
<td>19;44</td>
<td>30;66</td>
</tr>
<tr>
<td>4DS-2715</td>
<td>0;76</td>
<td>0;72</td>
<td>0;101</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4DS-2716</td>
<td>0;87</td>
<td>0;97</td>
<td>0;83</td>
<td>0;98</td>
<td>0;79</td>
<td>0;89</td>
<td>0;98</td>
<td>0;78</td>
</tr>
<tr>
<td>3AIU-2858</td>
<td>15;40</td>
<td>0;108</td>
<td>0;74</td>
<td>0;109</td>
<td>13;17</td>
<td>0;104</td>
<td>20;44</td>
<td>0;94</td>
</tr>
<tr>
<td>3AZ-3013</td>
<td>14;55</td>
<td>0;59</td>
<td>0;89</td>
<td>x</td>
<td>0;52</td>
<td>14;28</td>
<td>30;70</td>
<td>23;54</td>
</tr>
<tr>
<td>4DY-3071</td>
<td>7;13</td>
<td>0;78</td>
<td>0;66</td>
<td>0;69</td>
<td>10;32</td>
<td>0;100</td>
<td>21;48</td>
<td>10;35</td>
</tr>
<tr>
<td>3AY-3216</td>
<td>8;17</td>
<td>0;87</td>
<td>0;88</td>
<td>0;98</td>
<td>x</td>
<td>0;190</td>
<td>0;82</td>
<td>0;95</td>
</tr>
<tr>
<td>4DY-3291</td>
<td>9;17</td>
<td>0;112</td>
<td>0;75</td>
<td>0;67</td>
<td>15;36</td>
<td>0;72</td>
<td>19;31</td>
<td>0;83</td>
</tr>
<tr>
<td>4EB-3455</td>
<td>15;51</td>
<td>x</td>
<td>0;112</td>
<td>30;58</td>
<td>5;10</td>
<td>23;40</td>
<td>18;54</td>
<td>12;34</td>
</tr>
<tr>
<td>3BC-3629</td>
<td>22;55</td>
<td>x</td>
<td>0;103</td>
<td>x</td>
<td>4;26</td>
<td>15;34</td>
<td>21;40</td>
<td>50;107</td>
</tr>
<tr>
<td>3BC-3677</td>
<td>21;50</td>
<td>x</td>
<td>0;67</td>
<td>18;38</td>
<td>13;42</td>
<td>9;19</td>
<td>x</td>
<td>19;43</td>
</tr>
<tr>
<td>4EC-3742</td>
<td>22;55</td>
<td>x</td>
<td>0;85</td>
<td>12;33</td>
<td>x</td>
<td>23;41</td>
<td>17;20</td>
<td>21;48</td>
</tr>
<tr>
<td>4KE-3781</td>
<td>28;31</td>
<td>x</td>
<td>0;114</td>
<td>0;90</td>
<td>15;37</td>
<td>0;109</td>
<td>23;55</td>
<td>0;90</td>
</tr>
<tr>
<td>4EC-3906</td>
<td>28;37</td>
<td>x</td>
<td>0;58</td>
<td>0;50</td>
<td>31;60</td>
<td>x</td>
<td>18;31</td>
<td>0;67</td>
</tr>
<tr>
<td>3BE-4178</td>
<td>21;41</td>
<td>x</td>
<td>0;98</td>
<td>0;99</td>
<td>x</td>
<td>0;90</td>
<td>0;114</td>
<td>22;52</td>
</tr>
<tr>
<td>3BF-4311</td>
<td>35;70</td>
<td>x</td>
<td>0;85</td>
<td>23;45</td>
<td>15;36</td>
<td>17;38</td>
<td>30;65</td>
<td>21;37</td>
</tr>
<tr>
<td>3BE-4331</td>
<td>22;41</td>
<td>x</td>
<td>0;104</td>
<td>42;71</td>
<td>20;45</td>
<td>18;38</td>
<td>2;16</td>
<td>21;38</td>
</tr>
<tr>
<td>4EF-4391</td>
<td>17;31</td>
<td>x</td>
<td>0;121</td>
<td>x</td>
<td>8;16</td>
<td>x</td>
<td>x</td>
<td>23;66</td>
</tr>
<tr>
<td>3BE-4401</td>
<td>x</td>
<td>x</td>
<td>0;106</td>
<td>6;23</td>
<td>15;37</td>
<td>10;47</td>
<td>8;10</td>
<td>x</td>
</tr>
<tr>
<td>4EC-4540</td>
<td>22;38</td>
<td>x</td>
<td>0;98</td>
<td>0;90</td>
<td>45;67</td>
<td>8;16</td>
<td>x</td>
<td>22;72</td>
</tr>
<tr>
<td>4EH-4705</td>
<td>22;35</td>
<td>0;92</td>
<td>0;95</td>
<td>x</td>
<td>11;44</td>
<td>0;106</td>
<td>0;129</td>
<td>0;98</td>
</tr>
<tr>
<td>4EK-4975</td>
<td>21;55</td>
<td>x</td>
<td>0;105</td>
<td>0;97</td>
<td>19;44</td>
<td>0;90</td>
<td>23;41</td>
<td>0;78</td>
</tr>
<tr>
<td>4EK-5076</td>
<td>9;17</td>
<td>0;84</td>
<td>0;40</td>
<td>0;123</td>
<td>x</td>
<td>0;107</td>
<td>0;102</td>
<td>x</td>
</tr>
<tr>
<td>3BK-5333</td>
<td>13;28</td>
<td>x</td>
<td>0;96</td>
<td>4;30</td>
<td>0;120</td>
<td>30;69</td>
<td>19;42</td>
<td>16;39</td>
</tr>
<tr>
<td>3BK-5476</td>
<td>27;40</td>
<td>x</td>
<td>0;77</td>
<td>x</td>
<td>26;40</td>
<td>40;89</td>
<td>33;67</td>
<td>19;25</td>
</tr>
<tr>
<td>3BK-5587</td>
<td>52;68</td>
<td>x</td>
<td>0;85</td>
<td>14;38</td>
<td>19;44</td>
<td>14;48</td>
<td>16;51</td>
<td>28;39</td>
</tr>
<tr>
<td>3BL-5523</td>
<td>0;106</td>
<td>x</td>
<td>0;100</td>
<td>x</td>
