
http://wrap.warwick.ac.uk/

Original citation:
Beynon, Meurig, Russ, Steve, Slade, M. D., Yung, Y. P. and Yung, Y. W. (1989)
Definitive principles and the specification of software. University of Warwick. Department
of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-146

Permanent WRAP url:
http://wrap.warwick.ac.uk/60841

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60841
mailto:publications@warwick.ac.uk

Page 1

Definitive principles and the specification of software
W M Beynon, M D Slade, S B Russ, Y P Yung, Y W Yung
Dept of Computer Science, University of Warwick, Coventry CV4 7AL

Introduction

This paper is the first of two concerned with the prospects for developing a new programming paradigm
("definitive programming") that is essentially based upon the principle of variable definition illustrated in its
simplest form in the spreadsheet. The paper is in part an interim report on the broad programme of research that
has been carried out so far on the definitive programming project. In the interests of brevity, some familiarity with
the basic ideas, as set out in references such as [6,7,8,9,10,11,12,13,14], is assumed. The companion paper [10] is
the most appropriate single source, since it illustrates the method of software specification considered in this paper
with reference to the techniques and prototypes described elsewhere.

When proposing and justifying a new programming paradigm, there are several important issues that should ideally
be addressed:

1) clear and formal description of the principles that define the paradigm;
2) practical demonstration of how the principles can be applied in general applications;
3) characterisation of the programming paradigm in relation to other approaches.

Until a programming paradigm is well-established, issues 1), 2) and 3) are best explored in parallel. Even for many
established paradigms, these issues remain a focus for ongoing research. The generality of functional programming
methods in practice is controversial, for instance, as is the formal characterisation of object-oriented programming.

Research on definitive programming has so far made considerable progress in respect of each of the three issues
above. The representation of state-transition systems using families of definitions (cf ¤3 below) is - informally - a
characteristic principle that demonstrably has special qualities in connection with interactive systems and
incremental design [6,7,8,12,13]. The extension of such models for user-computer interaction to encompass several
agents interacting in a computation has potential as a means of modelling and simulating concurrent systems [9].
As formalised in the computational framework of the Abstract Definitive Machine [14,11], definitive
programming supplies an unusual parallel programming paradigm that is sufficiently versatile for the
implementation of CAD software [7, 8,13].

The present status of our research is not such that a categorical answer to the question "what is definitive
programming?" can be given. In our view, there are strong indications that there is a distinctive style of
programming - probably richer than that encapsulated in the ADM - for which issues 1), 2) and 3) can be
satisfactorily addressed. This paper and its companion paper [10] are both concerned with the nature of general-
purpose definitive programming in so far as it is at present understood. In this paper, we argue that the fundamental
concerns of software specification point to the need for programming methods (such as we have developed during
the definitive programming project) with good characteristics for interactive and incremental use. As a
complementary exercise [10], we show that definitive principles can be effectively applied to software
specification and prototyping.

¤1 The nature of specification

What is a specification? Following Turski and Maibaum [21], we may adopt the view that a specification is a
formal expression of the intended meaning of a program that admits a dual interpretation. On the one hand, it is an
accepted description of the problem to be solved; on the other, it is a prescription for the program that solves the
problem. A specification describes the intended meaning of a program in terms that are oriented towards the
application; a program in terms that are oriented towards a calculating machine.

The arguments concerning the relationship between programs and specifications advanced in [21] support the view
that "a specification" and "a program" cannot be clearly distinguished. The specification differs from the program
through being "at a different linguistic level": indeed, "the only reason to construct a program is to express the
intended meaning in a different way" ([21] p8). Program development is seen as the process of translating a formal
specification into a program:

Page 2

"The availability of compilers, and their, by and large, acceptable quality determines a demarcation line between
what is and what is not considered development activity ... this line is artificial, and merely represents the
commonly accepted limit of strict calculability of linguistic levels." ([21] p123)

There are clear dangers in too simplistic an interpretation of the equivalence between a "specification" and a
"program". If indeed a specification is no more than a very high-level program, in what sense can the problems of
creating an appropriate program be alleviated by first developing a specification? This is of course an old and
fundamental problem, sometimes known as the "second box problem". In approaching this problem, it is important
to appreciate that a specification cannot be "correct" in the same way that a program is "correct relative to a
specification", but can only supply a description of the required behaviour of the system to be developed that can
be validated by observation in essentially the same limited way that a scientific theory can [21]. In so far as a
specification is a formulation of the required behaviour in application-oriented terms, this validation process will
be simpler than the direct validation of a machine program, but this is no reason for supposing that the principles
for constructing a valid specification are clarified as a result.

