
The Library
Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with pseudomonas syringae
Tools
Jones, Alexandra M., Thomas, V., Bennett, M. H., Mansfield, J. and Grant, Murray (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with pseudomonas syringae. Plant Physiology, Volume 142 (Number 4). pp. 1603-1620. doi:10.1104/pp.106.086231 ISSN 0032-0889.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1104/pp.106.086231
Abstract
Alterations in the proteome of Arabidopsis (Arabidopsis thaliana) leaves during responses to challenge by Pseudomonas syringae pv tomato DC3000 were analyzed using two-dimensional gel electrophoresis. Protein changes characteristic of the establishment of disease, basal resistance, and resistance-gene-mediated resistance were examined by comparing responses to DC3000, a hrp mutant, and DC3000 expressing avrRpm1, respectively. The abundance of each protein identified was compared with that of selected transcripts obtained from comparable GeneChip experiments. We report changes in three subcellular fractions: total soluble protein, chloroplast enriched, and mitochondria enriched over four time points (1.5–6 h after inoculation). In total, 73 differential spots representing 52 unique proteins were successfully identified. Many of the changes in protein spot density occurred before significant transcriptional reprogramming was evident between treatments. The high proportion of proteins represented by more than one spot indicated that many of the changes to the proteome can be attributed to posttranscriptional modifications. Proteins found to show significant change after bacterial challenge are representative of two main functional groups: defense-related antioxidants and metabolic enzymes. Significant changes to photosystem II and to components of the mitochondrial permeability transition were also identified. Rapid communication between organelles and regulation of primary metabolism through redox-mediated signaling are supported by our data.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- ) | ||||
Journal or Publication Title: | Plant Physiology | ||||
Publisher: | American Society of Plant Biologists | ||||
ISSN: | 0032-0889 | ||||
Official Date: | December 2006 | ||||
Dates: |
|
||||
Volume: | Volume 142 | ||||
Number: | Number 4 | ||||
Page Range: | pp. 1603-1620 | ||||
DOI: | 10.1104/pp.106.086231 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Open Access (Creative Commons) |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |