Correcting for link loss in causal network inference caused by regulator interference

Ying Wang 1, Christopher A. Penfold 1, David A. Hodgson 2, Miriam L. Gifford 2, and Nigel J. Burroughs 1*

1Warwick Systems Biology Centre and 2School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK

ABSTRACT

Motivation: There are a number of algorithms to infer causal regulatory networks from time-series (gene expression) data. Here we analyse the phenomena of regulator interference, where regulators with similar dynamics mutually suppress both the probability of regulating a target and the associated link strength; for instance interference between two identical strong regulators reduces link probabilities by about 50%.

Results: We construct a robust method to define an interference corrected causal network based on an analysis of the conditional link probabilities that recovers links lost through interference. On a large real network (Streptomyces coelicolor, phosphate depletion) we demonstrate that significant interference can occur between regulators with a correlation as low as 0.865, losing an estimated 34% of links by interference. However, levels of interference cannot be predicted from the correlation between regulators alone and are data specific. Validating against known networks we show that high numbers of functional links are lost by regulator interference. Performance against other methods on DREAM4 data is excellent.

Availability: The method is implemented in R and is publically available as the NIACS package at: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software.

Contact: N.J.Burroughs@warwick.ac.uk

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 INTRODUCTION

The falling costs of global gene expression (transcriptome) measurement by microarrays, and more recently next generation experiments potentially capture these signals, but because of low temporal resolution of transcriptome data only simple models can be used for analysis. The most basic is a linear auto-regression model (Opgen-Rhein and Strimmer, 2007; Lebre, 2009; Morrissey et al., 2010). Let B_{ij} be the connectivity strength, γ_{ij} the (log) expression level of gene i at time t $(t = 1, \ldots, T)$, B_{ij} is the connectivity strength, μ_i the additive constant and ϵ_i Gaussian noise $N(0, \lambda_i^{-1})$, (precision λ_i).

Despite the simplicity of these models, inference is computationally intensive given the high number of regressors; expression data on 1000 to 10,000s of genes is typical depending on the experimental conditions and organism, and potentially greater if gene models (RNA splicing/transcripts) are distinguished. A factor that considerably aids identification of regulatory links in these systems is the fact that biological networks are sparse, i.e. the connectivity matrix $B = (B_{ij})$ is sparse with the average number of regulators per gene being much smaller than the number of genes. Part of this sparsity results from the fact that only a subset of genes (more specifically their associated proteins) can be regulators; the set of potential regulators can thus be restricted a priori to those identified from bioinformatic/literature considerations as potential regulators, thereby reducing computation considerably.

Sparse network models (Morrissey et al., 2010, 2011) use Gibbs variable selection methods to determine which elements of the matrix B are present in the regression; specifically the prior on B_{ij} allows it to be zero with finite probability. The indicator $\gamma_{ij} \in \{0, 1\}$ of a link $j \rightarrow i$ determines if B_{ij} is non-zero ($\gamma_{ij} = 1$), while $B_{ij} = 0$ if $\gamma_{ij} = 0$. The indicator γ is modelled as a Bernoulli distribution with a prior probability ρ of being non-zero, $\pi(\gamma_{ij} \mid \rho) \sim \text{Ber}(\gamma_{ij} \mid \rho)$, while ρ has a Beta prior $\pi(\rho) \sim B(\rho \mid 0.5, 0.5)$ (Morrissey et al., 2010). Let D denote the time series gene expression data $\{X_i^t\}$ and θ the model parameters $\{\mu_i, \lambda_i, (\gamma_{ij}), (B_{ij})\}$. The likelihood is then given by,

$$L(\theta; D) = \prod_{i=1}^{G} \prod_{t=1}^{T-1} N(X_{ij}^{t+1} \mid \mu_i + \sum_{j=1}^{G} \gamma_{ij} B_{ij} X_j^{t}, \lambda_i^{-1})$$

Associate Editor: Dr. Igor Jurisica
The associated posterior can then be sampled using the bioconductor package GRENTS (http://www.bioconductor.org/packages/2.12/bioc/html/GRENTS.html).