Our conception of specification assumes some basic premises. Whilst endorsing the view expressed by Turski and
Maibaum concerning "the specification level as the point of unification of formality of expression and parting with
the implicit semantics" [21], we put our emphasis upon the derivation of a specification as an incremental process
of formalisation and validation involving complex interactive and iterative design. Such a view of the specification
process is particularly well-represented in the work of Balzer, Goldman and Sartout [4,20], which emphasises the
essentially dynamic nature of the correspondence between "program" and "application", and the need for a style of
programming that supports both the clear articulation of the program, and of the salient aspects of its derivation.
In this context, we have no distinction between specification and program in mind; for us, the specification is to be
a very high-level program, and our central concern is with how it is to be constructed.

The main objective of this paper is to advocate novel programming principles that may be particularly well-suited
as a basis for specification languages. Clearly - in the spirit of Glaser, Hankin and Till, who contend that functional
methods support an application-oriented view of programming [15] - we shall need to demonstrate that our
principles have the generality and expressive power to support the representation of system behaviour at a very
high level of abstraction. At the same time - in view of the issues raised above - we must be primarily concerned
with formulating a programming style that can directly assist the process of constructing and validating programs.
Notice that this presumes a concept of programming that is in one respect much more general than is customary.
Our presumption is that our programming notation can support what from a behavioural perspective would
normally be regarded as "incomplete" programs, viz the fragments that are introduced in the process of arriving at
an initial specification. It may even be fair to say that - at least for sequential programs - our interest in the issues
of representation end at the point (should there be such a point!) at which "the specification is a complete
description of the intended behaviour", when our program can be readily re-interpreted in whatever is the most
favoured paradigm, be it functional or object-oriented programming. Note here that - because of the application-
independent nature of the specification process - we are only concerned with programming paradigms that are
potentially well-suited for specification.

Our analysis points to the conclusion that a good paradigm for specification will support incremental programming
in which interaction and iterative design play a significant role. For the validation of such a specification to be
conveniently performed, it will also be desirable for the specification to provide a cognitive model (c.f. [4]
Principle #5). A concern with "how easily a program can be developed" is clearly very different in nature from a
concern for "how comprehensibly can the intended behaviour of the application be represented in cognitively
appropriate terms". It is nonetheless plausible that any computational paradigm purporting to cognitive validity
should be one that readily supports revision and extension of a program; after all, in our mental processes we are
presumably constantly involved in adaptive specification and validation in a very volatile environment.

This paper is a development of the above ideas. ¤'s 1, 2 and 3 examine particular aspects of existing approaches to
high-level programming as they relate to our view of specification. ¤4 considers the resemblance between state
changes in design and simulation that motivates the novel approach represented by definitive ("definition-based")
programming outlined in ¤4.

¤2 Appropriate programming paradigms for specification

Our primary objective is to devise a programming paradigm that supports incremental program development,

Page 3

representing the design process to the user in such a way that the current status of the design, and the possible
options for enhancement and modification are as transparent as possible. In this context, "the design process" may
refer either to 'constructing a specification for a system whose actual behaviour is already established and
observable' (c.f. [16]), or - as is of greater practical interest - 'developing a specification that describes an intended
behaviour that is not entirely preconceived'. In the terminology of Turski and Maibaum [21], we seek a permissive
style of specification that deals with incomplete information in a non-singular fashion. Our concern is with
executable specifications, so that a program should serve both as a abstract mathematical object intelligible to the
user, and also as a prescription for a computer, interpretable in an appropriate machine model.

We shall first clarify what we mean by "a programming paradigm that supports incremental program
development". It may be argued that there is a proper separation of concerns between 'the programming medium
in which we choose to describe the behaviour of a system' and 'the design methodology we should apply to
construct a specification'. The crux of our case is that the programming media that have so far been adopted for
describing system behaviour (be they conventional procedural, object-oriented, declarative or specification
languages) are in some respects not well-suited for incremental program development. In other words, however we
choose to develop large programs using these paradigms, we shall need very sophisticated auxiliary design tools.
On what grounds can we make such a strong claim? Because - on the one hand - it seems that the primitive methods
available to a designer wishing to modify a program within one of these paradigms (e.g. such as defining a new
constraint in a constraint-based system, or defining a new function in a functional programming system) are often
associated with very obscure changes in the status of the design, whilst - on the other hand - relatively
commonplace steps in the design process (e.g. such as establishing or modifying relationships between objects in
the application, taking account of more characteristic physical properties of the environment) typically necessitate
a sophisticated process of editing the program text (such as - to take a trivial example - is involved in adding a
parameter to a procedure in a Pascal program).