<td>15;35</td>
<td>24;33</td>
<td>17;47</td>
<td>19;46</td>
</tr>
<tr>
<td>3BN-6246</td>
<td>40;86</td>
<td>x</td>
<td>0;100</td>
<td>12;34</td>
<td>15;60</td>
<td>21;57</td>
<td>27;42</td>
<td>8;15</td>
</tr>
<tr>
<td>4EP-6322</td>
<td>23;57</td>
<td>0;94</td>
<td>0;105</td>
<td>0;85</td>
<td>37;79</td>
<td>0;105</td>
<td>0;99</td>
<td>0;107</td>
</tr>
<tr>
<td>4EQ-6548</td>
<td>34;85</td>
<td>x</td>
<td>0;38</td>
<td>22;42</td>
<td>0;119</td>
<td>27;62</td>
<td>x</td>
<td>20;45</td>
</tr>
<tr>
<td>3BP-6666</td>
<td>0;125</td>
<td>x</td>
<td>0;90</td>
<td>25;68</td>
<td>x</td>
<td>21;39</td>
<td>20;36</td>
<td>x</td>
</tr>
<tr>
<td>4ER-6893</td>
<td>x</td>
<td>x</td>
<td>0;108</td>
<td>0;66</td>
<td>24;68</td>
<td>1;70</td>
<td>x</td>
<td>0;103</td>
</tr>
</tbody>
</table>

<p>| 4EB-3455 | 3BC-3629 | 3BC-3677 | 4EC-3742 | 4EC-3781 | 4EC-3906 | 3BE-4178 | 3BF-4311 |
| 4DA-59 | n/a | | | | | | | |
| 4DA-122 | 10;32 | 21;30 | 21;39 | 41;62 | 12;34 | 23;46 | 20;56 | 12;30 |
| 3AC-184 | 19;30 | 30;68 | 30;69 | 30;43 | 0;92 | 0;95 | 0;50 | 22;43 |
| 4DD-201 | 42;50 | x | 6;18 | 21;46 | 0;95 | 19;32 | 0;78 | 21;50 |
| 4DD-288 | 32;50 | 10;40 | 40;92 | 19;44 | 0;105 | 0;78 | 0;78 | 5;34 |
| 4DD-418 | 15;37 | 12;40 | 3;20 | 20;44 | 18;36 | 23;46 | 26;45 | 4;27 |
| 4DG-777 | 8;16 | 20;38 | 15;38 | x | 5;20 | 24;47 | 34;57 | 9;28 |
| 4DH-1251 | 11;23 | 40;85 | 30;56 | 15;35 | 21;48 | x | 28;45 | 2;5 |
| 4DI-1367 | 27;40 | 7;20 | 20;49 | 13;38 | 15;28 | x | x | 29;47 |
| 4DG-1524 | 33;68 | x | x | 12;24 | 17;38 | 40;89 | 9;27 | 18;23 |
| 4DL-1801 | 38;50 | 0;72 | 0;91 | 0;93 | x | 18;52 | 16;28 | 0;94 |
| 3AL-1872 | x | 31;70 | 9;31 | 35;70 | 19;45 | 22;57 | 15;46 | 14;60 |
| 4DI-1893 | 17;34 | 0;90 | x | 0;92 | 8;17 | 19;42 | 0;103 | 0;77 |
| 4DL-1980 | 21;40 | 0;60 | x | 0;90 | 10;41 | 22;41 | 21;55 | 0;58 |
| 4DN-2014 | 15;35 | x | 0;105 | x | x | 12;33 | 9;29 | 0;96 |
| 4DS-2678 | 0;59 | 0;96 | 0;95 | 0;105 | 0;116 | 0;35 | 0;49 | 0;106 |
| 4DS-2705 | 15;27 | 21;50 | 9;30 | 10;28 | 19;35 | x | 3;16 | x |
| 4DS-2715 | x | x | x | x | x | x | x | x |
| 4DS-2716 | 0;97 | 0;86 | 0;77 | 0;67 | 0;89 | 0;56 | 0;30 | 0;95 |
| 3AU-2858 | 13;45 | 21;30 | 3;16 | 7;14 | x | 0;90 | 0;48 | 13;36 |
| 3AZ-3013 | 17;40 | 34;89 | 37;50 | 8;16 | 19;30 | x | 19;25 | |
| 4DY-3071 | 8;17 | 8;17 | x | 27;36 | 0;90 | 0;95 | 0;69 | 22;41 |
| 3AY-3216 | x | 34;69 | x | 15;36 | 0;76 | 0;67 | 0;100 | x |
| 4DY-3291 | 23;63 | x | 19;35 | 20;45 | 19;37 | 0;96 | 21;30 | 15;46 |
| 4EB-3455 | 0;71 | 0;72 | 23;66 | 0;72 | x | 1;125 | 19;30 | x |
| 3BC-3629 | x | 0;112 | 0;114 | 0;82 | 27;60 | 39;67 | 30;61 | 0;97 |
| 3BC-3677 | 0;90 | 0;90 | 0;48 | 0;95 | 8;17 | 0;103 | 15;28 | 0;95 |
| 4EC-3742 | 15;36 | 0;50 | 0;108 | 0;75 | 5;18 | 40;86 | 19;32 | 0;79 |
| 4EC-3781 | 18;38 | 53;105 | 3;16 | x | 15;41 | 0;90 | x | 10;17 |
| 4EC-3906 | 2;98 | 4;18 | 23;47 | 13;40 | 0;79 | 0;57 | 0;85 | 23;41 |
| 3BF-4178 | 11;51 | 14;30 | 35;49 | 15;47 | 0;90 | 0;78 | 0;82 | x |
| 3BE-4311 | 2;9 | 0;105 | 0;67 | 0;106 | 23;55 | 13;45 | 23;43 | 0;58 |
| 3BE-4331 | 22;52 | 0;78 | x | 0;47 | x | x | 5;36 | 0;68 |
| 4EF-4391 | 0;90 | 21;30 | 30;45 | 30;65 | x | 0;90 | 47;82 | 9;18 |
| 4EC-4540 | 0;79 | 38;60 | 31;55 | 40;87 | x | 1;79 | 17;25 | 17;42 |
| 3BE-4401 | 0;108 | x | 21;47 | x | x | 0;79 | 32;52 | 22;31 |
| 4EH-4705 | 18;42 | 40;89 | x | 15;37 | 0;67 | 0;90 | 0;94 | x |
| 4EK-4975 | 13;32 | 21;46 | 23;51 | 2;6 | 0;100 | 0;78 | 0;92 | x |
| 4EK-5076 | x | 39;71 | x | 8;17 | 0;89 | 0;73 | 0;66 | 20;32 |
| 3BK-5333 | 30;41 | 30;75 | 24;56 | 5;11 | 8;19 | 13;45 | 5;16 | x |</p>
<table>
<thead>