In network models interference has a direct bearing on the posterior probability of links being present. Specifically in these sparse network models \(\pi(\gamma_{ij} = 1 \mid D) \) is reduced if there is another regulator \(k \) with similar dynamics to \(j \). In the case of an exact identity between the dynamics of \(j, k \) there are 3 identical regression models:

\[
\gamma_{ij} = 1, \gamma_{ik} = 0; \quad \gamma_{ij} = 0, \gamma_{ik} = 1 \quad \text{and} \quad \gamma_{ij} = 1, \gamma_{ik} = 1,
\]

and thus the probability of any one, and therefore of \(\pi(\gamma_{ij} = 1 \mid D) \) is reduced. The relative weighting of these 3 states is determined by the prior link probability \(\rho \) which is low in sparse networks, thereby downweighting the double link case; therefore only the two states \(\gamma_{ij} = 0, \gamma_{ik} = 1 \) and \(\gamma_{ij} = 1, \gamma_{ik} = 0 \) need to be considered, effectively halving \(\pi(\gamma_{ij} = 1 \mid D) \) relative to the case when \(k \) is excluded from the network (proof in section 2.1.1). A key problem is gauging when regulators might interfere, specifically how interference decreases with a diminishing correlation between these regulators and thus deciding how to select which regulators to use in the regression. Failing to deal with this appropriately means that key regulators might be missed because they are part of a correlated set of regulators and their link probabilities fall below threshold through mutual interference. We developed a framework for solving this problem based on the analysis of conditional posterior link probabilities that identifies the interfering sets of regulators. This allowed us to define an interference-corrected causal network and, further, the relative weights of the interfering regulators reflecting their likely contribution to the control of a given gene.

The paper is organised as follows. In section 2, we analyse the impact of identical regulators on network links, demonstrating that the link probabilities of identical strong regulators are essentially additive. We give a numerical demonstration of the theory on an augmented experimental data set, doubling up a key regulator. In section 3 we develop a framework to correct for interference in network construction, a post-processing step that clusters regulators and calculates regulator interference within clusters for each target. In section 4, we illustrate our method on three experimental data sets that give rise to networks with distinct architectures and demonstrate that interference is data specific,there being no simple relationship between interference and regulator correlation. Further, we provide evidence that the recovered links are functional. In the discussion, we discuss the impact of these issues and the generality to other inference-fitting methods.

2 THE REGULATOR INTERFERENCE PROBLEM

Causal network determination relies on causal signals leaving a signature in the gene expression dynamics, essentially a correlation between \(X_{1}^{t+1} \) and \(X_{t}^{t} \). However, if two (or more) regulators have similar dynamics, \(X_{j}^{t} \approx X_{k}^{t} \) for all \(t \), then the identity of the regulator is unclear, the true regulator being either \(j \) or \(k \) or both. This correlation in the data gives rise to an approximate symmetry for the likelihood, \(L(\theta; \Phi) \approx L(\theta; \Phi_{j,k}) \). For \(\Phi_{j,k} \) the exchange transformation \(j \leftrightarrow k \). Lifting the symmetry to the space of model parameters gives rise to an approximate exchange symmetry on the parameters \(\theta \), \(L(\theta; X^{t}) \approx L(\Phi_{j,k}^{t}; \theta; X^{t}) \). In particular, identical data \(X_{j} = X_{k} \) means that the likelihood has an invariance symmetry and \(B_{j} \) and \(B_{k} \) are unidentifiable in the linear network model (1). The lifted symmetry in this case reads \(\Phi_{j,k}^{1} B_{j} = B_{k} \), \(\Phi_{j,k}^{1} B_{k} = B_{j} \) etc. In this section we develop a framework to analyse and detect interference between regulators, and demonstrate the impact of an exact symmetry (two identical regulators) on real data.

2.1 Two identical regulators

2.1.1 Theoretical analysis of regulator interference

Consider an exact data symmetry \(\Phi_{j,k} X^{t} = X^{t} \), i.e. \(X_{j} \), \(X_{k} \) are identical. The likelihood is then invariant under the lifted symmetry \(\Phi_{j,k}^{†} \). The prior is also likely to satisfy this symmetry, i.e. the prior on \(B_{j} \) is likely identical to that of \(B_{k} \). Thus, the posterior link probabilities satisfy this symmetry, \(\pi(\gamma_{ij} \mid D) = \pi(\gamma_{ik} \mid D) \) and similarly all joint conditionals. However, the aspect of the symmetry we are interested in is whether the following two models predict different networks.

M1 Only regulator \(j \) is considered in the set of regulators, i.e. regulator \(k \) is removed from the network

M2 Both regulators \(j, k \) are present in the network

These are in fact nested networks since M1 is M2 under the constraint \(\gamma_{ik} = 0 \), i.e. the conditional posterior probability \(\pi(\gamma_{ij} = 1 \mid D,\gamma_{ik} = 0) \) is the link probability on M1 while that of M2 is the posterior probability \(\pi(\gamma_{ij} = 1 \mid D) \), (no constraints), both of which can be computed from the joint distribution \(\pi(\gamma_{ij}, \gamma_{ik} \mid D) \).

