Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Non-UV light influences the degradation rate of crop protection products

Tools
- Tools
+ Tools

Davies, Lawrence O., Bramke, Irene, France, Emma, Marshall, Samantha, Oliver, Robin, Nichols, Carol, Schäfer, Hendrik and Bending, G. D. (2013) Non-UV light influences the degradation rate of crop protection products. Environmental Science & Technology, Volume 47 (Number 15). p. 130712083104003. doi:10.1021/es402139x

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1021/es402139x

Request Changes to record.

Abstract

Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Environmental Science & Technology
Publisher: American Chemical Society
ISSN: 0013-936X
Official Date: 6 August 2013
Dates:
DateEvent
6 August 2013Published
Volume: Volume 47
Number: Number 15
Page Range: p. 130712083104003
DOI: 10.1021/es402139x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us