<tr>
<th></th>
<th>3BE-4331</th>
<th>4EF-4391</th>
<th>3BE-4401</th>
<th>4EC-4540</th>
<th>4EH-4705</th>
<th>4EK-4975</th>
<th>4EK-5076</th>
<th>3BK-5333</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DA-59</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4DA-122</td>
<td>8;16</td>
<td>23,56</td>
<td>13,50</td>
<td>11;24</td>
<td>30;66</td>
<td>21;44</td>
<td>21;45</td>
<td>0;70</td>
</tr>
<tr>
<td>3AC-184</td>
<td>11;44</td>
<td>13;62</td>
<td>18,37</td>
<td>8;20</td>
<td>0;105</td>
<td>0;100</td>
<td>0;100</td>
<td>10;21</td>
</tr>
<tr>
<td>4DD-201</td>
<td>10;25</td>
<td>x</td>
<td>10;13</td>
<td>9;21</td>
<td>0;100</td>
<td>0;100</td>
<td>0;109</td>
<td>2;6</td>
</tr>
<tr>
<td>4DD-288</td>
<td>15;28</td>
<td>2;27</td>
<td>x</td>
<td>4;12</td>
<td>x</td>
<td>0;94</td>
<td>0;100</td>
<td>13;17</td>
</tr>
<tr>
<td>4DD-418</td>
<td>23;66</td>
<td>1;6</td>
<td>22,43</td>
<td>x</td>
<td>x</td>
<td>30;53</td>
<td>9;18</td>
<td>0;108</td>
</tr>
<tr>
<td>4DG-777</td>
<td>x</td>
<td>37,58</td>
<td>18,46</td>
<td>19;39</td>
<td>14;65</td>
<td>30;41</td>
<td>23;45</td>
<td>14;25</td>
</tr>
<tr>
<td>4DH-1251</td>
<td>23,51</td>
<td>2;10</td>
<td>18,46</td>
<td>17;21</td>
<td>17;30</td>
<td>30;72</td>
<td>18,45</td>
<td>0;68</td>
</tr>
<tr>
<td>4DI-1367</td>
<td>16,51</td>
<td>50,78</td>
<td>x</td>
<td>27;58</td>
<td>18;51</td>
<td>17;48</td>
<td>31;40</td>
<td>0;129</td>
</tr>
<tr>
<td>4DG-1524</td>
<td>17,36</td>
<td>36,60</td>
<td>17,34</td>
<td>40;62</td>
<td>22;43</td>
<td>17;58</td>
<td>12;32</td>
<td>19;37</td>
</tr>
<tr>
<td>4DL-1801</td>
<td>0;86</td>
<td>5,13</td>
<td>20,45</td>
<td>4,7</td>
<td>11;10</td>
<td>36,49</td>
<td>12,36</td>
<td>2;14</td>
</tr>
<tr>
<td>3AL-1872</td>
<td>x</td>
<td>1,4</td>
<td>22,41</td>
<td>22,42</td>
<td>14,29</td>
<td>x</td>
<td>4,18</td>
<td>x</td>
</tr>
<tr>
<td>4DI-1893</td>
<td>0;97</td>
<td>2,9</td>
<td>x</td>
<td>5,16</td>
<td>5,10</td>
<td>20,36</td>
<td>10,13</td>
<td>x</td>
</tr>
<tr>
<td>4DL-1980</td>
<td>0;100</td>
<td>x</td>
<td>x</td>
<td>34,57</td>
<td>34,66</td>
<td>4,17</td>
<td>7,36</td>
<td>3;7</td>
</tr>
<tr>
<td>4DN-2014</td>
<td>0;100</td>
<td>10,17</td>
<td>x</td>
<td>x</td>
<td>30,41</td>
<td>21,54</td>
<td>x</td>
<td>10;31</td>
</tr>
<tr>
<td>4DS-2678</td>
<td>0;77</td>
<td>0;78</td>
<td>0;104</td>
<td>0;75</td>
<td>0;107</td>
<td>0;100</td>
<td>0;100</td>
<td>0;59</td>
</tr>
<tr>
<td>4DS-2705</td>
<td>19,28</td>
<td>9,16</td>
<td>23,46</td>
<td>6,18</td>
<td>21,53</td>
<td>21,40</td>
<td>7,42</td>
<td>18,37</td>
</tr>
<tr>
<td>4DS-2715</td>
<td>0;78</td>
<td>0;105</td>
<td>x</td>
<td>x</td>
<td>0;105</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4DS-2716</td>
<td>0;103</td>
<td>0;68</td>
<td>0;100</td>
<td>0;68</td>
<td>0;77</td>
<td>0;47</td>
<td>0;105</td>
<td>0;112</td>
</tr>
<tr>
<td>3AU-2858</td>
<td>13,47</td>
<td>3,7</td>
<td>20,40</td>
<td>6,15</td>
<td>0;100</td>
<td>0;102</td>
<td>0;100</td>
<td>9;17</td>
</tr>
<tr>
<td>3AZ-3013</td>
<td>17,48</td>
<td>7,20</td>
<td>8,17</td>
<td>3,27</td>
<td>x</td>
<td>32,40</td>
<td>x</td>
<td>0;100</td>
</tr>
<tr>
<td>4DY-3071</td>
<td>30,41</td>
<td>13,46</td>
<td>30,42</td>
<td>10,36</td>
<td>0;100</td>
<td>0;100</td>
<td>3;11</td>
<td>23,45</td>
</tr>
<tr>
<td>3AY-3216</td>
<td>16,28</td>
<td>4,8</td>
<td>12,38</td>
<td>5,9</td>
<td>0;101</td>
<td>0;100</td>
<td>7,42</td>
<td>13,20</td>
</tr>
<tr>
<td>4DY-3291</td>
<td>17,29</td>
<td>27,34</td>
<td>30,65</td>
<td>x</td>
<td>0;105</td>
<td>0;104</td>
<td>5,27</td>
<td>4;8</td>
</tr>
<tr>
<td>4EB-3455</td>
<td>x</td>
<td>0;109</td>
<td>0;100</td>
<td>0;103</td>