We proceed to determine an expression relating \(\pi(\gamma_{ij} = 1 \mid D,\gamma_{ik} = 0) \) and \(\pi(\gamma_{ij} = 1 \mid D) \). Throughout we consider \(\rho \) as fixed; in practice it has low posterior variance in the full network analysis and so fixing \(\rho \) equal to the posterior mean in the following is a good approximation. Firstly, we have:

\[
\pi(\gamma_{ij} = 1, \gamma_{ik} = 1 \mid D) = \frac{\sigma^{2}}{\pi(D)} \int dB_{j} dB_{k} \pi(B_{j}) \pi(B_{k}) \int d\theta \pi(\theta) L(\theta, B_{j}, B_{k}, \gamma_{ij} = 1, \gamma_{ik} = 1; D)
\]

using Bayes formula and assuming independent priors. Here \(\rho \) is the (fixed) link prior probability and \(\theta = \theta \setminus \{B_{j}, B_{k}, \gamma_{ij}, \gamma_{ik}\} \).

The data symmetry \(\Phi_{j,k} \) between \(j, k \) implies that \(L(\theta, B_{j} = a, B_{k} = b, \gamma_{ij} = 1, \gamma_{ik} = 1; D) = L(\theta, B_{j} = a + b, \gamma_{ij} = 1, \gamma_{ik} = 0; D) \). With a Gaussian prior on \(B_{ij} \sim N(0, \sigma^{2}) \) (variance \(\sigma^{2} \)), we note that for an arbitrary function \(f \),

\[
\int du dv \text{e}^{-\frac{u^{2}+v^{2}}{2\sigma^{2}}} f(u + v) \equiv \int \left(\frac{1}{2} \int dw \int dz \text{e}^{-\frac{(u^{2}+v^{2})}{2\sigma^{2}}} f(w) \right) = \sqrt{\pi} \sigma \int dw \text{e}^{-\frac{w^{2}}{2\sigma^{2}}} f(w)
\]

and thus deduce that,

\[
\pi(\gamma_{ij} = 1, \gamma_{ik} = 1 \mid D, \sigma^{2}) = \frac{\rho}{1 - \rho} \pi(\gamma_{ij} = 1, \gamma_{ik} = 0 \mid D, 2\sigma^{2})
\]

where we make explicit note of the prior variance \(\sigma^{2} \) on \(B_{ij}, B_{ik} \) since the dimension reduction above has doubled the prior variance. This implies that the symmetry \(\Phi_{j,k} \) results in a direct relationship
between the regulator link probability \(j \rightarrow i \) when one (model M1) or both links (M2) are present up to changing the Gaussian prior variance of \(B_{ij} \) between models M1 and M2; the other strength coefficients \(B_{ik} \), \(s \neq j \) retain the original prior. Assuming a sufficiently weak prior we thus obtain an approximate equality
\[
\pi(\gamma_{ij} = 1, \gamma_{ik} = 1 \mid D) \approx \frac{\pi(\gamma_{ij} = 1 \mid D)}{\pi(\gamma_{ik} = 1 \mid D),}
\]
which gives,
\[
\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) \approx \frac{\pi(\gamma_{ij} = 1 \mid D) \pi(\gamma_{ik} = 0)}{1 - \pi(\gamma_{ij} = 1 \mid D)}, \tag{3}
\]
or
\[
\pi(\gamma_{ij} = 1 \mid D) \approx \frac{\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) \pi(\gamma_{ik} = 1 \mid D, \gamma_{ik} = 0)}{1 - \rho + \pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0)}. \tag{4}
\]
Hence, including an identical regulator in a network reconstruction reduces the link probability \(j \rightarrow i \) by a factor of \(1 - \rho + \pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) \), which can be close to 2 for a strong link \((\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) \approx 1)\) in a sparse network (\(\rho \) low). For weaker connections the reduction factor is smaller but the relative change proportionally greater, growing as \(1 + (1 - \rho) \pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) \).

2.1.2 Demonstration of regulator interference on experimental data. We use time-series data for \(S. coelicolor \) under phosphate depletion (Nieselt et al., 2010), expression data consisting of 19 time points with 1 hr sampling, see section 1.1 of Supp. Material. In bacteria the PhoP two-component system (PhoURP, SCO4228-30 in \(S. coelicolor \)) is the primary response pathway during phosphate depletion (Rodriguez-Garcia et al., 2007); transcription of \(\text{phoP} \) (SCO4230) dramatically increasing within 1 hr of depletion (Nieselt et al., 2010), a signalling cascade that gives rise to antibiotic synthesis within 20 hrs (Wentzel et al., 2012) through activation of the \(\text{red} \) (undecaprenolpidogiosin, RED) and \(\text{act} \) (actinorhodin, ACT) gene clusters. For demonstration purposes we selected a set of 120 differentially expressed (DE) genes comprising 65 predefined DE regulators (removing \(\text{phoUR} \) which have a high correlation with \(\text{phoP} \); the interference of these 3 regulators is analysed in section 4.1) together with a selection of \(\text{phoP} \) dependent genes and \(\text{phoP} \) independent genes. We denote this data set \(D^{1 \times \text{phoP}} \) to reflect that it has 1 copy of the \(\text{phoP} \) gene. We constructed an augmented data set by including 1 additional artificial regulator which we called \(\text{SCO0000} \) with expression data that is an exact copy of \(\text{phoP} \). We called this data set \(D^{2 \times \text{phoP}} \) since it has 2 regulators (SCO4230, SCO0000) with identical gene expression.

The bioconductor package GRENTIS was used for inference of the gene regulatory network on \(D^{1 \times \text{phoP}} \), and \(D^{2 \times \text{phoP}} \), see Section 2 of Supp. Material. GRENTIS uses a Markov chain Monte Carlo (MCMC) algorithm to implement Bayesian inference on the sparse network model (1), giving samples of the network from which link probabilities can be calculated. For the duplicated data set \(D^{2 \times \text{phoP}} \) we calculated the conditional link probabilities for SCO4230 and SCO0000 from the MCMC samples; i.e. the probability of SCO4230 being on whilst SCO0000 is off, and vice versa. As is shown in Figure 1, the link probabilities for SCO4230 decreased dramatically when its duplicate SCO0000 was included relative to the conditional probability when the duplicate was switched off. This demonstrates the presence of regulator interference in causal networks under an exact data symmetry. Our analysis also demonstrates that the conditional probability allows the link probability to be accurately reconstructed compared to network inference on a reduced set of regulators, i.e. removal of the artificial (duplicated) gene \(\text{SCO0000} \) in this case. Specifically, the conditional \(\pi(\gamma_{i \text{SCO}4230} \mid D^{2 \times \text{phoP}}, \gamma_{i \text{SCO}0000} = 0) \) is identical to \(\pi(\gamma_{i \text{SCO}4230} | D^{1 \times \text{phoP}}) \) for each target \(i \), lying down the diagonal of Figure 1. Therefore, up to the proviso of sufficient samples to compute the conditional, all analysis can be performed from one run of the MCMC sampler through a post processing step. Further, since the conditional probabilities of SCO4230 and SCO0000 agree (conditioned on each other), both lying on the theoretical curve (3), Figure 1, the GRENTIS sampler mixes well under this data duplication, i.e. an identifiability symmetry between regulators does not affect mixing.

2.2 Multiple identical regulators

For \(n \) identical regulators \(S_i, |S_i| = n \), of the target \(i \), the regulator interference analysis of section 2.1.1 generalises to give
the approximate relationship, see section 4.1 of Supp. Material,

\[
\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0, \forall k \in S_i \setminus \{j\})
\approx \frac{(1 - \rho)^{-1} \pi(\gamma_{ij} = 1 \mid D)}{1 - \frac{1 - (1 - \rho)^n}{\rho} \pi(\gamma_{ij} = 1 \mid D)}.
\]

For strong links in a sparse network (\(\rho\) small), we get the approximate relation,

\[
\pi(\gamma_{ij} = 1 \mid D) \approx \frac{\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0, \forall k \in S_i \setminus \{j\})}{n}
\]

Thus, interference by identical regulators in sparse networks reduces link probabilities by the number of identical genes, the network topology running randomly over the single regulator networks since states with multiple links are severely down weighted by \(\rho\). The regulators thus share equally the causal signal and the true link probability of the causal dependence is (approximately) given by the sum over the link probabilities of these interfering regulators.

3 DETECTING NETWORK LINK INTERFERENCE

A continuity argument to the identical regulator case above, section 2.1.1, suggests that we should expect interference to occur between highly correlated regulators. However, the dependence of interference (link suppression) on the degree of correlation between the regulators, the expression levels of the regulators and their targets, is unknown. What is clear is that correlated genes can interfere with each other, potentially causing a significant reduction in the posterior link probabilities of dynamically similar regulators by as much as a factor of \(n\) for \(n\) highly correlated regulators. Therefore causal networks defined by application of a simple threshold criterion, \(\pi(\gamma_{ij} = 1 \mid D) > \phi\), are potentially erroneous because interfering regulators may be lost since their posterior link probabilities fall below the threshold \(\phi\). Here we establish a method to construct a network corrected for interference.

Our method is as follows. Given expression (time-series) data \(D\) (restricted to DE genes), and a subset \(R\) of potential regulators based on, for example functional annotation, define the interference-corrected network (ICN) \(N(\omega, \phi)\) with correlation and link thresholds \(\omega, \phi\) respectively, by:

1. Cluster the regulators \(R\) into correlated sets \(\{C_{jk}\} \geq \omega\), using the correlation coefficient (or other similarity index) \(C_{jk}\), defining clusters \(CR^s(\omega)\), \(s = 1, 2, ...\), possibly singletons. We determine levels of interference between regulators within each cluster, ignoring interference between regulators outside these sets. Singleton clusters are regulators where interference from all other regulators is ignored.

2. Infer the network posterior distribution and the conditional posterior link distributions for regulators in the clusters (here we use MCMC samples from GRENTS). Specifically, for each \(j \in CR^s(\omega)\) the conditionals \(\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0, \forall k \in CR^s(\omega) \setminus \{j\})\) for each target \(i\).

3. For a regulator \(j \in CR^s(\omega)\) and a target \(i\), a link \(j \rightarrow i\) in the network \(N(\omega, \phi)\) exists if either of the following two conditions holds,

\[
\alpha\text{-link: } \pi(\gamma_{ij} = 1 \mid D, R) \geq \phi.
\]

\[
\beta\text{-link: } \pi(\gamma_{ij} = 1 \mid D, R) < \phi \text{ and } \pi(\gamma_{ij} = 1 \mid D, R, \gamma_{ik} = 0, \forall k \in CR^s(\omega) \setminus \{j\}) \geq \phi.
\]

For singletons, only the \(\alpha\)-link condition is relevant. A further numerical restriction is also applied to \(\beta\)-links; the sample size for calculating the conditional probability should be greater than or equal to 100 in order that a 90% confidence interval can be computed; on smaller sample sizes accuracy of this estimate is poor. Small sample sizes can occur if there is a very strong link in the cluster, then conditioning on that link to be off gives a small number of samples. Acquiring a larger number of posterior samples (running the sampler for longer) relaxes this limitation.

The \(\alpha\)-links in \(N(\omega, \phi)\) are the original links in \(N(1, \phi)\) (uncorrected network), i.e. the ICN comprises the original network augmented with recovered \(\beta\)-links. We define the link probability for each link in the ICN as the maximum of its posterior link probability and the links conditional probability based on the regulator’s cluster at threshold \(\omega\) (if applicable).

The number of \(\beta\)-links in the ICN increases on average as the correlation threshold \(\omega\) decreases for a fixed link probability threshold \(\phi\). However, as the correlation threshold decreases, interference amongst clustered regulators becomes weaker as regulators with decreased levels of mutual interference are clustered together. Therefore, in order to find a correlation threshold where the partitioning of regulators into mutually interfering sets is optimised we use a scoring method which quantifies levels of interference.

We propose a score where a \(\beta\)-link has a weight inversely proportional to the number of regulators in its cluster \(CR^s(\omega)\), giving the \(\beta\)-link network score,

\[
S(\omega, \phi) = \sum_s \sum_{j \in CR^s(\omega)} \sum_i I(j \rightarrow i) |CR^s(\omega)|\]

where \(I(j \rightarrow i) = 1\) if the \(\beta\)-link is present, otherwise 0. Then strong interference among highly correlated regulators increases the score while weaker regulators (where only a proportion of the regulators in the cluster have a conditional probability above threshold to a given target) decrease the score. For instance, forming a new cluster (\(\omega\) decreasing) comprising two \(\beta\)-links adds a total of 1 to the score. But adding a third regulator to the cluster that does not regulate that target (conditional below threshold) reduces the contribution to the score to 2/3. Typically \(\beta\)-links are stable in that those present at \(\omega\) are a subset of \(\beta\)-links for all \(\omega' < \omega\). We maximise the network score \(S(\omega, \phi)\) with respect to \(\omega\), defining the optimal correlation threshold \(\omega^*(\phi)\) and associated optimal ICN. In cases where there is a tie we use the highest correlation that maximises the \(\beta\)-link network score since further clustering gives no evidence of an increase in interference.

The link probability threshold \(\phi\) is chosen based on the confidence required for assigning links (Morrissey et al., 2010, 2011); in practice it is lower than desirable since posterior link probabilities are typically low, see Supp. Figure S4. We note that the value \(\phi = 1/(2 - \rho)\) has a special significance as regards inference analysis (the prior link probability parameter \(\rho\) is fixed at its posterior mean), since it is the highest value of the conditional link probability for two identical regulators, see equation (4) with \(\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0) = 1\). Thus, when \(\phi < 1/(2 - \rho)\) some of the \(\alpha\)-links are in fact interfering with each other as shown in Figure 1. Hence, to correctly assess interference the link threshold should be greater than \(1/(2 - \rho)\). In section 4, we consider the effect of \(\phi\) on interference, and its impact on \(\omega^*(\phi)\) on real data sets.

Finally we note that different clustering methods are likely to give slightly different results for the ICN but identification of interfering regulators is likely similar.