Note that in viewing a programming notation from the perspective of "appropriateness for program design" we are
looking beyond the interpretation of a static program (i.e. the program as a mathematical object, as opposed to a
recipe for a calculating machine); we are concerned about how easily we can change the program as a 'dynamic
object' in the sense of [4]. We shall judge the quality of the specification medium by how easily we are able to
develop an incremental specification that is faithful to the designer's expressed intentions at each stage, and can be
legitimately partially validated through simulation even though it is as yet incomplete. Of course, our concern is
with what we can achieve in principle within a chosen programming paradigm - there can be no magic medium
whose use guarantees good representation of the design. We must also distinguish between "making it easy to
implement changes" (i.e. through developing better editing or compiling tools), and "making it easy for the user to
apprehend what changes can / should be made".

An example may help to illustrate the issues involved in the development of a specification. Suppose that we wish
to model the characteristics of a room to be used by several occupants for various functions. Our completed
specification will take the form of a very high level program with a behaviour that corresponds precisely to the
observed - or perhaps the intended - behaviour of the room in use. We need not distinguish between specifying the
characteristics of a given room, and those of a room to be freely designed - in either case, our task involves similar
processes of formulation (i.e. representation in our chosen specification notation) and validation (i.e. checking
through simulation that our specification exhibits behaviour consistent at each stage with the observed / intended
behaviour of objects in the application). For preference, we shall consider the more complex and typical use of
specification associated with "room design".

We must of course take some primitives as given. For simplicity, let us assume basic geometric primitive functions,
such as line length, point intersection of lines, lines incident with points etc., and objects comprising sets of points,
lines and planes. Typical design issues are:

a) the preliminary specification of characteristics of the room, such as "the room is cubic";
b) the form of objects to be disposed about the room e.g. tables, desks, lamps, power points;
c) the form of special features of the room e.g. sliding / hinged doors;
d) the number and location of these features e.g. how many doors, and where they are;
e) constraints such as "at most two doors", "no overlapping items of furniture";
f) relationships such as "all tables are identical", or " the doors are symmetrically disposed".

During the process of designing the room, some simulation for the purposes of validation of the (partially
completed) specification might be required. For instance:

A) relocate a table, change the aperture of a door, move the lamp, use another power point;

Page 4

B) remove or introduce an item of furniture;
C) simulate the movement of a table, taking account of geometric constraints;
D) simulate the actions of two independent agents acting concurrently in the room;
E) explore the implications of changing the perceptions or privileges of agents.

We should not be in any doubt that supporting such a design process faithfully would be a difficult task within any
programming paradigm. In B) for instance, we have major research problems concerned with "qualitative
reasoning" to resolve if we are to devise a satisfactory environment for validation. After all, the possible ways in
which a lamp placed upon a table might respond to the movement of the table are neither predictable nor easily
enumerated (c.f. [12]). What is more, we should not think of the design process as proceeding in a carefully
preconceived fashion from one consideration to the next: on the contrary, a designer will be free to reconsider a
design decision at any stage, and - for instance - may decide to replace three identical tables that cannot overlap
each other by a nest of tables that can all occupy the same floor space. The fact remains that the real world
application we have chosen is by no means improbably complex, and developing a specification typically involves
considerations of the kind described above.

The implications of viewing specification as encompassing a design problem are far-reaching. To discuss the issues
fully is beyond the scope of this paper; for an excellent account of many of these see Balzer and Goldman [4]. To
appreciate the difference in outlook that the specification of the program as a dynamic object entails, it is enough
to contrast conventional algebraic and model-based approaches to specification with the principles of specification
set out in [4] ¤3. The programming paradigm introduced below is intended to realise some of the objectives of [4].

A few general observations about specification are relevant to our present concern. Many existing approaches to
specification exploit forms of implicit information whose interpretation requires inference. The potential virtues of
implicit methods for representing incomplete information are clear. In the present context, there are dangers in
expressing implicit information in the form of global assertions about actions and states, since this relies upon
knowledge of the entire specification. The limitations of such methods in respect of simulation and cognition are
well-represented in [18] and [19].