<td>16,47</td>
<td>43,80</td>
<td>10;35</td>
<td>x</td>
</tr>
<tr>
<td>3BC-3629</td>
<td>0;100</td>
<td>2,4</td>
<td>20,47</td>
<td>30,65</td>
<td>x</td>
<td>22,58</td>
<td>18,34</td>
<td>6;16</td>
</tr>
<tr>
<td>3BC-3677</td>
<td>0;102</td>
<td>0;97</td>
<td>0;102</td>
<td>0;104</td>
<td>7,36</td>
<td>19,36</td>
<td>18,37</td>
<td>21,38</td>
</tr>
<tr>
<td>4EC-3742</td>
<td>0;109</td>
<td>31,60</td>
<td>x</td>
<td>6,19</td>
<td>21,28</td>
<td>31,60</td>
<td>20,44</td>
<td>6;10</td>
</tr>
<tr>
<td>4EC-3781</td>
<td>x</td>
<td>17,51</td>
<td>x</td>
<td>17,35</td>
<td>0;100</td>
<td>0;105</td>
<td>0;101</td>
<td>7;18</td>
</tr>
<tr>
<td>4EC-3906</td>
<td>22,45</td>
<td>0;98</td>
<td>0;102</td>
<td>2,96</td>
<td>0;100</td>
<td>0;100</td>
<td>x</td>
<td>3;11</td>
</tr>
<tr>
<td>3BE-4178</td>
<td>37,57</td>
<td>30,47</td>
<td>25,31</td>
<td>10,18</td>
<td>0;100</td>
<td>0;100</td>
<td>0;100</td>
<td>12;39</td>
</tr>
<tr>
<td>3BF-4311</td>
<td>0;100</td>
<td>15,50</td>
<td>3,15</td>
<td>x</td>
<td>41,57</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3BE-4331</td>
<td>0;100</td>
<td>7,28</td>
<td>20,41</td>
<td>12,25</td>
<td>17,60</td>
<td>12,35</td>
<td>5,28</td>
<td>5,28</td>
</tr>
<tr>
<td>3BE-4332</td>
<td>x</td>
<td>0;104</td>
<td>0;104</td>
<td>0;100</td>
<td>8,16</td>
<td>11,44</td>
<td>10,22</td>
<td>11,26</td>
</tr>
<tr>
<td>3BE-4401</td>
<td>x</td>
<td>0;100</td>
<td>0;100</td>
<td>0;100</td>
<td>15,36</td>
<td>21,46</td>
<td>x</td>
<td>13,19</td>
</tr>
<tr>
<td>4EC-4540</td>
<td>15,34</td>
<td>0;120</td>
<td>0;100</td>
<td>0;79</td>
<td>x</td>
<td>11,58</td>
<td>10,18</td>
<td>x</td>
</tr>
<tr>
<td>4EH-4705</td>
<td>x</td>
<td>x</td>
<td>22,32</td>
<td>7,15</td>
<td>18,43</td>
<td>0,82</td>
<td>21,38</td>
<td>x</td>
</tr>
<tr>
<td>4EK-4975</td>
<td>6,17</td>
<td>6,15</td>
<td>25,61</td>
<td>32,57</td>
<td>0;105</td>
<td>0;120</td>
<td>13,30</td>
<td>6,15</td>
</tr>
<tr>
<td>4EK-5076</td>
<td>18,38</td>
<td>6,32</td>
<td>22,46</td>
<td>x</td>
<td>0;88</td>
<td>0;100</td>
<td>0,79</td>
<td>5,27</td>
</tr>
<tr>
<td>3BK-5333</td>
<td>x</td>
<td>7;22</td>
<td>17;23</td>
<td>31;56</td>
<td>x</td>
<td>16;38</td>
<td>8;26</td>
<td>0;98</td>
</tr>
<tr>
<td>3BK-5476</td>
<td>0;100</td>
<td>9;21</td>
<td>16;53</td>
<td>21;55</td>
<td>x</td>
<td>4;11</td>
<td>13;57</td>
<td>18;45</td>
</tr>
<tr>
<td>3BK-5587</td>
<td>0;100</td>
<td>8;26</td>
<td>30;41</td>
<td>28;42</td>
<td>23;55</td>
<td>12;27</td>
<td>15;46</td>
<td>x</td>
</tr>
<tr>
<td>3BL-5823</td>
<td>20;32</td>
<td>12;36</td>
<td>48;85</td>
<td>27;62</td>
<td>21;34</td>
<td>8;23</td>
<td>x</td>
<td>21;38</td>
</tr>
<tr>
<td>3BN-6246</td>
<td>0;100</td>
<td>10;13</td>
<td>28;41</td>
<td>x</td>
<td>21;35</td>
<td>x</td>
<td>6;15</td>
<td>18;34</td>
</tr>
<tr>
<td>4EP-6322</td>
<td>16;51</td>
<td>15;48</td>
<td>x</td>
<td>x</td>
<td>0;100</td>
<td>0;105</td>
<td>0;90</td>
<td>20;44</td>
</tr>
<tr>
<td>4EQ-6548</td>
<td>42;75</td>
<td>10;18</td>
<td>x</td>
<td>12;33</td>
<td>x</td>
<td>28;31</td>
<td>7;24</td>
<td>0;104</td>
</tr>
<tr>
<td>3BP-6666</td>
<td>x</td>
<td>22;40</td>
<td>18;51</td>
<td>23;56</td>
<td>22;36</td>
<td>7;20</td>
<td>x</td>
<td>8;21</td>
</tr>
<tr>
<td>4ER-6893</td>
<td>2;7</td>
<td>30;42</td>
<td>17;20</td>
<td>x</td>
<td>0;100</td>
<td>x</td>
<td>0;78</td>
<td>10;13</td>
</tr>
</tbody>
</table>

<p>| 3BK-5476 | 3BK-5587 | 3BL-5823 | 3BN-6246 | 4EP-6322 | 4EQ-6548 | 3BP-6666 | 4ER-6893 |
| 4DA-59 | n/a | | | | | | | | |
| 4DA-122 | 12;50 | 23;65 | 23;45 | 19;35 | 20;37 | 0;100 | 23;54 | 23;50 |
| 3AC-184 | 15;37 | 45;70 | 0;69 | 8;15 | 0;70 | 23;36 | 0;100 | 0;103 |
| 4DD-201 | 2;14 | x | 23;45 | 15;31 | 0;121 | 34;58 | 3;6 | 0;90 |
| 4DD-288 | 14;27 | 21;45 | 3;7 | 17;34 | x | 0;85 | 7;18 | 22;47 | 0;100 |
| 4DD-418 | 9;18 | 11;25 | 23;48 | 21;46 | 30;34 | 0;101 | 7;20 | 6;13 |
| 4DG-777 | 20;43 | 15;46 | 0;106 | 15;38 | 15;31 | 9;17 | 0;98 | 4;17 |
| 4DI-1251 | 16;25 | 7;37 | 10;18 | x | 30;43 | 0;109 | 13;50 | 28;49 |
| 4DI-1367 | 9;57 | 10;31 | 15;37 | 18;54 | 14;28 | 0;90 | x | 17;62 |
| 4DG-1524 | 10;18 | x | 4;19 | 20;45 | 1;5 | 15;23 | 12;31 | 4;12 |
| 4DL-1801 | 0;96 | 0;95 | 5;16 | 0;84 | 30;79 | 14;37 | x | 9;16 |
| 3AL-1872 | 12;45 | 34;50 | x | 22;45 | 22;46 | 13;30 | 5;17 | x |
| 4DI-1893 | 0;108 | 0;94 | 0;56 | 0;98 | 15;23 | x | 0;94 | 18;34 |
| 4DL-1980 | 0;109 | x | 10;31 | 0;58 | 16;27 | 5;17 | 30;41 | x |
| 4DS-2678 | 0;99 | 0;108 | 0;99 | 0;100 | 0;105 | 0;75 | 0;90 | 0;109 |
| 4DS-2703 | 30;58 | 13;20 | 0;95 | 17;35 | 12;25 | 9;16 | 0;96 | 17;28 |
| 4DS-2715 | x | x | x | x | x | x | x | x |
| 4DS-2716 | 0;58 | 0;89 | 0;65 | 0;79 | 0;47 | 0;105 | 0;104 | 0;60 |
| 3AU-2858 | 18;51 | 20;36 | 7;28 | x | 0;95 | 18;54 | 20;41 | 0;100 |
| 3AZ-3013 | x | 10;31 | 11;24 | 23;57 | 21;48 | 0;96 | 30;41 | 21;55 |
| 4DY-3071 | 9;38 | x | 13;62 | 14;62 | 0;81 | 18;53 | 5;16 | 0;100 |
| 3AY-3216 | 15;54 | 3;13 | 10;17 | 30;41 | 0;126 | 31;63 | x | 0;100 |
| 4DY-3291 | 3;10 | x | x | x | x | 7;25 | 22;48 | 0;102 |
| 4EB-3455 | x | 13;62 | x | 19;39 | 2;11 | 4;7 | 1;3 | 15;35 |
| 3BC-3629 | 0;100 | 0;68 | x | 0;67 | 9;18 | 17;31 | x | 18;38 |
| 3BC-3677 | 0;103 | 0;96 | 1;4 | 0;69 | 4;17 | 24;63 | x | x |
| 4EC-3742 | 0;100 | 0;48 | 20;36 | x | 20;45 | 22;59 | x | 15;29 |
| 4EC-3781 | 12;59 | 19;46 | 10;31 | 19;35 | 0;72 | 11;52 | 5;17 | 0;100 |
| 4EC-3906 | 2;5 | 8;16 | x | 6;17 | 0;87 | 28;40 | 40;61 | 10;42 |
| 3BE-4178 | 0;90 | 17;35 | 14;23 | 16;37 | x | 13;46 | 30;42 | 0;100 |
| 3BF-4311 | 0;89 | 0;96 | 7;20 | 0;58 | 30;45 | x | 8;19 | 23;66 |
| 3BE-4331 | 0;97 | 0;82 | 21;45 | 0;97 | 32;47 | x | 32;69 | 11;45 |
| 4EF-4391 | x | 10;18 | x | 19;36 | 18;61 | 16;27 | 17;34 | x |
| 3BE-4401 | x | 19;37 | 15;37 | 10;27 | 17;21 | 1;5 | 16;51 | 12;57 |
| 4EC-4540 | x | 16;47 | 31;62 | x | 16;51 | 30;75 | 2;37 | 11;44 |</p>
<table>
<thead>
<tr>
<th>4EH-4705</th>
<th>5;9</th>
<th>7;36</th>
<th>23;45</th>
<th>x</th>
<th>0;65</th>
<th>7;9</th>
<th>19;41</th>
<th>0;102</th>
</tr>
</thead>
<tbody>
<tr>
<td>4EK-4975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4EK-5076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3BK-5333</td>
<td></td>
<td>3:11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3BK-5476</td>
<td></td>
<td>0:105</td>
<td>0:93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3BK-5587</td>
<td></td>
<td>0:98</td>
<td>0:95</td>
<td>8:26</td>
<td>0:81</td>
<td>12:41</td>
<td>23:41</td>
<td></td>
</tr>
<tr>
<td>3BL-5823</td>
<td></td>
<td>7:42</td>
<td></td>
<td>13:25</td>
<td>17:35</td>
<td>13:67</td>
<td>0:92</td>
<td></td>
</tr>
<tr>
<td>3BN-6246</td>
<td></td>
<td>0:68</td>
<td></td>
<td>32:65</td>
<td>12:36</td>
<td>0:104</td>
<td>16:51</td>
<td>22:41</td>
</tr>
<tr>
<td>4EQ-6548</td>
<td></td>
<td></td>
<td>7:28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:58</td>
</tr>
<tr>
<td>3BP-6666</td>
<td></td>
<td>17:52</td>
<td></td>
<td>0:95</td>
<td>21:58</td>
<td>23:56</td>
<td>13:31</td>
<td>0:100</td>
</tr>
<tr>
<td>4ER-6893</td>
<td></td>
<td></td>
<td>2:6</td>
<td></td>
<td>0:58</td>
<td>27:36</td>
<td></td>
<td>0:100</td>
</tr>
</tbody>
</table>
D) Complementation analysis of the EMS mutation lines (2): Complementation with P-element deletions and insertions.

