Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Direct measurement of the flow field around swimming microorganisms

Tools
- Tools
+ Tools

Drescher, Knut, Goldstein, Raymond E., Michel, Nicolas, Polin, Marco and Tuval, Idan (2010) Direct measurement of the flow field around swimming microorganisms. Physical Review Letters, Volume 105 (Number 16). Article number 168101 . doi:10.1103/PhysRevLett.105.168101 ISSN 0031-9007.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1103/PhysRevLett.105.168101

Request Changes to record.

Abstract

Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (∼0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a puller stresslet, and can be described by a simple three-Stokeslet model.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Physical Review Letters
Publisher: American Physical Society
ISSN: 0031-9007
Official Date: 11 October 2010
Dates:
DateEvent
11 October 2010Published
UNSPECIFIEDSubmitted
Volume: Volume 105
Number: Number 16
Article Number: Article number 168101
DOI: 10.1103/PhysRevLett.105.168101
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us