SHALLOW MULTIPLICATION CIRCUITS

MICHAEL S PATERSON, URI ZWICK

(RR169)

Ofman, Wallace and others used carry save adders to design multiplication circuits whose total delay is proportional to the logarithm of the length of the two numbers multiplied. An extension of their work is presented here.

The first part presents a general theory describing the optimal way in which given carry save adders can be combined into carry save networks.

In the second part, two new designs of basic carry save adders are described. Using these building blocks and the above general theory, the shallowest known theoretical circuits for multiplication are obtained.

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom

December 1990
Shallow Multiplication Circuits

Michael S. Paterson * Uri Zwick †

Abstract

Ofman, Wallace and others used carry save adders to design multiplication circuits whose total delay is proportional to the logarithm of the length of the two numbers multiplied. An extension of their work is presented here.

The first part presents a general theory describing the optimal way in which given carry save adders can be combined into carry save networks.

In the second part, two new designs of basic carry save adders are described. Using these building blocks and the above general theory, the shallowest known theoretical circuits for multiplication are obtained.

1. Introduction

This work examines theoretical ways to speed up multiplication circuits. The general approach used is the one suggested by Ofman [12] and Wallace [15]. The work presented here extends previous results reported in [13],[14].

The model used in this work is that of dyadic Boolean circuits. A dyadic Boolean circuit is a circuit composed of dyadic (i.e., two-input) Boolean gates. In some cases we consider circuits restricted to the unate gates, i.e., gates of the form \((x^a \land y^b)^c\), where \(x^0 = x\) and \(x^1 = \overline{x}\). These include the AND, OR, NAND and NOR gates, but exclude the XOR gate and its complement \((x \oplus y)^c\). The methods described in this work can also be used to construct fast multiplication circuits in cases where only a subset of the unate gates may be used. We allow the gates to be connected in an arbitrary acyclic manner and we assume that each one has a unit delay, i.e., the output of a gate is stabilized one unit of time after its two inputs are stabilized. The total delay of a circuit is the time that passes from the moment at which all the inputs are stable until all the outputs are stable. In this model the total delay corresponds to the length of the longest directed path from an input to an output.

This model ignores many practical considerations. No attention is paid for example to possible VLSI layouts of these circuits. Simplifying assumptions are made: that no delays are introduced on connecting wires and that the delay of a gate is not influenced by its surroundings, but this model enables a theoretical investigation of the inherent

*Department of Computer Science, University of Warwick, Coventry, CV4 7AL, England. This author was partially supported by the ESPRIT II BRA Programme of the EC under contract # 3075 (ALCOM).

†Mathematics Institute, University of Warwick, Coventry, CV4 7AL, England. This author was partially supported by the ESPRIT II BRA Programme of the EC under contract # 3075 (ALCOM).
delay needed in order to perform multiplication. Subsequent work may reveal ways of making the constructions described in this work more practical. The basic ideas of Ofman and Wallace, on which this work is based, are already of practical use (see e.g. [1]).

The above Boolean circuit model is the principal one used in theoretical investigations in the theory of computational complexity. For a summary of the extensive literature available on this subject the reader is referred to [4],[7],[16].

The first step in the Ofman-Wallace approach is the design of a Carry Save Adder (CSA). The simplest CSA will receive three input numbers and avoid carry propagation by outputting the sum of them as the sum of two numbers. The striking discovery of Ofman, Wallace and others (see also [2],[5]) was that CSA's can have constant delay independent of the size of the input numbers. A network of CSA's is used to reduce the sum of n input numbers to the sum of only two. Such a network requires only a logarithmic number of layers and its total delay is therefore logarithmic. The two remaining numbers may be added using a Carry Look Ahead adder (see [3],[9]) which also has logarithmic delay.

Since multiplication of two n-bit numbers can be performed by adding n numbers the above construction yields logarithmic depth multiplication circuits.

2. Bit Adders and Carry Save Adders

The simplest CSA 3−2 is obtained by using an array of FA 3’s (3-bit Full Adders) as shown in Fig. 2.1. In fact any Bit Adder (BA) could be used to construct a CSA.

A bit adder is a unit with k input bits and $\ell < k$ output bits. Each input and output bit has an associated significance. If the k input bits are denoted by x_1, \ldots, x_k and their significances are a_1, \ldots, a_k, and if the ℓ output bits are denoted by y_1, \ldots, y_ℓ and their significances are b_1, \ldots, b_ℓ then the relation $\sum_{i=1}^{\ell} y_i 2^k = \sum_{j=1}^{k} x_j 2^a_j$ holds.

