
The Library
Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells
Tools
Brown, James E. P., Onyango, David J., Ramanjaneya, Manjunath, Conner, Alex C., Patel, Snehal T., Dunmore, Simon J. and Randeva, Harpal S. (2010) Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. Journal of Molecular Endocrinology, Vol.44 (No.3). pp. 171-178. doi:10.1677/JME-09-0071 ISSN 0952-5041.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1677/JME-09-0071
Abstract
The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic beta-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic beta-cells. beta-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF) 1b (32-fold increase), HNF4 alpha (16-fold increase) and nuclear factor kappa B (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (K3.73-fold) and UCP2 (K1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P < 0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of beta-cell function-associated genes in mouse b-cells.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | R Medicine > RC Internal medicine | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Metabolic and Vascular Health (- until July 2016) Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School |
||||
Journal or Publication Title: | Journal of Molecular Endocrinology | ||||
Publisher: | BioScientifica Ltd. | ||||
ISSN: | 0952-5041 | ||||
Official Date: | March 2010 | ||||
Dates: |
|
||||
Volume: | Vol.44 | ||||
Number: | No.3 | ||||
Number of Pages: | 8 | ||||
Page Range: | pp. 171-178 | ||||
DOI: | 10.1677/JME-09-0071 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access | ||||
Funder: | Early Research Award Scheme (Univeristy of Wolverhampton) |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |