THE UNIVERSITY OF

WARWICK

Original citation:

Goldsborough, Andrew and Roemer, Rudolf A.. (2014) Self-assembling tensor networks
and holography in disordered spin chains. Physical Review B (Condensed Matter and
Materials Physics), Volume 89 (Number 21). Article number 214203.

Permanent WRAP url:
http://wrap.warwick.ac.uk/62159

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution- 3.0 Unported
(CC BY 3.0) license and may be reused according to the conditions of the license. For
more details see http://creativecommons.org/licenses/by/3.0/

A note on versions:

The version presented in WRAP is the published version, or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

e —
nighlight your research

http://wrap.warwick.ac.uk/



http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/62159
http://creativecommons.org/licenses/by/3.0/
mailto:publications@warwick.ac.uk

PHYSICAL REVIEW B 89, 214203 (2014)

Self-assembling tensor networks and holography in disordered spin chains
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(Received 17 January 2014; published 27 June 2014)

We show that the numerical strong disorder renormalization group algorithm of Hikihara et al. [Phys. Rev.
B 60, 12116 (1999)] for the one-dimensional disordered Heisenberg model naturally describes a tree tensor
network (TTN) with an irregular structure defined by the strength of the couplings. Employing the holographic
interpretation of the TTN in Hilbert space, we compute expectation values, correlation functions, and the
entanglement entropy using the geometrical properties of the TTN. We find that the disorder-averaged spin-spin
correlation scales with the average path length through the tensor network while the entanglement entropy
scales with the minimal surface connecting two regions. Furthermore, the entanglement entropy increases with
both disorder and system size, resulting in an area-law violation. Our results demonstrate the usefulness of
a self-assembling TTN approach to disordered systems and quantitatively validate the connection between

holography and quantum many-body systems.
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I. INTRODUCTION

There is currently a lot of excitement around the so-called
Anti—de Sitter/conformal field theory (AdS/CFT) correspon-
dence and possible applications in condensed matter physics
[1]. The AdS/CFT correspondence is most well known in
high energy physics where it was noted [2] that there exists
a duality between certain theories of gravity on (D + 1)-
dimensional AdS space-time and conformal quantum field
theories (CFT) living on its D-dimensional boundary. In
condensed matter systems, the AdS/CFT correspondence can
provide a geometric interpretation of renormalization group
(RG) techniques since the additional holographic dimension
can be interpreted as a scale factor in the RG coarse graining
[1]. It has been argued recently [3,4] that certain RG ap-
proaches to the Hilbert space of critical many-body interacting
system in D dimensions, such as the multiscale entanglement
renormalisation ansatz for tensor networks, share many of
their geometric properties with (D 4 1)-dimensional AdS.
This connection is based on ideas [5] that suggest that the
entanglement entropy of a region on the boundary is related to
the minimal surface in the holographic bulk that separates the
region from the rest of the surface. These ideas were further
developed by Evenbly and Vidal [6] to discuss the underlying
geometric structure of entanglement and correlation functions
in such tensor networks in general.

Tensor network methods provide elegant and powerful tools
for the simulation of quantum many-body systems. Their orig-
inal manifestation, the density-matrix renormalization group
(DMRG) [7], is now understood to be based on a variational
update of a matrix product state (vMPS) [8,9], and has found

“a.goldsborough @warwick.ac.uk;
www.warwick.ac.uk/andrewgoldsborough.
'r.roemer @warwick.ac.uk; www.warwick.ac.uk/rudoroemer.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

1098-0121/2014/89(21)/214203(11)

214203-1

PACS number(s): 75.10.Jm, 05.30.—d, 02.70.—c

applications in a wide range of fields such as quantum chem-
istry [10] and quantum information [11] as well as condensed
matter physics [12]. More recent developments have extended
the methods to, e.g., critical systems [13], two-dimensional
lattices [14—16], and topologically ordered states [17].

For disordered quantum many-body systems, the strong-
disorder renormalization group (SDRG) provides a similarly
unifying approach [18]. It was originally devised by Ma,
Dasgupta, and Hu [19,20] for the random antiferromagnetic
(AFM) Heisenberg chain

L-1

H = Z JiSi + Sit1s (1)

i=1

where §; is the spin-1/2 operator and J; is the coupling
constant, which takes a random value between 0 < J; < Jmax
according to some probability distribution P(J). The principle
behind the SDRG is to eliminate the most strongly coupled
pairs of spins and replace them with an effective interaction that
couples the spins at either side of the pair, as shown in Fig. 1(a).
The pair of spins coupled by Jy,.x are thought as being frozen
into a singlet ground state as the neighboring interactions are
significantly weaker—ultimately leading to the random singlet
phase, which is the ground state of the system [21,22]. This
freezing of degrees of freedom is remarkably close to an update
process in entanglement RG for tensor networks [13] and sug-
gests the possible usefulness of the AdS/CFT correspondence
also for disordered spin chains. By analyzing the probability of
survival through the SDRG algorithm it is possible to predict
that mean correlations will have a power-law decay [21] with
negative power 2. Similarly, the entanglement entropy can be
shown to scale logarithmically with block size [23], where the
amount of entanglement between blocks A and B is quantified
by the von Neumann entropy

Saig = —Tr palogopa, ()

with p,4 the reduced density matrix obtained by tracing over
the B components of the density matrix.

In this work, we have developed a self-assembling tree
tensor network (TTN) algorithm based on the previous ideas
of SDRG [24,25]. This allows us to calculate properties such
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FIG. 1. (Color online) Schematic diagrams of the various SDRG
variants. Horizontal lines indicate the one-dimensional spin system.
(a) Traditional MDH SDRG [19], spins s;,5; 41 (arrows) with the
greatest coupling strength, J; > J; Vk # i, are removed and replaced
by an effective coupling J. (b) SDRG of Westerberg et al. [24]; spin
pairs are renormalized for the largest energy gap A; and replaced by
an effective spin §. (c) SDRG variant of Hikihara ez al. [25]; the chain
is decomposed into blocks of spins described by block Hamiltonians
H?® (shaded rectangles), with left and right spins, respectively, s* and
s® (dark dots) on the boundaries of the blocks forming the coupling
Hamiltonians, H€.

as expectation values, correlation functions, and entanglement
entropy directly and efficiently from the geometry of the TTN.
In particular, we find that the distance dependence of the
spin-spin correlation function can be studied not only via
direct calculation of the correlation functions, but also via
the holographic distance dependence along the tree network
connecting two sites. In Sec. II we will briefly review the
numerical strong disorder renormalization group of Hikihara
et al. [25] and define the states and operators that form the
basis for our work. Section III shows how the numerical
SDRG on a matrix product operator (MPO) self-assembles
the TTN. Finally, in Sec. IV we compute correlation functions
and entanglement entropy (i) directly using the TTN as well as
(i1) via simply counting the path lengths and connectivities in
the holography. We find that both approaches give consistent
results.

II. THE MPO IMPLEMENTATION OF THE SDRG

A. The numerical SDRG

The SDRG method was extended to both ferromagnetic
(FM) and AFM couplings by Westerberg et al. [24,26]. The
approach finds the neighboring pair of spins 5;,s;y; with
the greatest energy gap A; between the ground state and
excited state and combines them into a single effective spin
S [Fig. 1(b)]. The effective couplings between the new spin
and its neighbors are then recalculated using Clebsch-Gordan
coefficients and the new gaps A;_; and A; updated. SDRG
was once more extended by Hikihara et al. [25] to include
higher states at each decimation, in the spirit of the numerical
renormalization group [27] and the DMRG [7]. This method
therefore decomposes the system into blocks rather than larger
spins allowing for more accurate computation of, e.g., the
spin-spin correlation functions. The more states that are kept
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at each decimation the more accurate the description and is
exact in the limit of all states kept.

Consider a point in the algorithm where the Hamiltonian
is made up of blocks H? at each site and couplings Hfi 41
between them as in Fig. 1. The couplings take the form of a
two spin Hamiltonian

Hi,ci+l = JiEiR ‘EiL+1v (3)

where 5* is the spin operator of the right-hand spin of block
i and 5/, is the left-hand spin of block i + 1. In full the
Hamiltonian is

Ng Np—1

H=Y HF+ 3 HS,., )
i=1 i=1

where N is the number of blocks.

Let us now define the gap A; as the energy difference
between the highest energy SU(2) multiplet that would be
kept and the smallest multiplet that would be discarded in
a renormalization of block HJ +1- The scheme works by
searching for the pair of blocks ‘with the largest gap A;, and
then combines the coupling and the blocks that it connects into
a single block

Hiﬁ,i,,,-&-l =H. + Hic i1 T Hiﬁ+1- &)

lm ms

This block and the couplings either side are then renormalized
by a matrix (V,) of the eigenvectors corresponding to the
lowest x eigenvalues of the block, such that only full SU(2)
blocks are kept. The process is repeated until the system is
represented by one block. The details of the algorithm are
described in Appendix A.

B. Numerical SDRG as an MPO process

Hikihara’s numerical SDRG can be naturally described as
a set of operations on an MPO (see Appendix B for more
details). First, we contract the MPO tensors for the pair of
sites with the largest gap, sites i, and i,, + 1 [Fig. 2(a)],

, ,

limyim+11 __ Oim » Ty, Gy 1 Cipy +1
4 - Z Wbi,,,—]qbim Wbimqbim+l . (©)
b

im

Here we have o;, = 1,...,x for the physical indices, and
for the Heisenberg model (1), the virtual indices are b; =
I,...,5. Next, we perform an eigenvalue decomposition on
the on-site components of the new MPO tensor keeping the
eigenvectors of the lowest x eigenvalues (V)

A, = VQ(H,.jj @1+ stk +1@HE )V, (D

As with the Hikihara’s algorithm, only the yx eigenvalues
that make up full SU(2) multiplets are used. Then we
contract V, and V)'I with the new MPO tensor to perform
the renormalization [Fig. 2(b)]. For the moment write the
two-site combined MPO W+l in terms of an effective
site with index T = 1,...,x,x + 1, ...,x2% ie. Wbr,»:,l

i 417
Similarly, we can write the set of eigenvectors as [V, 12" . Then
the contraction is explicitly given as

= Z [ V)I ] f;’im WI;::; b [ VX ]:/;m , (8)

7,7/

~ ~/
Tim +Oiy,

biyy—1.:b,

im
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FIG. 2. (Color online) (a) Tensor network diagram of the matrix
product operator. The (vertical) o and o’ legs denote physical indices
and couple to the tensor network wave function and conjugate. The
b’s are virtual indices (in horizontal direction) and couple the local
tensors (blue-shaded squares) of the MPO to each other. (b) The
pair of sites with the largest gap A;, is found, the MPO tensors for
these sites are contracted, and the physical indices fused to form a
matrix. (c) Contracting the matrices of eigenvectors V, (red-shaded
rectangle) and V)j' creates a new MPO for a coarse-grained system.

where 6;, = 1,...,x is the spin index of the renormalized
site i,,,. Hence we replace sites i,, and i,, + 1 with a single
renormalized site and relabel the remaining indices.

The contraction makes the on-site component of the new
MPO simply a diagonal matrix of the lowest x eigenvalues A,
[Fig. 3(a)]. It also has the effect of renormalizing the coupling
spins just as in the Hikihara approach [Fig. 3(b)]:

— vf(ms, )V ©)

=Vt 1)V, (10)

The contraction therefore maps two MPO tensors onto one
while preserving the indexing structure of the MPO.

As the final step, we diagonalize the neighboring blocks to
update the distribution of gaps. The procedure is then repeated
until the system is just one site, and we diagonalize to obtain
the ground-state energy E, of the system.

III. TREE TENSOR NETWORKS AND SDRG

The MPO description of SDRG given above amounts
to a coarse-graining mechanism that acts on the operator.
Alternatively, we can view it as a multilevel tensor network
wave function acting on the original operator. To illustrate this,
we can split the T index of VQ as in Eq. (8) back to the original
spin indices o;,,,0;, 4+ to create an isometric tensor or isometry
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FIG. 3. Schematic representation of the contraction step (8)
for the Heisenberg Hamiltonian (1). Circles (and ellipses) denote
(combined) operator entries in the Heisenberg MPO Wi+l (see
Appendix B 2 for details). (a) Renormalizing the on-site components
has the effect of creating a new on-site component, which is a diagonal
matrix of the lowest eigenvalues A, . (b) Contracting V,, and V)I has
the effect of renormalizing the coupling spins in the same way as the
Hikihara method, storing them as the coupling components of the
new MPO tensor.

i G
[Vg]tlm = [U)]gj-:::,a,-,,,“

[28]. The isometric property means that

- &' 5 s
Do i, Wl = 8%, A1)

O +Oin +1

or wwi =1 #* wiw [Fig. 4(a)]. A renormalization in the
SDRG algorithm as in Figs. 2(b) and 2(c) can then be rephrased
graphically as in Fig. 4(b). This makes the notion of mapping
two MPO tensors to one immediately explicit.

When viewed in terms of isometries, the algorithm can be
seen to self-assemble a tensor network based on the positions
of largest gaps before each renormalization. When written in
full, it builds an inhomogeneous binary TTN as shown in Fig. 5.

tm

Oin 0i,,
w -
O,
w I
T Iv‘ 1/
w w' i
o o 5
(a) tm tm (b) T,

FIG. 4. (Color online) (a) Schematic representation of the iso-
metric property ww' =1 given by Eq. (11). (b) One step in the
MPO SDRG algorithm in terms of isometric tensors w. Triangles
(red-shaded) denote the isometries; squares are as in Fig. 2.
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A Holographic
: Dimension

Lattice
Dimension
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FIG. 5. (Color online) The SDRG algorithm as a TTN for a chain
of L = 20 sites. The squares are the MPOs (i.e., the spin operators),
triangles are isometric tensors, and solid lines denote summations
over physical (vertical) and virtual (horizontal) indices as before. The
circle indicates the top tensor, i.e., the ground-state eigenvector of
the coarse-grained system. Lattice and holographic dimensions are
indicated by the dashed arrows.

Tree tensor networks are one of the major areas of tensor
network research and TTNs with regular structures have
been extensively studied [29-32]. The isometric nature of the
isometries allows for calculations to be performed in a highly
efficient manner [28,30,33]. When calculating expectation
values, such as the two-point correlation function [Fig. 6(a)],
only those tensors that affect the sites that the operators act
on need to be included; this is known as the past causal cone
[28] and is drawn as a blue shadow in the holographic bulk.
This allows for a reduction in the number of contractions that
need to be performed to obtain a result. Calculation of the
entanglement (von Neumann) entropy (2) can also be made
more efficient as shown in Fig. 6(b). In addition to the reduction
due to the isometries, we note that the entanglement entropy is
not affected by the isometries acting just on A [30]. However,
the entries in the density matrix will change so we label it A’.

