Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Permeation of polystyrene nanoparticles across model lipid bilayer membranes

Tools
- Tools
+ Tools

Thake, Thomas H. F., Webb, Jennifer R., Nash, Anthony, Rappoport, Joshua Z. and Notman, Rebecca (2013) Permeation of polystyrene nanoparticles across model lipid bilayer membranes. Soft Matter, Volume 9 (Number 43). pp. 10265-10274. doi:10.1039/c3sm51225h ISSN 1744-683X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1039/c3sm51225h

Request Changes to record.

Abstract

An understanding of the relationship between the physiochemical properties of nanoparticles and their uptake into cells is crucial for realising the potential of nanoparticles for biomedical applications and for developing strategies to minimise human and environmental nanotoxicity. In this work we studied the permeation of lipid bilayer membranes by uncharged hydrophobic polystyrene nanoparticles (PSNPs) as a function of nanoparticle size by means of coarse-grained molecular dynamics simulations. We also investigated the effect of changing the membrane environment by adding cholesterol to the bilayer. Free energy calculations reveal that overall it is energetically favourable for PSNPs to insert into the hydrocarbon interior of dipalmitoylphosphatidylcholine (DPPC) bilayers; however PSNPs with a diameter greater than the bilayer thickness are less readily accommodated than smaller PSNPs. As a PSNP approaches the bilayer there is an increase in the curvature of the bilayer as it bends and partially engulfs the PSNP. The energetic cost of bending is compensated for by the removal of unfavourable PSNP–water contacts. Despite cholesterol increasing the order and rigidity of the bilayer, the interior of the DPPC–cholesterol bilayer appears to be a more favourable environment for PSNPs, possibly due to stronger intermolecular interactions between polystyrene and the model cholesterol molecule than between polystyrene and DPPC.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Chemistry
Journal or Publication Title: Soft Matter
Publisher: Royal Society of Chemistry
ISSN: 1744-683X
Official Date: 13 September 2013
Dates:
DateEvent
13 September 2013Available
11 September 2013Accepted
2 May 2013Submitted
Volume: Volume 9
Number: Number 43
Page Range: pp. 10265-10274
DOI: 10.1039/c3sm51225h
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us