Constructive techniques for specification that favour the use of explicit representation, such as the use of an object-
oriented programming paradigm, can avoid these problems, but only in general at the expense of disguising global
unifying properties that simplify the articulation of the design. The need for both views is reflected in state-of-the-
art design support systems that combine powerful inference techniques and process-based models in an object-
oriented idiom [5]. Our integration of implicit and explicit methods of data representation is at a lower level of
abstraction, and is centred around the concept of data dependency.

¤3 Representing state and state transitions

The need to support the program design process self-evidently presumes some method of representing state, at least
in so far as the designer must be able to ascertain the current status of the design. The subtle interrelationship
between the status of a partial design, and the state of the associated partially designed system in simulation, will
be explored more fully below. It will be helpful to first examine the formidable semantic difficulties that the
concept of computational state invokes, and explain how we propose to address them.

As the semantics of procedural programming languages illustrates, state representation typically proves
problematic. The idea that the state of a system should be represented through the current values of a family of
procedural variables is very plausible, but conventional ways to handle procedural variables lead to conceptual
complexity. Suppose, for instance, that we represent the positions of objects within a room by recording the
coordinates of the hinge of the door, the angle of aperture of opening, the position of the centre and NE corner of
the table etc. In a naive procedural program that manipulates these values there is no convenient way to eliminate
assignments to procedural variables that are inconsistent with the intended semantics of an object, so that e.g. we
may move the centre of the table SW without relocating the NE corner.

Of course even such a naive program conceptually comprises composite sets of several reassignments (such as
might relocate NE corner and centre of table, and the other corners and edges of the table in a physically consistent
manner). Thus "moving the centre of the table alone" may resemble an atomic action as it appears in the
implementation, but is not part of the user's conceptual view. This motivates the two traditional approaches to
solving this problem: object-oriented programming, that makes it is possible to associate families of reassignments

Page 5

so that consistent updating is readily guaranteed, and the use of assertions, that makes it possible to annotate the
consistent states ie to explicitly distinguish the logically interesting states, such as correspond to consistent
locations of the elements of the table.

Many complex issues are involved in the apparently simply idea of "identifying consistent systems of updates",
especially where concurrency is involved. Sometimes there is a direct relationship between an object and its parts
(as in the opening of desk drawer), at other times, a loose relationship (as in a game of musical chairs). In general
the effect of an action is context dependent (as when two tables touch), and one object may operate in different
modes (e.g. a stable door that can be configured to open at the top or the bottom independently). It may also be
necessary to describe synchronised action at a distance (as when the lights fuse).

Our approach to procedural programming is based upon one primitive concept. Characteristic of models based
upon families of procedural variables are distinctive "systems of functional relationships between these variables"
that are associated with particular changes of state. For instance, when we move the lower limb of an anglepoise
lamp, the rest of the lamp moves according to predictable functional relationships. It is important to note how subtle
these relationships can be: compare the functional relationships associated with moving a lamp when it is fixed on
a table rather than placed on a table, the different consequences of moving touching tables in various directions,
and the various ways in which the stable door can respond to movement of its upper and lower components
depending upon its state. We choose to represent these functional relationships using definitive systems, that is,
families of variables of appropriate types whose values are either explicitly defined, or implicitly defined by
algebraic expressions in terms of the values of other variables and constants. The central abstraction of definitive
programming is then "the functional relationship between variables appropriate to a particular action within a
state". Note that a definitive system may describe a transition faithfully over a minute range e.g. provided tables
aren't touching, though they be arbitrarily close.

It is of interest to consider definitive systems with reference to other programming paradigms. In object-oriented
programming (OOP), mechanisms exist to implement such systems of functional relationships between objects
readily, but they are very easily abused. Even such mechanisms -primarily designed with simulation and modelling
in mind - have their limitations in respect of clear and semantically unambiguous representation of indivisible
procedural actions. Whilst it is convenient to model many instances of tables in OOP, it is not so clear how to model
two touching tables. We can introduce a message passing protocol to represent the effect of a single atomic action,
viz the simultaneous movement of two touching tables, but once it becomes necessary to invoke message passing
between objects to establish data dependencies conceptual control is lost. If this seems too pedantic a position to
adopt in respect of sequential programming within the OOP, it is certainly a reasonable concern where concurrent
actions of agents may be involved, as the semantic difficulties faced in parallel OOP models illustrate. How should
we deal (for instance) with two independent table-movers manipulating touching tables?