The simplest bit adder is the 3-bit full adder FA 3. The significance of the three input bits is 0 and the significances of the two outputs bits are 0 and 1 respectively. More generally, if $k = 2^m - 1$ then a unit FAk which receives k input bits, and outputs m bits containing the binary representation of their sum could be constructed. The significance of all the inputs to an FAk is again 0, and the significances of the m outputs are $0, 1, \ldots, m - 1.$
The fastest CSA networks which can be constructed using CSA\textsubscript{3,2}'s have depths asymptotic to 3.71 log\textsubscript{2} n or 5.42 log\textsubscript{2} n, depending on whether all dyadic gates or only the unate gates are used. In order to get our best performing CSA's we need to look at slightly more general BA's. If $\sum_{i=0}^{r} c_i 2^i = 2^m - 1$ we denote by FA\textsubscript{$c_0\ldots c_r$} the bit adder with $k = \sum_{i=0}^{r} c_i$ inputs, the first c_0 of them with significance 0, the next c_1 inputs with significance 1, and so on. The unit FA\textsubscript{$c_0\ldots c_r$} will have m outputs with significances 0, 1, \ldots, $m - 1$. Since every number $0 \leq x < 2^m$ has a unique binary representation of length m, the output of this BA for any input vector is uniquely defined.

In section 4 we describe an efficient implementation of an FA\textsubscript{5,1}. A CSA\textsubscript{6,3} could be built using this FA\textsubscript{5,1} as illustrated in Fig. 2.2. The CSA's constructed in this way give rise to the shallowest known multiplication circuits. These constructions use exclusive-or (XOR) gates. Their asymptotic delay is about 3.57 log\textsubscript{2} n time units.

In section 5 we describe an efficient implementation of an FA\textsubscript{7,4} using unate circuits. A CSA\textsubscript{11,4} could be built using this FA\textsubscript{7,4} in a similar way to that shown in Fig. 2.2. The CSA's constructed in this way yield the shallowest known multiplication circuits over the unate basis, and have an asymptotic delay of about 4.95 log\textsubscript{2} n.

3. Generalised depth constructions

We consider networks composed of copies of some 'gadget' G which accepts k inputs at times x_1, \ldots, x_k, and delivers l outputs at times y_1, \ldots, y_l, where $k > l$. Some restrictions are imposed on \vec{x} and \vec{y} which reflect the functionality and minimality of the gadget G. The characteristic polynomial of G is $g(z) = \sum_{j=1}^{k} z^{y_j} - \sum_{i=1}^{k} z^{x_i}$.

For any polynomial or power series $p(z)$, let $p(z)^{\leq n}$ denote the sum of those terms of p of degree less than n, and let $p(z)^{[n]}$ denote the remaining part.

In our intended applications, the gadget is a CSA so the inputs and outputs are nonnegative numbers and the sum of the inputs equals the sum of the outputs. A consequence of the functionality of the CSA is that, for any t, if all inputs at times less than t are zero, then any output at a time less than t is zero also. The device $G^{[t]}$, obtained by fixing to zero all inputs at times less than t and ignoring outputs at times less than t, is also a CSA with the correct functionality.
Let \(t_{\min} = \min\{x_1, \ldots, x_k, y_1, \ldots, y_l\} \) and \(t_{\max} = \max\{x_1, \ldots, x_k, y_1, \ldots, y_l\} \). Since any output at time \(t_{\min} \) must be zero and any input at time \(t_{\max} \) can be ignored, the lowest (highest) order term of \(g(z) \) can be assumed to have a negative (positive) coefficient. Since input and output times are invariant under addition of a constant we may assume that \(t_{\min} = 0 \). Hence, \(g(0) < 0, g(1) = 1 - k < 0 \) and \(g(\infty) = \infty \). Let \(m = t_{\max} = \deg(g) \).