4 DEMONSTRATIONS ON REAL DATA NETWORKS

In this section we analyse interference on three experimental examples. Firstly, the full expression data set for \(S. coelicolor\) under phosphate depletion (Nieselt et al., 2010), a second experimental data set for \(S. coelicolor\) under glutamate depletion (Waldvogel et al., 2011), and expression data for the \(A. circadian clock (Windram et al., 2012), see Section 1 of Supp. Material. In each case we do not subselect regulators based on their (dynamic) similarity but construct the causal network with all potential
regulators present. We demonstrate in two of the networks that a high proportion of the recovered links are functional and quantify network accuracy.

4.1 Example 1: phosphate depletion causal network

The phosphate depletion data consists of 988 DE genes, of which 67 are pre-defined regulators comprising DNA binding proteins and proteins capable of regulating gene expression indirectly such as kinases, see section 1 of Supp. Material. The regulators show a wide spread of correlation, Supp. Figure S6(a); we expect interference to be only important amongst the highest correlating regulators and thus only examine the correlation threshold in the interval [0.7, 1]. We grouped the 67 regulators into highly correlated sets by a hierarchical clustering method, Supp. Figure S6(b). The merge points in the tree are the values of \(\omega \) at which the network \(N(\omega, \phi) \) is determined. We used GRENITS to infer the causal network on all 988 genes, see section 2 of Supp. Material. Interference was then analysed on the merge points in the interval [0.7 < \(\omega < 1 \)] across the correlation thresholds \(\phi = 0.4, 0.55, 0.6, 0.65, 0.7 \) following the method in section 3. All these \(\phi \) are in the tail of the posterior link probability distribution, Supp. Figure S4(a), and significantly larger than the posterior estimate for random links, \(\rho = 0.0266 \pm 0.0010 \) (distribution standard deviation). Therefore links on all these thresholds demonstrate evidence of causal regulation at varying levels of significance.

An analysis of the ICN is shown in Figure 2. Since the number of \(\alpha \)-links remains constant and, typically, \(\beta \)-links are added to the network, the total number of links in the network increases on average with respect to increasing clustering stringency (decreasing \(\omega \)) for all \(\phi \). Figure 2(a). The \(\beta \)-link network score indicates that levels of interference are initially strong, but decrease as the cluster threshold falls below 0.85. Thus, the score has a maximum around 0.86-0.90 for all the link probability thresholds, Figure 2(b), and therefore the optimum \(\omega^* (\phi) \) is fairly robust to changes in the link threshold \(\phi \). Interference is in fact fairly uniform across link strength with 30-40% of links being recovered at the optimum correlation threshold \(\omega^* (\phi) \) for each given \(\phi \).

As discussed in section 3, the link threshold should be greater than \(1/(2 - \rho) = 0.507 \) for a full interference assessment. To examine ICN structure and the potential biological importance of the inferred links we choose \(\phi = 0.55 \) for illustration, much larger than \(\rho \) (the probability of random links) and close to the minimum threshold for interference detection. The \(\beta \)-link network score is maximised (for \(\phi = 0.55 \)) at \(\omega = 0.865 \) (the highest absolute correlation with the maximum score), Figure 2(b). The network \(N(0.865, 0.55) \) has a main hub centred on SCO3217, the calcium dependent antibiotic regulator \(cdaR \), and a smaller Pho regulon hub...
around PhoURP, Figure 3. There are 259 recovered β-links out of a total of 757 links in the ICN, i.e., regulator interference caused a loss of 34% of links, 103 in the cdaR hub, interfering primarily with redZ (SCO5881), the principal regulator of the undecylprodigiosin antibiotic gene cluster (with a correlation of 0.95), and 125 in the phoURP hub, a result of cross interference between phoU, phoR, phoP (correlation coefficients > 0.93) with 69, 32 and 24 β-links respectively.

Interference to a common target is in fact highly heterogeneous across regulators within a cluster. For illustration, classify targets for clustered regulators according to the type of links in the ICN, ranging from sole α targets (one regulator is an α-link, other regulators lack a link), mixed α/β targets (at least one α- and β-link), partial β targets (at least one β-link but not all β, and no α) and complete β targets; these respective classifications have increasing levels of mutual interference. The joint targets between SCO3217 and SCO5881 in ICN N(0.95,0.55) then show a diversity of classes, with the absolute target-regulator (time shifted) correlation predicting the target classification, Supp. Figure S9. Specifically the sole α targets of SCO3217 have a higher absolute correlation with SCO3217 than with SCO5881, and vice versa, whilst complete β targets have closer correlation coefficients. The degree of mutual interference also shows variation, Supp. Figure S10; the complete β targets are evenly weighted with similar conditional link probabilities, while the partial β-links have greater differences in their conditional link probabilities. Results are similar for the optimal ICN, but more complex because of the 3-way interference between SCO3217, SCO5881 and SCO4425. Interference is thus heterogeneous within the target base of clustered regulators.

