
http://wrap.warwick.ac.uk

Original citation:
Moreno, A. and Joy, Mike (2006) Jeliot 3 in a demanding educational setting. In: Fourth
International Program Visualization Workshop, Florence, Italy, 29-30 Jun 2006 pp. 48-
53.

Permanent WRAP url:
http://wrap.warwick.ac.uk/61587

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61587
mailto:publications@warwick.ac.uk

Jeliot 3 in a demanding educational setting

Andrés Moreno1

Department of Computer Science
University of Joensuu

Joensuu, Finland

Mike S. Joy2

Department of Computer Science
University of Warwick

Coventry
UK

Abstract

We report the preliminary findings of a qualitative investigation into how students approach a program
visualization tool, and whether the approach depends on how they are taught to use the tool. Volunteer
students in an undergraduate programming course were divided into two groups. One group was taught
programming concepts explicitly using the tool, and required to use it to solve weekly exercises and projects,
whereas the other group only used the tool on a voluntary basis. We identify those aspects of using the
tool which the students find beneficial, and discuss the limitations of the animations provided by Jeliot 3.

Keywords: Program Visualization, Jeliot 3, Experiment, Programming

1 Introduction

Software Visualization (SV) tools are intended to be used in the early stages of

the learning path of a programmer, teaching them the basics of programming [7],

algorithms [5], and the software development cycle [10]. SV tools convey important

information by means of graphics or animations. Although it is believed that visual

representations are useful, previous evaluations of Software Visualization tools sug-

gest that such tools do not significantly improve the learning outcome [2]. Nonethe-

less, some experiments [4] have shown that they motivate the students when learning

algorithms or basic programming skills.

1 Email: Andres.Moreno@cs.joensuu.fi
2 Email: M.S.Joy@warwick.ac.uk

Accepted on Fourth Program Visualization Workshop, Florence, Italy, 2006

mailto:Andres.Moreno@cs.joensuu.fi
mailto:M.S.Joy@warwick.ac.uk

Moreno and Joy

1.1 Jeliot 3

Jeliot 3 [7] is a program animation tool oriented towards novice programmers, in

which animations represent the step by step execution of Java programs, see Fig. 1.

Each step in the execution of a program is graphically made explicit, and the re-

sulting animation is a simulation of how the virtual machine interprets the program

code. The animation takes place in a “theater” that is divided in four separated

areas. The central and main area is the ”Expression Evaluation” one, to which

messages, method calls, values and references are moved to and from the other vi-

sualization areas as the evaluation proceeds. Students can program in Jeliot 3, and

later they can visualize their program and follow its execution path.

Fig. 1. Screenshot of Jeliot animating the creation of a new object.

2 Literature Review

Ben-Bassat Levy et al.[1] studied the pedagogic advantages of Jeliot 2000 (the pre-

decessor to Jeliot 3) compared with the use of an Integrated Development Envi-

ronment (IDE), TurboPascal, to trace programs. Their study divided high school

students in an Introduction to Programming Course into two groups. Both of them

attended the same lectures, but in their laboratory sessions one group used Jeliot

2000, and the other used TurboPascal.

The results identified an improvement in understanding amongst those who used

Jeliot 2000. The largest improvement came for the mediocre students – Jeliot 2000

represented a viable working model of the execution of a program that they could

understand and follow. However, the strongest and weakest students appeared not

2

Moreno and Joy

to gain much from the tool, since it was either too simple or too complex for them.

In another experiment, qualitative data were gathered from 35 students who

were taking part in a second course on programming and were using Jeliot 3 [3].

Students were asked to reflect on their Jeliot 3 usage while solving programming

and debugging tasks. The findings noted the problems that Jeliot 3 presented to

those students with some experience in programming and to those without previous

use of Jeliot 3. Again, novice students were more positive regarding the usage of

the tool.

Kehoe et al. [4] argue that a different approach was needed to demonstrate the

effectiveness of algorithm animations. They hypothesize that the pedagogic value

of algorithm animation tools would be more apparent when used in an interactive

setting, such a homework assignment. They claimed that the pedagogic value of such

tools would increase if accompanying instruction is provided at the same time as

the animation. Further, a meta-analysis notes the importance of how the animation

is administered to the students, rather than what is actually visualized [2].

Petre [9] discusses the skills required to understand visualizations, and how

novices and experts extract different information from them. The type of training

given in using the visualization influences the development of the student’s skill to

notice secondary notation cues. The acquisition of this skill distinguishes novices

from experts; hence, it is considered fundamental to understanding visualizations.

3 Purpose

The idea for our investigation was to extend the experiment done by Ben-Bassat

Levy et al. [1]. However, rather than comparing two different tools, this investiga-

tion focuses on students’ use of a single visualization tool in two different learning

contexts, and compares their attitudes towards the tool and their usage of the tool.