There is superficially a close relationship between our approach and constraint-based programming, but our
concept of 'a definition' should not be interpreted as 'a constraint'. This is not merely because a definition
establishes an acyclic data dependency. There is a very important distinction between an equational view, and the
use of definitions: an equation does not specify how a constraint is to be maintained. What is more, it is most
appropriate to view a definitive system not as describing existing relationships between values within a state, but
as expressing latent relationships invoked whenever an action is carried out. That is, definitive systems are
primarily intended to represent actual and possible transitions, rather than states. Though it may be sometimes be
more faithful to the application (or more efficient in an implementation) to presume that a functional relationship
between variable values persists irrespective of what actions are to be performed, the state can in principle be
represented simply by a system of values. In a more formal setting, it may be that whereas an equation prescribes
that "a certain relationship holds in all interpretations", a definitive system expresses a specific way in which to
"change the interpretation" whilst preserving a relationship.

Paradoxically, the dissociation of definitive principles from the representation of state establishes a link with the
programming paradigm that has been most hostile to the concept of state. Pure functional programming may be
seen as the simplest form of definitive programming, in which one agent (the user) acts through a single definitive
system, viz that articulated by the system of functional relationships established through formulating a system of
functions and re-evaluating these functions with different arguments. This is an adequate view in so far as the user
can anticipate the effects of actions and articulate them unambiguously in functional terms without reference to a
current state. Such a view does not in general reflect the need to admit other agents, as when one agent can perform
several different actions according to a context beyond its control. This is not to ignore the possibility that we can

Page 6

sometimes simulate several agents and context-dependent actions by using higher-order functions (cf [17]).
Perhaps - in the case of the touching tables for instance - we can discern higher order functions to define the
functional relationships appropriate to particular actions in terms of the abstract location of the tables, but it will
still be necessary to describe "the current location of the tables" - a state-based concept that requires reinterpretation
in a referentially transparent framework. We can likewise describe the actions that an agent can perform in relation
to a door that may or may not be locked in such terms when the agent holds the key. If on the other hand the status
of the door is beyond the agent's control, it seems difficult to sustain a purely functional paradigm (c.f. Abelson
and Sussman [1]). Similar concern about the limitations of a purely functional programming style is expressed by
Backus [2]:

"The primary limitation of FP systems is that they are not history-sensitive
... a system cannot be history-sensitive unless it has some kind of state".

¤4 Status of the Design vs State of the Simulation?

We have implicitly argued for a state-based paradigm for computation that can serve both to represent the status
of the design, and the system state for purposes of simulation. Definitive principles have been shown to be relevant
to the simulation process; it remains to show how they can be related to the design.

The key idea can be illustrated with reference to the design problem outlined above. For clarity, let us imagine that
an architect is showing us around a room that is in the process of construction. If it should happen that there is a
doorway but as yet no door, we do not suppose that this is part of the design. Nor would be make this assumption
if the door were lying on its side against a wall, prior to installation. If the architect shows us that the window opens
by sliding from left to right, we may appreciate that the window has been designed to open in this way, but do not
interpret the action of opening the window as a change in the design. If, on the other hand, the architect indicates
two alternative locations in which a built-in shelf can be mounted, we will interpret the two resulting states of the
room as two alternative designs. In an idealised world, such as can be realised only through computer simulation,
the architect might wish to exercise other options; to indicate the implications of relocating the window, or
changing the dimensions of the room. As it is, the architect will sometimes appeal to such an idealised world of the
imagination, as in indicating a possible site for a staircase when there is as yet but one storey.

Our illustration shows that distinguishing between changes in the state of the room that are associated with design
and those that are associated with simulation is essentially a matter of interpretation. As room designers, we
contemplate all kinds of state changes that do not correspond to physical transformations we could conveniently
perform, but there appears to be no reason in principle why we should wish to represent these differently within an
abstract specification of the design. The fact is that we can easily adjust the angle of aperture at which a physical
door is set ajar, but could only modify the width of the door, or relocate the hinge, with considerable difficulty.
Nonetheless there seems to be no good reason to choose to represent these possible ways of manipulating the door
in different ways in a simulation program: after all, we might design a door for which the angle of aperture was
fixed, and that could be opened by adjusting its width.

In conventional specifications, it is not untypical for changes of state associated with design to be represented in a
totally different way from those associated with simulation. Changes in the design are associated with editing the
program, whilst simulation is performed by executing the program. Such a convention for representation presumes
knowledge of "the final specification"; the integration of design and simulation is hindered in consequence. For
just such a reason no architect develops a preliminary design in bricks and mortar. The integration of design and
simulation we are proposing effectively invokes the concept of a program that is able to edit its own text, and brings
to mind Backus' observation regarding the limitations of a purely functional style [2]:

"no program is able to alter the library of programs".

This is not to suggest that the distinction between design and simulation is insignificant - only that the distinction
should not be reflected by how the associated state changes are represented. Practicalities of room reconstruction
apart, the true distinction between "designing a new room" and "changing the state of a predesigned room" is bound
up with a concept of how agents are privileged to act in relation to a room. As room designers, we are entitled to
prescribe any changes to the state of the room we desire, subject only to the higher authority imposed through
physical laws. As responsible occupants of a room, the repertoire of state changes we can perform is limited to
those actions for which the room has been designed. The significance of this interpretation of design is nowhere
more apparent than in surrealist art, where the conventions of functional room design are violated, and the concept

Page 7

of a room in which the door hangs from the ceiling is not incongruous.

For the purposes of simulation, at least in a sequential setting, it suffices to consider the actions that can be
performed in a given state. To address the issues of design and simulation more fully, we shall also need to be
concerned with agents. On the one hand, we shall need to simulate concurrent action, and so consider under what
circumstances actions can be performed simultaneously. On the other, we shall need to interpret the status of the
design in terms of the actions that particular agents can perform in particular states.

The above discussion motivates an agent-centred view of computation, in which we explicitly represent the state
changes each agent is privileged to perform. Our programming paradigm is framed around this conception. By
using definitive systems, we are able to describe such state changes with clarity and expressive power. By
introducing an appropriate abstract machine model to formalise the possible interactions between the actions of
different agents, we can represent the "status of the design" in terms of "what actions agents can perform in which
contexts". Note that this directly associates the design with an "intended functionality" with respect to subscribing
agents. For example, possible privileges for an agent might be:

I can open / close the unlocked door
I can open / close the door, whether it is locked or not
I can open the door if it is unlocked, I can close it if it is open.

Note that in the latter case, if I don't have the key, I cannot predict when I will be able to open it. As explained
above, it is not essential - nor in general desirable - to suppose that the current state of the system is formulated
using definitions (as opposed to families of explicitly defined variables), though this will sometimes be
appropriate. For instance, certain invariant relationships decreed by physical constraints (such as the rigidity of the
table), or specified by the designer (as in a sliding window), might be formulated as persistent definitions.

¤5 Definitive programming reviewed

The aim of the "definitive programming project" is to formulate a general-purpose programming paradigm based
upon abstractly representing agent actions using definitive systems. Different aspects of this programme are
represented in the collaborative work of the principal author with each of the co-authors; these will briefly reviewed
below. For brevity and convenience, we refer the interested reader elsewhere for detailed illustration of our
approach as appropriate, and indicate the principal directions for further work. There are surely many problems to
be resolved - and yet to be encountered - in such an ambitious programme as we have framed above. The object of
this paper is to explain why we believe that our methods represent a promising novel approach to sofware design
and specification.

The basic principles of definitive programming are easily explained. The problem of specifying a system within a
particular application domain is first addressed by developing an "underlying algebra", comprising relevant data
types and operators upon these types, to suit the application. In the spirit of traditional approaches, specifying these
basic operators is a concern at a lower level of abstraction. In the context of our work, it may be reasonable for
these operators to be themselves specified by applying definitive principles (c.f. the discussion of complex
operators for interactive graphics in [13]), but at some point we shall appeal to fundamental concepts and
operations to be taken for granted. Note that there will in general be a useful role for axiomatic relations between
operators in the underlying algebra in our approach, though this has yet to be much exploited.

Having established an underlying algebra, we shall introduce variables that can represent values of the various
types. Through this generalisation, we abandon the referentially transparent principles underlying purely
declarative programming, and have to rely upon a judicious use of variable definition to support our state-based
paradigm. Each state transition is expressed via a definitive system formulated as a family of variables whose
values are either defined explicitly, or defined in terms of other variables within the system and constants using the
operators of the underlying algebra (and appropriate user-defined derived operators). We can think of the
underlying algebra as providing the basis of generic concepts within which our specification is to be developed,
and the variables as capturing the specific features of the specification pertaining to our particular application.
Much richer categories of abstraction become accessible through the use of variables [6]: it is possible to formulate
generic families of definitions to represent a class of objects of a certain sort for instance, as in an object-oriented
framework. Perhaps most important, variables can be used to identify component parts of a value of complex type,
enabling rich associations between complex objects to be established.