PHYSICAL REVIEW B 89, 214203 (2014)

IV. RESULTS

In the following, we shall compare results for the disordered
antiferromagnetic Heisenberg model (1) when using a modern
DMRG implementation, e.g., variational MPS (vMPS), with
those obtained from our TTN SDRG strategy (tSSDRG). The
set of couplings (J;) shall always be taken from a box-type
distribution [25], i.e., constant in the range 0 < 1 — AJ/2 <
Ji < 1+ AJ/2 < 2and zero outside. Unless stated otherwise,
we use strong disorder AJ = 27 in the following. We assume
open (hard wall) boundary conditions throughout.

A. Convergence and ground-state energies

In Fig. 7 (main), we show the dependence of the disorder-
averaged ground-state energy per site, E,/L, on AJ for
constant L. We find that for both vMPS and tSDRG, the E, /L
values decrease for increasing A J, i.e., the ground-state energy
lowers as disorder in the J; couplings allows the system to
form particularly energetically favorable spin configurations.
We also see that the vMPS for the chosen values of x and
L reaches lower energies. This suggests that it is yet more
efficient in finding an approximation to the true ground-state
energy. However, upon increasing A J, the difference between
vMPS and tSDRG is getting smaller. This is expected since
SDRG is based on the idea that the contribution from the
nonsinglet interactions is small, which is more accurate an
assumption the greater the disorder. The figure also shows
that increasing x can considerably improve the results of the
tSDRG [34].

InFig. 7 (inset) we show E, /L as a function of L for various
values of x at the strongest permissible disorder AJ = 27. We
find that the values of E,/L do not vary much anymore for
system sizes L > 100. Conversely, E, /L values for L < 100
are clearly dominated by the presence of the open boundary
conditions.

B. Correlation functions

The correlation functions for a strongly disordered Heisen-
berg chain are expected to average out to be a power-law
decay [21]

. . —1)y2—x
({8 - 5)) ~ ehr (12)

lx2 — x1?

FIG. 6. (Color online) Diagram showing the TTN form of (a) the correlation function (53 - 55) and (b) the reduced density matrix p4 (for
the block A indicated by the dashed rectangle ten sites long) of the 20 site system from Fig. 5. Lines and symbols as in Fig. 5. The causal cone
in both panels is indicated by a light-blue-shaded region. The bold line in panel (a) shows the path length through the TTN connecting the two
sites, whereas the bold line in (b) shows the minimal surface in the TTN between regions A and B (the rest of the chain). The diagram in the
right-hand side of (b) has been reduced in the horizontal direction to highlight the reduction in complexity due to the isometries.
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FIG. 7. (Color online) Ground-state energy per site E,/L as a
function of disorder AJ for system size L = 100 for tSDRG (solid
lines) and variational MPS (dashed). The error bars correspond to the
standard error on the mean obtained from averaging over 200 different
disorder configurations and various values of x. Lines are guides to
the eye. Inset: System size dependence of E,/L for AJ = 2~. Sizes
L = 10-80 have been averaged over 500 disorder configurations,
90, 100, and 120 over 1000, 150 and 200 over 2000 configurations,
respectively.

where ((Sy, - 5y,)) is understood to be the disorder-averaged
expectation value of the two-point spin-spin correlation func-
tion. This =2 scaling of the correlation is a feature of the
disorder in the system [21] and should be contrasted with the
well-known power-law dependence of correlation functions
[35] in interaction-driven Luttinger liquids [36].

In loop-free tensor networks, correlations scale as
e~ P - where D(xp,x) is the number of tensors that
connect site x; to x, [6]. DMRG is based on the matrix
product state (MPS) and as such it has one tensor per site,
i.e., Dyps = |x, — x1]|. Therefore correlations in DMRG scale
exponentially. This suggests that for long chains it will be
necessary to keep large numbers of states to be able to model a
power-law correlation of the system [6]. tSDRG, on the other
hand, has a holographic geometry based on arandom TTN with
path length Drn = log |x; — x1], i.€., scaling logarithmically
with distance when averaged. This makes it much more suited
to capture the desired power-law decay

<(EX1 ! Exz)) ~ eia(DTTN(M,XZ»

~emelogemal o) x| (13)

In Fig. 8, we show the behavior of (s, -EXZ ) computed
directly as well as its holographic estimate based on (13).
We find that the behavior for |x, — x;| > 1 and |x; — x1| <
L/2 is indeed very similar for both approaches. The best-fit
value for o is 0.62 £ 0.02 where the error is the standard
error [37]. We find that in the indicated distance regime, both
measures of ({5, - 5y,)) are consistent with the expected 2
behavior. For |x, — x1| 2 L/2 we see that the boundaries lead
to an upturn on the behavior of (s, - 5,,)) for both direct
and holographic estimates. This upturn is a result of boundary
effects and can easily be understood in terms of the holographic
TNN: For |x, — x;| > L/2, the average path length in the tree