We define the principal root of \(G \) to be the smallest real root of \(g(z) \) that is greater than one, and denote it by \(\lambda_G \). The asymptotic depth of the networks we construct depends on the principal root; the larger this root the shallower is the circuit. Sometimes, for some \(t \), \(\lambda_{G[t]} \) is defined and \(\lambda_{G[t]} \geq \lambda_G \), i.e., \(G \) can be improved by eliminating some initial inputs and outputs to it. If, for all \(0 < t \leq m \), \(\lambda_{G[t]} \) is undefined or \(\lambda_{G[t]} < \lambda_G \), then \(G \) is said to be reduced.

For any polynomial or power series \(f(z) = \sum_{i \geq 0} f_i z^i \) we define \(f > 0 (f \geq 0) \) if \(f_i > 0 (f_i \geq 0) \) for \(0 \leq i \leq \deg(f) \) and also write, for example, \(f \leq g \) when \((g - f) \geq 0 \).

We define \([f] ([f^t])\) to be the polynomial with coefficients \([f_i] ([f^t]_i)\).

Theorem 3.1 If \(G \) is reduced then \(g(z) = (z - \lambda_G)h(z) \) for some \(h > 0 \) with \(\deg(h) = m - 1 \).

Proof: We have \(h_{m-1} = g_m > 0 \). Suppose that for some \(t \), \(0 \leq t < m - 1 \), we have \(h^{[t+1]}_i > 0 \) but \(h_t \leq 0 \). Then

\[
g^{[t+1]}(z) = h_t z^{t+1} + (z - \lambda_G) h^{[t+1]}(z) < 0
\]

for \(1 \leq z < \lambda_G \), and \(g^{[t+1]}(\lambda_G) \leq 0 \). Hence \(\lambda_{G[t+1]} \geq \lambda_G \), which contradicts the assumption that \(G \) is reduced.

We can interpret the equation \(\lambda_G h(z) + g(z) = z h(z) \) as an assertion that if \(\lambda_G h_i \) data items are available at time \(i \), for \(0 \leq i \leq m - 1 \), and (some of them) are input to a copy of gadget \(G \), then the result is that \(h_i \) items are available at time \(i + 1 \) for \(1 \leq i \leq m \). Of course \(\lambda_G h_i \) and \(h_i \) are in general nonintegral and at most \(|\lambda_G h_i| \) inputs are used by \(G \) at time \(i \), but it is convenient in our construction to associate these real numbers with each occurrence of \(G \).

Let \(b = 1/(\lambda_G - 1) \).

Lemma 3.2 For all \(A > 0 \), \([A + b] < [A/\lambda_G + b] \lambda_G \).

Lemma 3.3 For all integers \(N > 0 \),

\[
N + \sum_{t=0}^{K} [A/\lambda_G^t + b] z^t g(z) \leq z^{K+1}(b + 2) h(z),
\]

where \(A = \frac{N}{\lambda_G h(0)} - b \) and \(K = \left\lfloor \frac{\log A}{\log \lambda_G} \right\rfloor = \left\lfloor \frac{\log N}{\log \lambda_G} \right\rfloor + O(1) \).

Proof:

\[
N + \sum_{t=0}^{K} [A/\lambda_G^t + b] z^t g(z) = N - [A + b] \lambda_G h(z) + \ldots
\]
Figure 4.1. An implementation of an $FA_{5,1}$.

\[+ [A/\lambda_G^K + b] z^{K+1} h(z) \]
\[+ \sum_{t=1}^{K} \left([A/\lambda_G^{t-1} + b] - [A/\lambda_G + b] \lambda_G \right) z^t h(z) \leq [A/\lambda_G^K + b] z^{K+1} h(z) \leq z^{K+1}(b + 1) h(z). \]

A copy of G which takes its first input at time t is said to be based at time t and has characteristic polynomial $z^t g(z)$. By the last lemma, if N inputs are supplied at time 0 to a network consisting of $[A/\lambda_G + b]$ copies of G based at time t for $t = 0, \ldots, \lfloor (\log A)/\log \lambda_G \rfloor$, then if dummy zero inputs are supplied wherever required the resulting network yields $O(1)$ outputs within a time which is $\log N/\log \lambda_G + O(1)$.

4. A $6 \to 3$ Carry Save Adder

An implementation of an $FA_{5,1}$ is given in Fig. 4.1(a). The implementation uses seven Half Adders (HA) and three XOR gates. The three XOR gates could in fact be replaced by OR gates. The left output of an HA with inputs a, b is $a \oplus b$ (the sum) and the right output is $a \wedge b$ (the carry). Thus an HA is composed of an XOR gate and an AND gate.