More importantly, we have sought to check whether the information conveyed by

the animation is correctly understood by both groups, even if they have been us-

ing the tool differently. We may expect using the tool in different contexts should

produce different effects on the students, both in the their performance using the

tool [4] and in their understanding of the taught concepts [9]. We formulate the

following hypotheses:

• H1 : Jeliot 3’s animations are comprehended better by those students who have

been required previously to solve tasks with Jeliot 3. For example, they should

be able to follow and reproduce what it is happening in the animation theater in

greater detail than the students that have not been explicitly instructed.

• H2 : Students’ expectations from the tool should be different depending on how

they have approached it, and we can distinguish two possible uses of the tool,

either as a learning aid, or as a debugger.

4 Methods

The participants in the study consisted of 6 Maths undergraduate students in an

introductory course on programming, who voluntarily used Jeliot 3 as a program-

3

Moreno and Joy

ming environment for their weekly tasks and projects. They were divided in two

groups, the “voluntary” group and the “normal” group. The former consisted of

two students who attended an extra session each week during which where Jeliot

was used exclusively. One of the students reported having prior programming ex-

perience of VisualBasic, and one other was highly proficient in the Microsoft Office

suite, but none had previous Java programming experience.

All participants were taking part in a 10-week long “introduction to program-

ming” module for Mathematics undergraduate students taught at the University of

Warwick. The module lecturer collaborated with the experiment by encouraging

students to use Jeliot 3 and by using it in the initial lectures and lab sessions.

The tool was deployed as a Java web-start application. A web-page 3 was set

up to host the application, along with the on-line documentation.

4.1 Procedures

For half an hour each week, the “voluntary” group of students completed a set of

extra mini-tasks, designed to explain one or more concepts using Jeliot 3. These

taught concepts were closely related to the material taught during that week’s lec-

ture, and with what they were expected to use when solving the weekly assignments.

Students completed these mini-tasks individually in a controlled laboratory environ-

ment, with the researcher (the first author) present to help them to understand the

visualization and to make progress with the mini-tasks. Students’ answers to these

mini-tasks were collected, and the researcher checked their answers for program-

ming and animation misconceptions, and gave further explanation to the students

as to why their answers were incorrect or what the animation meant. This was the

only difference between the two groups.

Both the “normal” and the “voluntary” group used Jeliot 3 at the weekly lab

sessions (2 hours long each), and at home to complete their tasks. The only support

given was that specifically requested during the lab sessions.

During the first four weeks, the researcher was present in the ordinary lab ses-

sions as a teacher assistant, interacting with all the students taking part in those

session (no more than 20 students), and writing down his own observations, and

the attitudes and problems students found in Jeliot 3.

After the 4th week, when the students were supposed to move on to more compli-

cated project work, semi-structured interviews were carried out with the six students

from both groups.

4.2 Data Analysis

The qualitative data analyzed in this report consists of students’ responses during

the interviews. The core of the interview explored students’ attitudes towards Jeliot

3, for example their knowledge about programming concepts, and whether they

would continue to use Jeliot in future assignments. Assessing their knowledge was

performed in two steps. They were asked firstly to explain which steps Java went

through when creating an object, and secondly to describe the animation of an

3 http://www.cs.joensuu.fi/jeliot/warwick/

4

http://www.cs.joensuu.fi/jeliot/warwick/

Moreno and Joy

object being created as they watched it in Jeliot. In total, six interviews were audio

recorded and transcribed.

A list of sentences was extracted from the transcripts and grouped according

to how Jeliot was useful to the students, and how they used it. As expected, two

main categories emerged: Jeliot as a learning aid, and as a debugger. Subsequently,

the researcher’s notes from the lab sessions were incorporated and used to further

explain the reasonings given by the students and to illustrate the behavior of all the

students taking part in the lab sessions, whether using Jeliot 3 or not.

5 Results

5.1 Jeliot as a learning aid

All of the students mentioned the existence of a “gap” in the course. At different

points of the course, they realized that the requirements needed to follow the rhythm

of the course and the practical assignments changed abruptly:

“And it seems very simple, and the next week you do like, you jump, there is

a big jump in the middle. And the lecture doesn’t quite seem to follow the lab

session enough.”

As the student mentions, the gap appeared between theory and the application of

that theory; however, a gap also appeared when students were not able to grasp a

new concept. Arrays and objects, but also the basic syntax, seemed to be trouble-

some, and students asked for further explanations on those topics:

“Maybe, if we had some sort of introduction more into the syntax of Java, and

maybe a bit more of explanation, sort of why it is doing that.”

Students’ answers suggested that the animations involving arrays and objects

were the most useful ones. Only one student, from the “normal” group, did not

mention Jeliot to be of help for the gap. All the other students used Jeliot 3 when

they tried to close a gap which had opened in the course, and they found that Jeliot

3 was useful then, no matter which group they were from.