To assess levels of accuracy of our recovered β-links, we examined the 24 targets predicted for PhoP (7 are in the same operon as defined by (Charaniya et al., 2007)); in the uncorrected network phoP had no targets, while phoU and phoR had 19 and 69 respectively at φ = 0.55. It is highly likely that most of these targets are actually regulated by PhoP, the principle regulator of the phosphate response (Rodriguez-Garcia et al., 2007; Martin et al., 2012). We examined two criteria, firstly whether these targets had distinctly different profiles under phoP knock-out (Thomas et al., 2012), Supp. Figures S11 and S12, and whether there was evidence of a PHO box upstream of the gene, the binding site for PhoP (motif GTTCA). The first criteria showed that 5 predicted targets were significantly altered at the 0.5% level (SCO1196, SCO3899, SCO4726, SCO5390, SCO6753), and 3 others at 5%, Supp. Table S3. The second criteria indicated that 5 targets (SCO3899, SCO4545, SCO4653, SCO4726, SCO6753) and the operon (7 genes) have strong evidence of a PHO box or a dyad, (MEME score above 10, resp. 6); 5 genes were in both categories, Supp. Table S3. Close examination of the transcriptional profiles shows that many have a discernible difference in the dynamics across phosphate depletion; typically ΔphoP shows slower changes in gene expression. All those with a PHO box show this behaviour. Thus, over 50% of predicted targets have supporting evidence of a PhoP binding site, Supp. Table S3. The two genes SCO1196 and SCO5390 underwent a dramatic change in expression but there was little evidence of the presence of a PHO box. They may therefore be indirect targets or possess functional but altered PHO boxes. Together this provides strong evidence that correcting for interference is essential since otherwise important targets may be missed. In fact all of the PhoP targets were lost in absence of an interference correction in this case.

4.2 Example 2: glutamate depletion causal network

We examined the ICN for a second S. coelicolor data set under glutamate depletion (Waldvogel et al., 2011), a treatment that also gives rise to the synthesis of RED and ACT antibiotics. The data comprises 945 DE genes including 59 predefined DE regulators, see section 1 of Supp. Material. The absolute correlation between these regulators and the corresponding clustering tree, Supp. Figure S7, are similar to those in the phosphate depletion experiment, Supp. Figure S6. Under the same analysis as above, the optimal ICN occurred at a similar clustering threshold, (φ = 0.55, ω∗(0.55) = 0.859, Supp. Figures S13 and S14) and comprises 283 links of which 35 are β-links, i.e. there is a substantially lower level of regulator interference in this data set with an estimated loss of 12% by regulator interference. Thus, despite similar correlations amongst the regulators and a similar posterior link probability distribution (Supp. Figure S4(b)) that in the phosphate depletion experiment, regulator interference, although significant at 35 β-links, was reduced. This may be because of the different network structure; under phosphate depletion the network comprises distinct separated large hubs, while under glutamate depletion the network is more dispersed amongst a number of smaller hubs.

4.3 Example 3: Arabidopsis circadian clock network

Fig. 4. Analysis of the ICN β-link composition with respect to link φ and correlation ω thresholds for the Arabidopsis circadian clock data. The total number of links (a) and the score of β-links (b) for networks N(ω, φ) are plotted against the absolute correlation threshold ω between regulators for link thresholds φ = 0.4, 0.55, 0.6, 0.65, 0.7, see legend.

The Arabidopsis circadian clock is one of the most well established biological networks containing both transcriptional and translational regulation. We used transcriptome data comprising 10 regulators (Windram et al., 2012), every 2 hours up to 48 hours, 24 time points in total. There are 4 biological replicates at each time
Inferred posterior link probabilities are reduced below threshold. We defined recover regulator links that would otherwise be lost because their correct for link suppression by near identical regulators, and thus from the posterior conditional link probabilities) we are able to level of interference between highly correlated regulators (computed signals in the auto-regression model Equation (1). By analysis of the problem of regulators with similar dynamics suppressing causal link

In this paper we have proposed a method for dealing with the problem of regulators with similar dynamics suppressing causal link signals in the auto-regression model Equation (1). By analysis of the level of interference between highly correlated regulators (computed from the posterior conditional link probabilities) we are able to correct for link suppression by near identical regulators, and thus recover regulator links that would otherwise be lost because their posterior link probabilities are reduced below threshold. We defined an interference-corrected network (ICN) \(N(\omega^*, \phi) \) that includes as a subnetwork the original network \(N(1, \phi) \), i.e. our method only adds links lost by interference. The ICN is defined at the value of the correlation threshold \(\omega^* \) where interfering regulators are judged to be optimally clustered as measured by a score that sums over weighted \(\beta \)-links; our score punished clustering of inconsistent regulators through a lack of mutual interference or no interference.