The numbers represent the progeny of the crosses between male EMS mutants and females from each P-element insertion/deletion. Numbers of progeny are recorded as ratio of CyO"; CyO.

<table>
<thead>
<tr>
<th>Male Line</th>
<th>Virgin females</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AC-184</td>
<td>25; 37 14; 26 35; 60 28; 50 33; 66 18; 44 23; 40 16; 29</td>
</tr>
<tr>
<td>3AL-1872</td>
<td>19; 36 16; 28 23; 47 27; 40 34; 76 24; 47 24; 45 X</td>
</tr>
<tr>
<td>3AU-2858</td>
<td>22; 38 17; 42 37; 83 26; 53 29; 56 17; 39 28; 59 21; 46</td>
</tr>
<tr>
<td>3AY-3216</td>
<td>17; 40 13; 38 21; 47 28; 48 27; 63 22; 47 19; 47 25; 51</td>
</tr>
<tr>
<td>3AZ-3013</td>
<td>24; 43 12; 34 28; 65 38; 62 42; 75 28; 59 27; 62 X</td>
</tr>
<tr>
<td>3BC-3629</td>
<td>19; 39 18; 61 23; 54 12; 39 19; 42 X X</td>
</tr>
<tr>
<td>3BC-3677</td>
<td>21; 41 11; 52 17; 46 24; 42 35; 64 25; 53 16; 29 X</td>
</tr>
<tr>
<td>3BE-4176</td>
<td>0; 68 0; 51 0; 54 0; 58 X 0; 48 0; 40 0; 77</td>
</tr>
<tr>
<td>3BE-4178</td>
<td>23; 51 27; 56 19; 37 22; 44 X X X</td>
</tr>
<tr>
<td>3BE-4311</td>
<td>19; 36 20; 44 31; 58 26; 51 X X 5; 32 X</td>
</tr>
<tr>
<td>3BE-4331</td>
<td>27; 46 29; 45 21; 46 19; 35 X X X</td>
</tr>
<tr>
<td>3BE-4401</td>
<td>18; 42 21; 47 18; 43 24; 42 X X X</td>
</tr>
<tr>
<td>4EB-3455</td>
<td>25; 51 23; 57 18; 31 21; 53 17; 46 26; 55 24; 37 X</td>
</tr>
<tr>
<td>4EC-3742</td>
<td>22; 38 35; 57 29; 55 35; 55 23; 48 23; 48 21; 46 X</td>
</tr>
<tr>
<td>4EC-3781</td>
<td>27; 50 19; 41 26; 56 17; 39 X X X</td>
</tr>
<tr>
<td>4EC-3900</td>
<td>20; 37 19; 42 35; 55 24; 33 27; 61 19; 44 X X</td>
</tr>
<tr>
<td>4EC-3906</td>
<td>24; 52 17; 38 0; 63 0; 42 30; 56 0; 56 4; 36 X</td>
</tr>
<tr>
<td>4EF-4391</td>
<td>27; 47 31; 54 40; 72 22; 39 0; 74 0; 42 21; 47 X</td>
</tr>
<tr>
<td>4EH-4705</td>
<td>18; 34 24; 52 19; 51 23; 48 X X X</td>
</tr>
<tr>
<td>4DA-122</td>
<td>12; 33 13; 30 16; 43 15; 36 32; 57 22; 37 14; 32 19; 39</td>
</tr>
<tr>
<td>4DD-288</td>
<td>18; 30 12; 29 17; 23 18; 53 34; 72 18; 39 22; 37 26; 48</td>
</tr>
<tr>
<td>4DD-418</td>
<td>20; 45 21; 59 26; 55 13; 29 32; 66 27; 49 19; 32 X</td>
</tr>
<tr>
<td>4BD-1980</td>
<td>32; 48 18; 47 17; 46 24; 66 31; 79 20; 44 26; 57 22; 46</td>
</tr>
<tr>
<td>4DG-777</td>
<td>25; 48 43; 59 8; 22 32; 61 34; 57 18; 34 21; 39 14; 45</td>
</tr>
<tr>
<td>4DH-1281</td>
<td>17; 49 22; 58 26; 72 30; 79 32; 61 23; 41 26; 53 28; 53</td>
</tr>
<tr>
<td>4DI-1893</td>
<td>21; 36 29; 57 0; 57 23; 48 X 21; 39 X X</td>
</tr>
<tr>
<td>4DL-1801</td>
<td>18; 38 27; 57 30; 59 23; 46 26; 49 23; 41 X X</td>
</tr>
<tr>
<td>4DN-2014</td>
<td>20; 46 30; 70 29; 47 13; 40 42; 71 19; 45 28; 48 17; 36</td>
</tr>
<tr>
<td>4DO-201</td>
<td>30; 64 17; 35 26; 43 25; 58 34; 58 24; 52 18; 35 23; 47</td>
</tr>
<tr>
<td>4DS-2705</td>
<td>28; 59 17; 66 0; 117 12; 36 0; 51 26; 56 X X</td>
</tr>
<tr>
<td>4DS-2715</td>
<td>0; 53 0; 86 0; 97 22; 42 X 0; 41 0; 37 0; 45</td>
</tr>
<tr>
<td>4DS-2716</td>
<td>0; 54 0; 62 0; 82 12; 40 0; 48 X X X</td>
</tr>
<tr>
<td>4DS-2678</td>
<td>0; 40 0; 34 0; 70 0; 56 0; 85 0; 43 0; 44 0; 38</td>
</tr>
<tr>
<td>4DY-3071</td>
<td>23; 44 22; 41 26; 69 29; 66 40; 76 28; 43 23; 38 15; 37</td>
</tr>
<tr>
<td>4DY-3291</td>
<td>22; 43 18; 56 34; 58 20; 40 17; 53 X X X</td>
</tr>
<tr>
<td>4DI-1367</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>4EC-4540</td>
<td>X X X X 0; 63 3; 62 X X</td>
</tr>
<tr>
<td>4DG-1524</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>4EK-4975</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>4EK-5476</td>
<td>X X X X X X X X</td>
</tr>
</tbody>
</table>