PHYSICAL REVIEW B 89, 214203 (2014)
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FIG. 8. (Color online) Correlation function for L = 150 and
AJ =2~ averaged over 2000 samples for the direct calculation
of {(sy, - 5y, )) (black circles) and also via the holographic approach
(13) using Drrn (dashed red line with error of mean indicated by
the gray shading) such that ((5,, - 5., )) &~ (5.81 +0.93)exp[—(0.62 +
0.02) Dy1n]. The expected thermodynamic scaling |x, — x| 72 is also
shown (solid blue line) while the dashed orange line denotes a
power-law fit up to |x, — x;| = 50 with slope 1.64. The (brown)
crosses show ((sy, - 5y, ))/4 (for clarity) with all values for even
distances |x, — x| multiplied by 1.25. Inset: The holographic path
length DN connecting sites x; and x, averaged over the 2000 TTNs
(black) and a fit in the logarithmic regime (red).

decreases (cf. Fig. 6). This is also consistent with periodic
systems where we expect correlation functions to be equal for
|x, —x1| =r and L — r. In the inset of Fig. 8 we show the
distance dependence of Drry with x = 10. For |x; — x| <
L /2, the data can be described as linear behavior in log |x, —
x1| with slope 2.94 £ 0.02. Note that this slope along with
the value of @ = 0.62 £ 0.01 gives an estimate of power-law
exponent a = 0.62 x 2.94 = 1.84 £ 0.04 for fixed L = 150.
Figure 9 shows that as L increases, the resulting value of the

2.5

v x=4
> x=10
A x=20 ,
— average

| | | |
-0 100 200 300 400 500
L

FIG. 9. (Color online) The scaling parameter a from Eq. (13) as
a function of system size L for different values of x at AJ = 27. The
solid lines are guides to the eye only. The asymptotic value of a = 2
is indicated by the horizontal dashed line.
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FIG. 10. (Color online) The typical spin correlation function
averaged over 2000 samples for L = 500 (green circles) and L = 150
(triangles) and x values as given in the legend. Error bars are within
symbol size throughout. The dashed lines are fits to the linear regimes
for L =150, x =50 (blue) and L =500, x =20 (green). The
vertical dotted line indicates half the system size for L = 150.

scaling power a also increases towards the expected value of
2 for larger systems upon increasing L. We have also checked
that the differences between x = 10 and 20 remain within
the error bars and hence we use x = 10 for calculations of
{(Sx, - Sx,)) in Fig. 8. We further note that Fig. 8 shows a clear
difference in the correlation function between even and odd
distances. The difference in magnitude is found to be 1/4 as
predicted previously [38].

In addition to the power-law scaling of mean correlations,
it is expected [21] that the typical correlations scale as

(log|(Sy, - 5u,)[) ~ =12 — ]2, (14)

where the left-hand side of (14) is the disorder-averaged mean
of the logarithm of the spin correlation function, i.e., the
logarithm of the geometric mean of the correlation function.
Figure 10 shows that this typical correlation function indeed
scales as |x, — x;|'/? and the quality of the fit increases upon
increasing x and system size. For L = 150, as x is increased
from 4 to 50, the agreement with (14) improves up to
approximately half the system size, at which point boundary
effects become important as in Fig. 8. The typical/geometric
mean of the path lengths does not allow one to reproduce the
typical correlation behavior (14), but rather continues to retain
alogarithmic scaling behavior. This suggests that the TTN con-
structed by our tSDRG selects those path lengths correspond-
ing to mean correlation. Clearly, Eq. (13) ignores correlation
information stored in the isometry tensors and we expect that
its inclusion will recover also the typical correlation behavior.
Indeed, the need to increase x in Fig. 10 in order to reproduce
(14) already confirms that the tensor content is very important
here.

C. Entanglement entropy

In general, the entanglement entropy S4p is difficult to
compute as the size of the reduced density matrix p4 scales
exponentially with the size of block A. While for special cases,
such as the X X model [39], S4|p can be computed more easily,

PHYSICAL REVIEW B 89, 214203 (2014)

the general strategy involves finding the eigen- or singular
values of p4 [9].

The TTN representation of tSDRG gives an alternative
means of calculating S,z for any bipartitions A and B of
the system. In a similar manner to the correlation functions,
the geometry of the tensor network is related to its ability to
capture S4p. Briefly, S4p is proportional to the minimum
number of indices, n4, that one would have to cut to separate
a block A of spins from the rest B of the chain (cf. Fig. 6)
[6]. This dependence is related to the famous area law,
which states that for the ground state of a gapped system, the
entanglement entropy of a region is proportional to the size of
the boundary that separates the two regions [40,41]. The MPS
is a simple line of tensors (cf. Appendix B) and thus the number
of indices that separate one region from another is a constant
and independent of the size of the block and its position in the
chain. Unlike the MPS, for the TTN the position of the block
in the chain alters the number of indices that have to be cut to
separate it from the rest of the system. This suggests that there
are spatial regions in the chain that are more and less entangled,
which is likely to be true for a strongly disordered spin chain.
The concept is hence similar to discussing the entanglement
in the Ma, Dasgupta, and Hu implementation [19] of SDRG,
where the entanglement entropy is related to the number of
singlets that have to be broken to separate a region from the rest
[23].