Our approach avoids a subjective sub-selection of the set of predefined regulators, i.e. all regulators should be included in the inference in absence of prior information, and, by a post-processing step, interference is corrected. In effect we are assuming that there are potentially multiple regulators for a target but network inference is hampered by insufficient dynamic data to separate signals from (individual) regulators with similar dynamics. Determining whether there are two true regulators as opposed to one is not possible without additional experimental data, e.g. experiments under conditions where the regulators have distinct dynamics or conducting experiments with strains where either regulator is expressed under an inducible promoter. Our method crucially prevents loss of both regulators from the inferred network. We demonstrated that the recovered \(\beta \)-links for PhoP and the Arabidopsis circadian clock are functional, with precision at least as good as that for the predicted \(\alpha \)-links. In a comparison against other network inference methods on simulated data (DREAM4), GRENITS is already highly competitive, whilst performance is further improved when coupled with NIACS to correct for regulator interference, the area under precision recall curve increasing on average by 10\%, Supp. Table S2. Most of the improvement is in the crucial high confidence predictions, Supp. Figure S3. NIACS outperformed the other methods in 10 of 14 cases.

For the ICN \(N(\omega^*, \phi) \), we assign the link probability as the maximum of the posterior link probability and the conditional probability (if applicable). However, we do not expect the conditional probability \(\pi(\gamma_{ij} = 1 | D, \gamma_{ik} = 0, \forall k \in CR^i(\omega^*) \notin \{j\}) \) to truly reflect the probability of regulator \(j \) regulating \(i \), since this is dependent on the clustering set \(CR^i(\omega^*) \). In essence, if there are multiple regulators they all affect the dynamics (if on), and a true measure of their regulatory effects is in the presence of the other regulators. Therefore, we recommend that \(\beta \)-links arising from interference remain distinguished since their probabilities are corrected and thus a direct comparison with \(\alpha \)-links may be misleading. However, the relative weighting within a cluster of regulators according to their conditional posterior probabilities is a reflection of the evidence in the data as to the identity of the true regulator. The identity of this true regulator may also be discerned by using additional experiments or gene annotations. This data can also be used as prior information in GRENITS restricting allowable links thereby removing some of the regulator ambiguity.

Our analysis on three real data sets demonstrated that interference is not simply a function of regulator correlation. In the phosphate depletion causal network (Example 1), for two highly correlated regulators we found a spread of interference amongst their targets comprising a set of targets on which interference is mutual, while other targets have only a sole regulator despite their high correlation; interference is thus heterogeneous on the set of targets. These observations mean that interference must be analysed on a per experiment, per target basis and the optimal correlation threshold determined in each case.
In addition to regulator interference we also observed another phenomena in our networks whereby two (or more) regulators enhance the causal signals of each other; specifically the regulators have elevated posterior link probabilities in the presence of each other. We define pairwise synergistic regulators j, k on target i as regulators with $\pi(\gamma_{ij} = 1 \mid D), \pi(\gamma_{ik} = 1 \mid D) > \phi$, $\pi(\gamma_{ij} = 1 \mid D, \gamma_{ik} = 0), \pi(\gamma_{ik} = 1 \mid D, \gamma_{ij} = 0) < \phi$ (this definition can be easily generalised to the case of multiple regulators). Causal signal synergy between regulators was rare, with 3, 3 and 1 synergistic interactions in examples 1, 2, 3 respectively, Supp. Table S6. We emphasise that neither interference or synergy between the causal signals implies that a mechanistic interference/synergy exists. Link suppression/enhancement from interference/synergy in our context arises because of similarity (correlation) in the regulator dynamics.

Interference between dynamically similar regulators in causal network inference is a general problem. It will occur in any statistical hypothesis testing methodology for the model in Equation 1. For instance, since the weights B_{ij} in Equation 1 are suppressed under interference, and their variance increases under a lack of (a posteriori) identifiability, any test for a non zero coefficient will be subject to loss of highly correlated regulator links, see section 4.2 of Supp. Material. In this paper, we have provided a methodology to recover missing (suppressed) links within a Bayesian context through a post-processing of the network posterior samples.

ACKNOWLEDGEMENT

We thank Dr. Jonathan Moore for composing the perl code in NIACS together with the first author. We are grateful to the anonymous referees for their helpful comments.

Funding: This work was supported by BBSRC (New Investigator), grant number BB/H109502/1 to MLG. CAP was funded by EPSRC, grant EP/I036575/1.

REFERENCES