E) Raw data of progeny numbers in determining earliest lethal phase.

Mutant alleles were crossed to Df(2L)ast4. 25% of the progeny are homozygous for the balancer and be embryonic lethal.

<table>
<thead>
<tr>
<th>Group number</th>
<th>Mutant allele</th>
<th>Dish number</th>
<th>Number of embryos</th>
<th>Number of larvae</th>
<th>Number of adults</th>
<th>Earliest lethal phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4DA-122</td>
<td>1</td>
<td>100</td>
<td>76</td>
<td>51</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>74</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3BK-5333</td>
<td>1</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>75</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>72</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3BL-6666</td>
<td>1</td>
<td>100</td>
<td>52</td>
<td>52</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3BL-5823</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>49</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>52</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4DG-1524</td>
<td>1</td>
<td>100</td>
<td>76</td>
<td>51</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>65</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>74</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3AL-1872</td>
<td>1</td>
<td>103</td>
<td>52</td>
<td>52</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>88</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>101</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3AY-3126</td>
<td>1</td>
<td>100</td>
<td>51</td>
<td>51</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>60</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4EP-6322</td>
<td>1</td>
<td>100</td>
<td>51</td>
<td>51</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>115</td>
<td>62</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3BK-5588</td>
<td>1</td>
<td>100</td>
<td>77</td>
<td>51</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>72</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3BK-5476</td>
<td>1</td>
<td>100</td>
<td>76</td>
<td>50</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>75</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>72</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4EF-4391</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>Embryonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>51</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4EC-4540</td>
<td>1</td>
<td>100</td>
<td>87</td>
<td>87</td>
<td>Larval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td>79</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>100</td>
<td>86</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>
F) Rescue experiment (1):

Table: A.

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Allele</th>
<th>Progeny (Cy⁺:Cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122</td>
<td>0; 203</td>
</tr>
<tr>
<td></td>
<td>3BK-5333</td>
<td>0; 260</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666</td>
<td>0; 281</td>
</tr>
<tr>
<td></td>
<td>3BL-5823</td>
<td>0; 301</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>3AL-1872</td>
<td>/</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216</td>
<td>0; 140</td>
</tr>
<tr>
<td></td>
<td>4EP-6322</td>
<td>0; 193</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588</td>
<td>0; 250</td>
</tr>
<tr>
<td></td>
<td>3BK-5476</td>
<td>0; 284</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391</td>
<td>0; 310</td>
</tr>
<tr>
<td></td>
<td>4EC-4540</td>
<td>0; 195</td>
</tr>
</tbody>
</table>

Table: B.