In order to verify the validity of this implementation we imagine at first that the three XOR gates are replaced by HA's. Notice that the connections between the HA's respect the significances of the inputs and outputs. The significance associated with each wire in the circuit is written next to that wire in Fig. 4.1(a). The inputs x_1, \ldots, x_5 have significance 0 while x_6 has significance 1. Finally, it is easy to check that the carry
Notation: $x = x_1 x_2 x_3 x_4 x_5 x_6 x_7$

y_0	$= S_{1}^{357} = U_{02} V_{13} \lor U_{13} V_{02}$
y_1	$= S_{2}^{357} = U_{23} V_{04} \lor U_{12} V_{1} \lor U_{01} V_{2} \lor U_{03} V_{3}$
y_2	$= S_{4}^{57} = V_{4} \lor U_{123} V_{34} \lor U_{23} V_{234} \lor U_{3} V_{1234}$

U_{01}	$= \overline{U}_{23}$
U_{02}	$= \overline{U}_{13}$
U_{12}	$= \overline{U}_{03}$

122	$= x_1(x_2 x_3)$
233	$= \overline{x}_1(\overline{x}_2 \overline{x}_3) \lor x_1(x_2 x_3)$
244	$= \overline{x}_1(\overline{x}_2 x_3 \lor x_2 \overline{x}_3) \lor x_1(\overline{x}_2 \overline{x}_3 \lor x_2 x_3)$
233	$= x_1 x_2 \lor x_3 \lor x_2 x_3$
122	$= x_1 \lor (x_2 \lor x_3)$

4444	$V_1 = \overline{x}_4 \overline{x}_5(x_6 x_7 \lor x_6 \overline{x}_7) \lor (\overline{x}_4 x_5 \lor x_4 \overline{x}_5) \overline{x}_6 \overline{x}_7$
4444	$V_2 = \overline{V}_{234}$
4444	$V_3 = (\overline{x}_4 x_5 \lor x_4 \overline{x}_5) x_6 x_7 \lor x_4 x_5 (\overline{x}_6 x_7 \lor x_6 \overline{x}_7)$
4444	$V_{13} = \overline{V}_{024}$

2222	$V_4 = x_4 x_5 x_6 x_7$
3333	$V_{04} = \overline{x}_4 \overline{x}_5 \overline{x}_6 \overline{x}_7 \lor x_4 x_5 x_6 x_7$
3333	$V_{34} = (x_4 x_5 \lor x_6 x_7)(x_4 x_6 \lor x_5 x_7)$
4444	$V_{034} = (\overline{x}_4 x_6 \lor x_4 x_6)(\overline{x}_4 x_7 \lor x_4 x_7) \lor (\overline{x}_4 x_6 \lor x_4 \overline{x}_6)(\overline{x}_6 x_7 \lor x_6 \overline{x}_7)$
3333	$V_{234} = (x_4 \lor x_5)(x_6 \lor x_7) \lor (x_4 \lor x_6)(x_5 \lor x_7)$
2222	$V_{1234} = x_4 \lor x_5 \lor x_6 \lor x_7$

Figure 4.2. Khrapchenko's construction of an FA7.

The output of the three HA's that we used to replace the XOR gates are always zero so the HA's could be replaced by XOR gates or by OR gates.

Note that the input x_5 is supplied to this unit two units of time after x_1, \ldots, x_4 are supplied, that y_0 is then obtained one unit of time later even before x_6 need to be supplied. The outputs y_1 and y_2 are obtained one and two units of time after x_6 is supplied. This behaviour is depicted in Fig. 4.1(b). The CSA$_{6-3}$ constructed using this FA$_{5,1}$ will have the same delay characteristics.

The results of the previous section give us the optimal way of combining these CSA$_{6-3}$'s into networks. The delay of these networks for the (carry save) addition of n numbers will be approximately $\log_2 n \simeq 3.57 \log_2 n$ time units where $\lambda \simeq 1.21486$ is the root of the polynomial equation $\lambda^6 + \lambda^5 - \lambda^4 + \lambda^3 - \lambda^2 - 4 = 0$.

5. An 11 → 4 Carry Save Adder

The CSA$_{6-3}$ described in the previous section relied heavily on the use of XOR gates. An XOR gate could always be replaced by three unate gates with a total delay of two
time units. Better results are obtained however by using a completely different design.