“It [Jeliot 3] is really useful because you can follow it, go through the code [...].

It is helping me to understand how I create objects. [...] It clarifies things, rather

than just being a white screen.”

Even if they claimed that Jeliot helped them to understand concepts, they failed

to reproduce the execution path that follows an object creation. Only two of the stu-

dents from the “normal” group produced an acceptable description of the allocation

process. Both of them were aware that Jeliot had helped them.

“[...] but as now we are learning new concepts and new objects, it [Jeliot 3] is

useful.”

The other students showed some misunderstandings when describing the ani-

mation of an object allocation. The this reference, and argument passing from

the constructor call to the constructor frame, caused most of the problems. For

example, some of them expected parameters to be passed “by value” straight to

the object. Nonetheless, the animations corresponding to basic statements, e.g.,

5

Moreno and Joy

assignments or variable declarations, were correctly described by all subjects but

one from the “normal” group.

5.2 Jeliot as a debugger

Only one of the participants, who belonged to the “voluntary” group, did not used

Jeliot 3 to complete the assigned tasks during the four observed lab sessions. The

others used Jeliot 3 intensively during the lab sessions.

Most of them followed an iterative approach when completing the tasks: (i)

read instruction, (ii) write method, and (iii) create and run short test. The first

iterations of this cycle can be understood as part of the learning process. The

following iterations had a clearer debugging aim. They used Jeliot 3 to visualize

and identify bugs:

“[...] with Jeliot, you played through it, [...] a number goes to somewhere it

shouldn’t do, and, oh!, that bit is wrong.”

When dealing with project work which consisted of several files, they had to

temporarily abandon Jeliot 3 because it does not support classes a set of classes

stored in different files. However, they came back to use Jeliot 3 when they did not

understand why their programs were not working:

“If a particular thing I was having trouble understanding, I pasted it into Jeliot

and play around with it, so we had values that actually existed.”

It was while using Jeliot 3 as a debugger that students found out the current

limitations of the tool. Most of them suggested the possibility of being able to

“jump through the animation” in order to visualize only what they were interested

in:

“Possibly to be able to skip the animation, and then animate from a certain state

onwards. [...] just to test a tiny bit of the code.”

None of the students mentioned the usage of two Jeliot 3 features that could be

activated from different menus of the tool— the ability to insert a breakpoint, and

the ability to call a method different than the main method.

5.3 Lab session observations

From observations during the lab session, we noted that the complete novices all

exhibited a common behavior. Students appeared to have two different goals when

attending the course. Their main aim is to pragmatically complete the course by

solving the assigned tasks, and their secondary goal is to understand how their

solution is achieved. It was noted that neither the animation (if they were using

Jeliot 3) nor the console output (if they were using the system Java implementation

rather than Jeliot 3) were used to understand the basics of programming, unless

explicitly taught.

Students found it difficult to understand compound assignments, e.g., a+=3;.

Some of the students using Jeliot 3 could not decipher the steps taken in its ani-

mation. Only after the animation was explained to them, could they make sense of

it.

6

Moreno and Joy

Students also grew tired of the length of the animations, and would run them

at full speed. However, at the third lab session, one student from the “voluntary

group” identified non-syntactic bugs in his program while visualizing the animation

at full speed.

6 Discussion

According to our hypothesis H1, students from the “voluntary” group should show

a greater vocabulary and understanding than the “normal” students. The two

“voluntary” students showed a similar level of detail when describing the animation,

but they also showed several misconceptions about the object creation animation,

which suggests that the voluntary mini-tasks might not have been of great help.

One possible explanation could be that the half hour the “voluntary” students

additionally spent working with objects was not enough.

Hypothesis H2 would be supported if we observed the “voluntary” group ex-

hibiting different behaviour to the “normal” group. In this case, students from

both groups were able to use Jeliot to try to understand new concepts and to re-

solve bugs in their code, and we do not have evidence to support H2.

In this small investigation we have not been able to identify any clear distinction

between students who received extra education on using Jeliot as a tool to assist

in learning programming, and those who used it to learn programming but without

any special help. For example, it did not matter if the “voluntary” students had

been taught explicitly how Jeliot 3 creates an object, or if the “normal” students

had seen the object creation animation many times before. It appears that they

did not contrast the knowledge they have, with the information that the animation

keeps repeating.

The number of repetitions of the same animation may desensitize students to

the importance of the animation itself, and reduce it to a “movie of moving boxes”.

They were able to follow the boxes, and discover when they have been misplaced,

but whilst this is useful to identify bugs, the underlying meaning of the animation

may not have been assimilated.

7 Conclusions and Future Work

This investigation reflects on how students have used an educational tool in the

context of solving programming assignments in a programming course for under-

graduates. Two groups of students were observed using the tool. The first group

were given explicit instruction in its use, and required to use it to solve mini-tasks

related to the weekly assignment. The other group did not have any help apart

from the one they requested during the lab sessions.

From these initial results, it appears that Jeliot 3 animations are hard for novice

students to understand. The transfer of knowledge from the tool to the student is

not successful. Even students who have been explained explicitly the meaning of the

animations have problems understanding or applying this later. Despite this issue,

both groups of students found that the help they could get from the animation was

useful to debug their programs. Moreover, all the students found Jeliot 3 easy to

7

Moreno and Joy

use, and most the students who started using Jeliot 3 continued to use it.

Results from the investigation are inconclusive, but they spread some more light

in why Software Visualization tools are not as widely used in education as expected.

In the case of Jeliot 3, we believe that adding verbal explanations to the animation

[6] and “stop and think” questions as in JHAVÉ [8] might solve some of the issues

found in this investigation.

Mayer’s multimedia theories [6] claim that learning can be improved when two

different channels are used to convey information. In multimedia, this means that

the simultaneous combination of audio and graphics will optimize the cognitive load

of the learner. An alternative, and simpler, approach is to combine graphics with

textual captions. Such extended animations would provide novices with important

information to help them comprehend the secondary notation used in an animation

[9], and to build a correct mental model of a program computation.

“Stop and think” questions are those which are woven into the animation. They

evaluate student comprehension by asking specific questions about the running al-

gorithm (e.g., which is the next value of the variable stepper?). Such questions have

been found to help retain students’ attention during an animation and to encourage

them to process recently acquired data into meaningful information [8].

Finally, we believe that students get benefits from using Jeliot 3. However,

Jeliot 3 is not flexible enough to support the different levels of users’ knowledge

and cognitive skills (e.g. some students grasp the concepts faster than others),

and the different usage patterns (e.g. comprehending or debugging). These three

factors would imply the need to model the student, so that content (a combination

of animation questions and explanations) could be adapted to the student skills and

the task they are performing with Jeliot. Moreover, explanations could help weaker

students by providing them with extra and valuable learning material.

Acknowledgments

The authors thank the participants and the staff at the University of Warwick,

specially the students at MA117 and their teacher Petr Plechac. We also thank

the rest of the Jeliot team and Justus Randolph, who helped us in designing this

experiment.

References

[1] Ben-Bassat Levy, R., M. Ben-Ari and P. A. Uronen, The Jeliot 2000 program animation system,
Computers & Education 40 (2002), pp. 1–15.

[2] Hundhausen, C. D., S. A. Douglas and J. T. Stasko, A meta-study of algorithm visualization
effectiveness, Journal of Visual Languages and Computing 13 (2002), pp. 259–290.

[3] Kannusmäki, O., A. Moreno, N. Myller and E. Sutinen, What a novice wants: Students using program
visualization in distance programming course, in: A. Korhonen, editor, Proceedings of the Third Program
Visualization Workshop, The University of Warwick, UK, 2004, pp. 126–133.

[4] Kehoe, C. M., J. T. Stasko and A. Talor, Rethinking the evaluation of algorithm animations as learning
aids: an observational study, International Journal of Human Computer Studies 54 (2001), pp. 265–
284.
URL citeseer.ist.psu.edu/kehoe99rethinking.html

[5] Korhonen, A., L. Malmi and R. Saikkonen, Matrix - concept animation and algorithm simulation
system, in: ITiCSE ’01: Proceedings of the 6th Annual Conference on Innovation and Technology in
Computer Science Education (2001), p. 180.

8

citeseer.ist.psu.edu/kehoe99rethinking.html

Moreno and Joy

[6] Mayer, R. E., “Multimedia Learning,” Cambridge University Press, 2001.

[7] Moreno, A., N. Myller, E. Sutinen and M. Ben-Ari, Visualizing programs with Jeliot 3., in: Proceedings
of the 8th International Working Conference on Advanced Visual Interfaces, 2004, pp. 373–376.

[8] Naps, T. L., JHAVÉ – Addressing the need to support algorithm visualization with tools for active
engagement, IEEE Computer Graphics and Applications 25 (2005), pp. 49–55.

[9] Petre, M., Why looking isn’t always seeing: readership skills and graphical programming, Commun.
ACM 38 (1995), pp. 33–44.

[10] Walker, R. J., G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson and J. Isaak, Visualizing
dynamic software system information through high-level models, in: OOPSLA ’98: Proceedings of
the 13th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (1998), pp. 271–283.

9

	Introduction
	Jeliot 3

	Literature Review
	Purpose
	Methods
	Procedures
	Data Analysis

	Results
	Jeliot as a learning aid
	Jeliot as a debugger
	Lab session observations

	Discussion
	Conclusions and Future Work
	References