In Fig. 11 we show that the average value of S4 5 remains
approximately constant upon increasing the disorder, while
the average of the maximal S4 g shows a pronounced increase.
This indicates that the full distribution of S4 5 develops long
tails with large S4 5 values when increasing AJ. For strong
disorders AJ 2 1.5 we find that tSDRG is more accurate than
vMPS. The vMPS estimates of S,z are consistently below

2.5 T T T T

o—o tSDRG =20 (average) :

t o-o tSDRG =20 (average max) : 1
a4 YMPS =40 :

21 p—> VMPS x=20 5.5 _—ﬁ—i‘éz

v—v VMPS x=10 w8 E ,—%"E"%_%—]#

_E-T EEE--E-F

L H-T -E J
ﬁ"ﬁ_ 0 {—%

T -+ v

1-AJ/2<J<1+MJ/2]

i | N |
93 0.5 1 1.5 2

FIG. 11. (Color online) Entanglement entropy S4 for all possi-
ble bipartitions (cf. Fig. 6) for L = 30 as a function of AJ averaged
over 100 disorder configurations using vVMPS and tSDRG. Solid
lines indicate the arithmetic mean over disorder configurations while
dashed lines denote the mean of the maximal S,z values at the chosen
AJ. Lines connecting symbols are guides to the eye only. Error bars
denote standard error of the mean when larger than symbol size. The
two vertical dotted lines highlight AJ = 0.5 and 1.2 as discussed in
the text.
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FIG. 12. (Color online) Entanglement entropy S4z as a function
of L averaged over 100 samples and all possible bipartitions
(as in Fig. 11) for x =4 and AJ =2". The dashed blue line
is the fit (0.358 £0.005)log, L + (0.41 £ 0.03); the solid black
line is (0.096 % 0.008)logy L + (0.67 £ 0.04). Error bars denote the
standard error of the mean for the S,z values when larger than
symbol size while gray shaded regions show the standard error of the
indicated fits.

the values obtained by the tSDRG. Only when increasing
do we reduce the deviation. This behavior is most pronounced
for the average of the maximal S,z values. For example,
with y = 20, the S4,p values obtained for vMPS deviate from
the tSDRG results around AJ = 1.2. Hence we see that an
increase in S, p requires a considerable increase in y for
VvMPS to accurately capture the entanglement. On the other
hand, for weak disorders AJ < 0.5, vVMPS gives consistent
results already for small x = 10. The values obtained for
S4ip from tSDRG are much higher in this regime. We believe
this to be an overestimation of S4 p by the tSDRG because,
as discussed before, tSDRG selects most strongly the singlet
pairs in the disordered system, which of course become less
prevalent for low disorder.

Figure 12 shows that when L is increased for AJ =2,
both the average and average peak values of S4p increase
logarithmically in L. This again implies that as L is increased,
the x value for vMPS needs to be increased also to be able to
capture the entanglement. On the other hand, the holographic
nature of the TTN means that the minimal surface in the
network increases with system size and thus describes this
entanglement without the need to increase x. Although S4 5
is therefore captured well by the network, contracting pu
for larger L becomes increasingly more difficult, even with
the simplifications suggested in Sec. IV B, since the size of
the matrices scales as O(x"*). We therefore have to restrict
ourselves to smaller x and L values than in Secs. IV A
and IV B.

In Refs. [23,42], Refael and Moore calculate a block
entanglement S4 p in the random singlet phase and show that
it scales as

log 2

Sup~ log, Lp ~0.231...logy Ly,  (15)
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3 T
o—e tSDRG =10
— 0.230 log,L, +1.10
25 -~ [log(2)/3]log,L, +1.086 N

FIG. 13. (Color online) The entanglement entropy S4 p (black)
averaged over 500 samples as a function of the size of a block Lg
placed in the middle of a chain with L = 50 for x = 10 and AJ =
2. The fitting (red, solid line) gives S4 ;5 = (0.22 £ 0.02)log, L5 +
(1.12 £ 0.05) for L < 25, above which finite size effects dominate.
The gray-shaded region indicates the accuracy of the fit. The (green)
dashed line shows the entanglement scaling (15) from Ref. [42] with
the vertical position fitted to the point Lz = 2. The straight black
lines are a guide to the eye only. At the bottom, we show the failure
rate in percent (crosses) for different L.

where region B is a block of extent Lp in the center of the
spin chain. Note that this implies an effective central charge
[23] of ¢ =1 x log 2. This is different from the bipartition
entanglement Sy p that we considered before. We show the
resulting S4 p in Fig. 13. The figure clearly indicates that
finite size effects become prevalent for large Lp, so we fit
for Ly < L/2 only. The resulting scaling behavior S4 p ~
(0.22 £ 0.02)log, L is consistent with Eq. (15). We note,
however, that finite size corrections might still be present at
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1.5 ‘ : : ‘ :

T
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3 IOy
oy % §I§n§n

Sup> Sap My

% 6040 00 0
0.5 026000600000096050606606566000606060606°0
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FIG. 14. (Color online) Entanglement entropy S (black circles)
and entanglement entropy per bond S/n, (red diamonds) for
bipartitions A|B (top, open symbols) and blocks A, B (bottom, filled
symbols) with y = 10 and AJ = 2~. The entanglement per bond
saturates to 0.47 & 0.02 for bipartitions and 0.48 £ 0.02 for blocks
(gray-shaded regions).
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the system size available to us here; ideally one should aim for
much larger system sizes [43].