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Allele</th>
<th>Progeny (Cy⁺:Cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122/3BK-5333</td>
<td>0; 190</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666/3BL-5823</td>
<td>0; 291</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524/3AL-1872</td>
<td>0; 274</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216/4EP-6322</td>
<td>0; 283</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588/3BK-5476</td>
<td>0; 231</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391/4EC-4540</td>
<td>0; 301</td>
</tr>
<tr>
<td>Group Number</td>
<td>Allele</td>
<td>Progeny</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>One</td>
<td>4DA-122/ Df(2L)ast4</td>
<td>0; 300</td>
</tr>
<tr>
<td></td>
<td>3BK-5333/ Df(2L)ast4</td>
<td>0; 295</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666/ Df(2L)ast4</td>
<td>0; 201</td>
</tr>
<tr>
<td></td>
<td>3BL-5823/ Df(2L)ast4</td>
<td>0; 246</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524/ Df(2L)ast4</td>
<td>0; 150</td>
</tr>
<tr>
<td></td>
<td>3AL-1872/ Df(2L)ast4</td>
<td>0; 316</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216/ Df(2L)ast4</td>
<td>0; 254</td>
</tr>
<tr>
<td></td>
<td>4EP-6322/ Df(2L)ast4</td>
<td>0; 234</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588/ Df(2L)ast4</td>
<td>0; 312</td>
</tr>
<tr>
<td></td>
<td>3BK-5476/ Df(2L)ast4</td>
<td>0; 275</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391/ Df(2L)ast4</td>
<td>0; 263</td>
</tr>
<tr>
<td></td>
<td>4EC-4540/ Df(2L)ast4</td>
<td>0; 239</td>
</tr>
</tbody>
</table>
Rescue experiment (2) with heat shocks.

Table A:

<table>
<thead>
<tr>
<th>Group number</th>
<th>Allele</th>
<th>Stage</th>
<th>Duration</th>
<th>Progeny (Cy⁺;Cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 130 0; 150</td>
</tr>
<tr>
<td></td>
<td>3BK-5333</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 136 0; 102</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666</td>
<td>Embryonic</td>
<td>30 mins 1 hour 3 x 30 mins</td>
<td>0; 134 0; 127 0; 107</td>
</tr>
<tr>
<td></td>
<td>3BL-5823</td>
<td>Embryonic</td>
<td>30 mins 1 hour 3 x 30 mins</td>
<td>0; 128 0; 123 0; 110</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>3AL-1872</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 99 0; 104</td>
</tr>
<tr>
<td></td>
<td>4EP-6322</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 93 0; 58</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 90 0; 76</td>
</tr>
<tr>
<td></td>
<td>3BK-5476</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 102 0; 75</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 119 0; 103</td>
</tr>
</tbody>
</table>
Table B:

<table>
<thead>
<tr>
<th>Group number</th>
<th>Allele</th>
<th>Stage</th>
<th>Duration</th>
<th>Progeny (Cy⁺;Cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>4DA-122/ Df(2L)ast4</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 120 0; 145</td>
</tr>
<tr>
<td></td>
<td>3BK-5333/ Df(2L)ast4</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 127 0; 152</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour 3 x 30 mins</td>
<td>0; 101 0; 96 0; 85</td>
</tr>
<tr>
<td></td>
<td>3BL-5823/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour 3 x 30 mins</td>
<td>0; 68 0; 120 0; 94</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524/ Df(2L)ast4</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 118 0; 86</td>
</tr>
<tr>
<td></td>
<td>3AL-1872/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour 3 x 30 mins</td>
<td>0; 76 0; 99</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 104 0; 130</td>
</tr>
<tr>
<td></td>
<td>4EP-6322/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 94 0; 107</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588/ Df(2L)ast4</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 104 0; 68</td>
</tr>
<tr>
<td></td>
<td>3BK-5476/ Df(2L)ast4</td>
<td>Larval</td>
<td>30 mins 1 hour</td>
<td>0; 197 0; 109</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391/ Df(2L)ast4</td>
<td>Embryonic</td>
<td>30 mins 1 hour</td>
<td>0; 112 0; 95</td>
</tr>
<tr>
<td></td>
<td>4EC-4540/ Df(2L)ast4</td>
<td>Larval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group number</td>
<td>Allele</td>
<td>Stage</td>
<td>Duration</td>
<td>Progeny (Cy⁺;Cy)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>One</td>
<td>4DA-122/3BK-5333</td>
<td>Larval</td>
<td>30 mins</td>
<td>0; 130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 114</td>
</tr>
<tr>
<td>Two</td>
<td>3BL-6666/3BL-5823</td>
<td>Embryonic</td>
<td>30 mins</td>
<td>0; 130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 x 30 mins</td>
<td>0; 117</td>
</tr>
<tr>
<td>Three</td>
<td>4DG-1524/3AL-1872</td>
<td>Embryonic</td>
<td>30 mins</td>
<td>0; 112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larval</td>
<td>30 mins</td>
<td>0; 102</td>
</tr>
<tr>
<td>Four</td>
<td>3AY-3216/4EP-6322</td>
<td>Embryonic</td>
<td>30 mins</td>
<td>0; 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 126</td>
</tr>
<tr>
<td>Five</td>
<td>3BK-5588/3BK-5476</td>
<td>Larval</td>
<td>30 mins</td>
<td>0; 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 140</td>
</tr>
<tr>
<td>Six</td>
<td>4EF-4391/4EC-4540</td>
<td>Embryonic</td>
<td>30 mins</td>
<td>0; 130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 hour</td>
<td>0; 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larval</td>
<td>1 hour</td>
<td>0; 90</td>
</tr>
</tbody>
</table>