References [7] and [12] describe ways in which the above principles can be applied to the problem of designing a

Page 8

room layout. For this purpose, we can choose an underlying algebra whose data types are points, lines and shapes
consisting of sets of points and lines together with simple geometric operators such as specify the join of two
points, or the midpoint of a line. These primitive concepts form the basis of the definitive notation for line-drawing
DoNaLD. Naive representations of objects such as doors, tables, lamps and power points within a room can then
be formulated in such a way that in principle a generic object (such as the class door, defined by a system of
variables to represent characteristic components together with definitions to establish appropriate relationships
between these) can be described. It is also possible to express relationships between objects, e.g. to represent a lamp
placed upon a table and connected by a cable to a power point, and to simulate the effect of moving the table. In
many respects, our approach gives effective support for incremental design - for instance, we can exploit implicit
definition of variables to express incomplete information e.g. to establish the functional relationships between the
components of a door before assigning a location to the hinges, and so in effect represent a door whose current
location is quite insignificant in the design.

The above discussion indicates how definitions can be used to support design, but cannot be said to capture what
we should expect of a definitive program. A definitive system articulates a particular agent action; a definitive
program must describe the way in which many actions interact. There are two complementary ways in which these
possible transitions can be organised: associating actions according to the sequential agents by whom they are
performed, and associating actions according to the patterns in which they can occur concurrently in simulation.
These two approaches are respectively represented in our research by the LSD notation for concurrent systems [9],
and the abstract definitive machine (ADM) [14].

Both LSD and the ADM have in common a framework of guarded action, whereby a procedural action, such as the
redefinition of an explicitly defined variable, is performed in a context established by a definitive system. In LSD,
the guarded actions make up the protocol for a sequentially acting agent, and the guards express enabling
conditions for action to be met by the agent's view of the external system. We can very easily express simple
constraints upon action in the LSD framework (such as prevent a user attempting to open a drawer that is obstructed
by a table), but can only capture a loose synchronisation of action without introducing additional information about
the environment in which agents operate (c.f. [9]). In so far as actions are organised by agent, an LSD specification
is oriented towards the design rather than the simulation viewpoint (c.f. ¤4).

For purposes of simulation, we require a machine model that can represent synchronised action effectively, and
that enables us to associate families of actions that occur concurrently in each system state. The ADM is an
appropriate model within which to capture this multi-agent view. Within the ADM, the current system state is
represented by the current values of a definitive system of variables, and the potential actions to be performed in
the current state are represented by a system of guarded actions. Sets of definitions and actions that persist over the
same period of time (e.g. such as are associated with the presence of a particular agent or object in the room) are
grouped into entities. An ADM program takes the form of a set of abstractly specified entities to be dynamically
instantiated and removed during program execution. Each action takes the form of a sequence of redefinitions or
invocations / deletions of entities. In each cycle of the ADM execution all actions whose guards are currently
enabled are performed concurrently (c.f. [14] for details).

To simulate the movement of objects about a room within the ADM, we shall need to introduce agents to maintain
dynamically changing definitive systems that reflect the changing context for agent action. For instance, we shall
require agents to impose constraints such as disjointness of physical objects in the room e.g. changing the context
for action when two tables first touch (c.f. [4] ¤3 Principles #4, 5). Such simulation is beyond the range of our
present prototypes, but we have been able to perform simple simulations with similar characteristics (see the block
simulation in [11,12]). The ADM appears to have advantages as a machine model for concurrency [3,11], and in
principle can support user resolution of conflicts such as arise when two agents attempt to move touching tables in
opposite directions. Both LSD and the ADM represent an approach to modelling concurrency "from the study of
relations and functional dependencies between events, rather than from the registration of absolute time intervals"
[21], and promise to support a style of specification consistent with the proposals in [4].

LSD and the ADM are intended to provide the computational model of an intended behaviour for specification
purposes. In so far as the primitive operations of the underlying algebra over which definitive systems are described
can be implemented, our methods lead to executable specifications. For purposes of validation, it also remains to
consider how the abstract computations we have described can be represented to the program designer. Neither the
practical implementation nor the presentation is in general a trivial matter: when definitive principles are applied
to the description of geometric modelling for instance, it is by no means obvious how conceptually simple

Page 9

operations such as forming an intersection of two complex implicitly defined objects should be implemented, nor
how the resulting object should be displayed (c.f. [8]).