We finally also examine the entanglement entropy per bond,
S/n4,of a TTN for both bipartitions A|B and blocks A, B with
x = 10 when averaging over 500 disorder configurations with
L = 50. Figure 14 shows that away from the boundaries S/n 4
saturates to the same constant 0.47 &+ 0.02 for bipartitions and
blocks [44]. This is consistent with Ref. [6] and implies that
the entanglement entropy is proportional to the length of the
holographic minimal surface that connects the two blocks.
Note that for Lg ~ L/2, we find that up to 20% of our samples
for x = 10 lead to calculations of S4 p consuming memory
beyond 100 GB. This is currently out of reach for us and we
disregard the configurations. Nevertheless, we think that this
is purely a numerical artifact and does not change the average
values of S4 p/n4 reported here. Calculations with smaller x
confirm this [44].

V. CONCLUSION

In this work, we demonstrate the validity and usefulness
of a suitably adaptive tensor network approach to locally
disordered one-dimensional quantum many-body systems. In
contrast to traditional vMPS approaches to disordered systems,
where the initial geometry of the MPS ignores the disorder and
only takes it into account at the stage of variational sweeps
[45], our approach incorporates the disorder into the fabric of
its tensor network. We believe this strategy to be inherently
more suited to disordered systems—the results presented here
show that the accuracy of tSDRG is already comparable to
vMPS without including any additional variational updates.
This advantage is particularly evident for long-ranged cor-
relations and an entanglement entropy that violates the area
law.

Our results furthermore show that, when disorder averaged,
a random AFM spin-1/2 system is well characterized by an
effective CFT on the boundary of a discretized holographic
bulk. Here we have thus shown the quantitative validity of
holography. In particular, our spin-spin correlation function,
Fig. 8, as well as the block and bipartition entanglement
entropies, Fig. 14, show excellent qualitative and numeri-
cal agreement with their holographic counterparts. Such an
agreement also reconfirms that the self-assembly of the TTN
produces the necessary tensor network geometry.

While here we concentrated on the disordered X X X model,
the method should be straightforwardly applicable to the X X
and XXZ models as studied by Fisher [21]. Similarly it
should work for the Jordan-Wigner transformed equivalent
fermionic models with a disordered hopping parameter [46].
It should also be permissible to implement different forms
of disorder, such as aperiodic sequences [47] as long as
the singlet approximation is valid throughout the renormal-
ization procedure. We have checked that tSDRG, just as
the SDRG of Hikihara [25], is also able to model random
FM/AFM couplings that create large effective spins as the
renormalization progresses. As such it may be possible to use
our approach to study higher spin systems given a suitably
high x. It should also be fairly simple to extend the tSDRG
method to periodic systems by introducing a bond between
the first and last MPO tensor, which is effectively taking a

PHYSICAL REVIEW B 89, 214203 (2014)

trace over the MPO. We note that implementation of on-site
disorder, such as in the random transverse field Ising model
[22], does not appear to have a natural implementation using
the local RG outlined in Sec. II. Here it may be possible
to implement a tensor network with a different structure,
but at the moment it is not clear to us how this would be
performed.

The tensor network approach makes finding other ex-
pectation values, i.e., in addition to those studied here,
straightforward as they are simply the contraction of the set
of isometries with a matrix operator. An example is the string
order parameter [48] that is used to find a hidden topological
order in the ground state [49]. If the entanglement entropy
can be found, so too can the entanglement spectrum, which
has become a popular means of characterizing many-body
wave functions [50-56], for better or for worse [57]. Excited
states can be found by diagonalizing the top tensor and
instead of keeping the lowest energy eigenvector, one keeps
a suitable set of higher energy eigenvectors. This will only
be accurate for low energy excitations as at each step of
the renormalization process only the low energy components
are kept, while information about higher energy modes is
discarded. Furthermore, it is possible that when moving far
away from the ground state the geometry of the network is no
longer appropriate.

Our local RG procedure selects spin pairs based on
energy gaps. It is tempting to reformulate this based on the
local entanglement content of such pairs. However, it is not
straightforward to find such a local measure that captures
energies and wave functions well simultaneously. In particular,
we do not find a convenient local entanglement measure
that would have a simple relation to the local values of J;.
More promising might be the implementation of a variational
TTN [30]. Our initial results suggest that this does indeed
improve the energy values, but at considerably increased
efforts in implementation and computation—every disorder
configuration of course necessitating its own variationally
updated tree structure.
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APPENDIX A: THE NUMERICAL SDRG ALGORITHM

The algorithm of Ref. [25] can be formulated as follows:

(1) Find the coupling Hamiltonian with the largest gap A;,
and create the two-site block.

(2) Diagonalize the two-site block to find the x < x’
lowest eigenvalues (A,) and corresponding eigenvectors
(Vy) such that only full SU(2) multiplets are kept, where
x' is the maximum number of eigenvectors and is set at

runtime.
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FIG. 15. (Color online) (a) Tensor network diagram of the MPS
ket. The circles represent the M tensors in Eq. (B2), the lines are
the indices, and connected lines represent tensor contractions. The
bra state is the same apart from the vertical lines point upwards and
the contents of the tensors are the complex conjugate. (b) Tensor
network diagram of the matrix product operator. The o and ¢’ legs
are physical indices and couple to the tensor network wave function
and conjugate. The b are virtual indices and couple the local tensors
of the MPO (squares) to each other.

(3) Set the x eigenvalues (A, ) from the diagonalization as
the new two-site block, which is equivalent to renormalizing
the two-site block with V,,

5 B B
H = V)IHim,im-&-lVX = Ay.

i (Al)
(4) Renormalize the spin operators on the right- and left-
hand sides of the new block to update the couplings
2R _ i <R
st=viiesk, v,
oo (A2)
§h=VIEEe1)V,.
(5) Diagonalize the neighboring blocks to get the new gaps.
(6) Remove site i,, + 1 and return to step 1. This process is
repeated until the whole system is described by one block.

APPENDIX B: MATRIX PRODUCT
OPERATORS AND SDRG

1. Matrix product states

A general wave function describing a spin state on a lattice
can be written as

W) = Z CO‘],...,UL lot, - ..
o

..... oL

oL) (BI)

where o; are the physical indices of the lattice and enumerate
the states in the local Hilbert space. The tensor C,, ., can
be decomposed into a fensor network, the most common of
which is the MPS

[ea] [op) ar,
E E Mtl1Mtl|tlz""’Mtl1ﬁ| |U],...,UL>.

(B2)
Here, a; = 1,...,x for site i in the bulk. It is convenient
when studying tensor networks, such as the MPS, to give the
equations a diagrammatic form [Fig. 15(a)]. Each tensor is
drawn as a shape where each line coming out represents an
index and connected lines represent tensor contractions.
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2. Matrix product operators

In a similar manner to the matrix product state, operators
acting on lattice wave functions can be decomposed into a
network of more simple tensors. A general operator on a lattice
can be written as

0= § } Dal.al' ..... oL,0; |Ul7 o
o]

/
5o OL Tpyees o

o) (o], ...,07].

(B3)
This can be decomposed into a matrix product form to give a
MPO:

01,01 6] ,...,0] b1,....br1
,
« W(rl,(rl W(rz,(rz’ WGEI O 1 v1,0L:0]
by by,by > by a,bp—1 T bry

(B4)

where there are two sets of physical indices o and ¢’, which
connect to the bra and ket states, respectively. Figure 15(b)
gives the pictorial form of the MPO.

The Heisenberg Hamiltonian on an open lattice,

L-1
1
Hyxx = Z Ji |:§(Si+si+1 +5;785500) +sizsiz+1i| ., (BS)
i=1

can be encoded as an MPO with

Wy, =1 Zsf ZLs; Jisf0), (B6)
1 st Lst Jst 0
0 0 0 0 s
Wp o, =10 0 0 0 Si+ ) (B7)
0 0 0 0 s
0 0 0 0 1
0
s
W, sZ (B8)
SL
1

Simply multiplying Wy, W, 5, - - Wp, ,.5, , Wp,_, results in
(BS). The top right element of Eq. (B7) and equivalent
elements in Eqs. (B6) and (B8) are referred to as the on-site
elements. This is where an external magnetic field of the
form h;S; would be introduced. Furthermore, it is possible
to include longer range interactions in the elements away from
the top and right row and column [58,59].

Another way of describing the contents of an MPO is
a matrix product (MP) diagram [58]. This is a pictorial
representation of the elements in the tensor, whereby the
indices are numbered circles and the corresponding elements
are paths that connect any two indices (Fig. 16). Matrix
multiplication, or contraction, is then represented by the sum
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FIG. 16. The left, center, and right are MP diagrammatic forms
of Egs. (B6), (B7), and (BS), respectively. The circles represent the
virtual indices (b;_;,b;) of the MPO tensor and arrows show the
corresponding operator. The dashed arrows highlight the possibility
of an additional magnetic field operator 4 S¢ not present in (B6), (B7),
and (B8).

of the unique paths that connect the indices on the far left and
right of the diagram when multiple matrices are placed end

PHYSICAL REVIEW B 89, 214203 (2014)

Q—~Q—~Q—~0 ©

FIG. 17. (Color online) MP diagram of the contraction of a four-
site MPO of the Heisenberg Hamiltonian (B5). Symbols and lines
as in Fig. 16. The shaded ellipses linking tensor entries 2, 3, and 4
corresponds to the simplifications employed in Fig. 3.

to end (Fig. 17). For MPOs it is understood that the binary
operator between terms is a tensor product. Tracing out the
different paths in Fig. 17 results in the standard form (B5)
with L = 4. The MP diagrams give a convenient means of
visualizing the components of the MPO and are particularly
useful when creating operators with long-range components
or periodic boundary conditions.
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