Khrapchenko [10] gave a design of an FA_7 using which a CSA_{7-3} with the characteristics
given in Fig. 5.2 could be constructed. He also described networks based on this CSA
with asymptotic delay of $5.12 \log_2 n$. The networks that he described were not optimal
however. Using the designs of section 3, or even the less general designs described in
[13],[14], better networks of delay $5.07 \log_2 n$ can be obtained.

In this section we give an implementation of an $FA_{7,4}$ using which the preceding results
can be further improved. Since the design of this unit is based on Khrapchenko’s design,
we give a concise summary of his construction in Fig. 5.1.

In Figs. 5.1 and 5.4 we use the following notation. We denote by S_A^k the symmetric
function of k variables which takes the value 1 for inputs x_1, \ldots, x_k if and only if
$\sum x_i \in A$. For example, S_7^{4567} stands for the majority function on seven variables.
For conciseness we write U_A for $S_A(\mathbf{u})$ where $\mathbf{u} = (x_1, x_2, x_3)$, and V_A for $S_A(\mathbf{v})$ where
$\mathbf{v} = (x_4, x_5, x_6, x_7)$, and so on.

The numbers given to the left of each formula in Fig. 5.1 are the depths of the variables
in that formula. They will be called delay vectors. The delay characteristics of the three
output bits y_0, y_1, y_2 that compose Khrapchenko’s FA_7 are described in Fig. 5.2(a). In
[14] it is shown that the optimal way of combining these three units into a single unit is
shown in Fig. 5.2(b).

The construction of the new $FA_{7,4}$ is given in Fig. 5.3. Figures 5.4 and 5.5 depict
the final stages in the construction of y_3. The delay vectors of y_0, y_1, y_2, y_3 are shown in
Fig. 5.6(a) and we see that we can fit them all into the unit outlined in Fig. 5.6(b).

By the results of section 3, we can combine the new CSA_{11-4}’s into networks of
asymptotic depth $\log_2 n \simeq 4.95 \log_2 n$ where $\lambda \simeq 1.15041$ is the positive root of the
equation $2\lambda^9 + \lambda^8 + \lambda^6 - 4\lambda^5 - \lambda - 6 = 0$.
Notation: \(x = \overline{x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}x_{11}} \)

\[
\begin{align*}
4666666 & \quad y_0 = S_{1357} \\
78899996666 & \quad y_1 = S_{0145}T_{13} \lor S_{2367}T_{24} \\
89999997777 & \quad y_2 = (S_{4567}T_{04} \lor S_{2345}T_{1}) \lor (S_{0123}T_{2} \lor S_{0167}T_{3}) \\
78888886666 & \quad y_3 = (S_{234567}T_{34} \lor S_{67}T_{1234}) \lor T_{334}(S_{4567} \lor T_{4}) \\
56666664444 & \quad S_{4567} \lor T_4 = (U_{23}V_{234} \lor U_{123}V_{34}) \lor ((U_{3}V_{1234} \lor V_{4}) \lor T_{4}) \\
5667777 & \quad S_{0145} = \overline{S}_{2367} \\
5666666 & \quad S_{0167} = \overline{S}_{2345} \\
5666666 & \quad S_{0123} = \overline{S}_{4567} \\
5666666 & \quad S_{2345} = S_{234567} \overline{S}_{67} \\
4555555 & \quad S_{234567} = U_{123}V_{1234} \lor (U_{23} \lor V_{234}) \\
4555555 & \quad S_{67} = U_{23}V_{4} \lor U_{3}V_{34} \\
\end{align*}
\]

Figure 5.1. The new FA_{7,4} construction.

\[
\begin{align*}
\text{Figure 5.2. The final stages in the computation of } S_{4567} \lor T_4. \\
\end{align*}
\]
Figure 5.3. The final stages in the computation of \(y_3 \).

Figure 5.4. The delay characteristics of the new \(FA_{7,4} \).

6. Concluding remarks

We have presented a general construction and some specific designs which yield circuits for carry save addition which are faster than those previously published. Although we have only given asymptotic results here, the same methods provide efficient networks for small numbers of inputs. There is a polynomial time algorithm which, for any CSA \(G \) and any \(n \), gives an optimal-depth network of \(G \)'s for the carry save addition of \(n \) inputs.

Our constants will no doubt be improved before long, but the techniques provide a simple construction method which may be of more durable value.
References