Much of our research has been devoted to these issues. In our framework, it is appropriate to regard the state of the
screen from which the user obtains feedback as itself manipulated through definitive systems. That is to say, the
current screen state is represented by a variable whose value is implicitly defined in terms of the internal system
model over an appropriate underlying algebra. For simple graphical output, the underlying algebra of DoNaLD will
suffice; for other purposes, we have developed an underlying algebra whose principal data type is a window of text
[10]. In a serious simulation of a room in use (c.f. [7,8]), we would anticipate using such tools in combination to
allow the user to monitor the current state (e.g. displaying a message as and when the door is obstructed by an
object). The EDEN software package has been introduced to support the rapid prototyping of definitive notations
of this kind in a standard UNIX/C environment [7].

Conclusion

By considering the nature of the software specification process, we are led to seek a style of programming that is
cognitively based and supports incremental and interactive program development. A central technical problem is
developing an appropriate means to model states and transitions both in design and in simulation for validation.
Consideration of problems of architectural design suggests the adoption of a consistent mode of representation for
both kinds of state-transition.

In the light of our analysis, a programming style based upon representing states by systems of variable definitions
and transitions by redefinitions offers good prospects for software specification. Our preliminary attempt to
describe general-purpose computation in this style - illustrated in [10] - makes use of an unusual abstract parallel
machine model. Our current research aims at generalising this model with a view to characterising "definitive
programming" definitively.

References

1. Abelson, Sussman The Structure and Interpretation of Computer Programs MIT Press
2. Backus J Can programming be liberated from the von Neumann style? Turing Award Lecture 1977, CACM 21,
8 (August) 1978, 613-641
3. Baldwin D Why we can't program multiprocessors the way we're trying to do it now Computer Science Tech
Rep 224, University of Rochester 1987
4. Balzer R, Goldman N Principles of Good Software Specification and Their Implications for Specification
Languages Proc IEEE Conf on Spec of Reliable Software, p58-67
5. Bernus P, ten Hagen P J W, Veerkamp P J, Akman V, IDDL: A Language for IIICAD Systems, Intelligent CAD
Systems II: Implementation Issues, Springer-Verlag 1989, 58-74
6. Beynon W M Definitive principles for interactive graphics NATO ASI Series F, Vol 40, Springer-Verlag 1988,
1083-1097
7. Beynon W M, Yung Y W Implementing a definitive notation for interactive graphics New Trends in Computer
Graphics, Springer-Verlag 1988, 456-468
8. Beynon W M, Cartwright A J A definitive programming approach to the implementation of CAD software
Intelligent CAD Sys's II: Implementation Issues, Springer-Verlag 1989, 126-45
9. Beynon W M, Norris M T, Slade M D Definitions for modelling and simulating concurrent systems Proc
IASTED conference ASM'88, Acta Press 1988, 94-98
10. Beynon W M, Norris M T, Russ S B, Slade M D, Y P Yung, Y W Yung Software construction using definitions:
an illustrative example CS RR#147, Univ of Warwick 1989
11. Beynon W M Definitive programming for parallelism CS RR#132, Univ of Warwick 1988
12. Beynon W M, Cohn A J Representing design knowledge in a definitive programming framework, University
of Warwick, September 1988
13. Beynon W M Evaluating definitive principles for interactive graphics New Advances in Computer Graphics:
Proc CGI'89, Springer-Verlag 1989, 291-303
14. Beynon W M, Slade M D, Yung Y W Parallel computation in definitive models Proc Conpar'88 to appear
15. Glaser H, Hankin C, Till D Principles of Functional Programming Prentice-Hall 1984
16. Hayes I (ed) Specification Case Studies Prentice-Hall Int Computer Science Series 1986
17. Hughes J Why functional programming matters PMG Report #16, Chalmers Univ of Tech & Univ of Goteburg,
1984

Page 10

18. Laird-Johnson Mental Models CUP 1983
19. McDermot A critique of pure reason Comput Intell 3, 151-160, 1987
20. Sartout W, Balzer R On the inevitable intertwining of specification and implementation CACM, 25 (7) (July),
438-440
21. Turski W M, Maibaum T S E The Specification of Computer Programs International Computer Science Series,
Addison-Wesley 1987

