
The Library
Atmospheric parameters and carbon abundance for hot DB white dwarfs
Tools
Koester, Detlev, Provencal, J. L. and Gänsicke, B. T. (Boris T.) (2014) Atmospheric parameters and carbon abundance for hot DB white dwarfs. Astronomy & Astrophysics, Volume 568 . Article number A118. doi:10.1051/0004-6361/201424231 ISSN 0004-6361.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1051/0004-6361/201424231
Abstract
Atmospheric parameters for hot DB (helium atmosphere) white dwarfs near effective temperatures of 25 000 K are extremely difficult to determine from optical spectroscopy. The neutral He lines reach a maximum in this range and change very little with effective temperature and surface gravity. Moreover, an often unknown amount of hydrogen contamination can change the resulting parameters significantly. This is particularly unfortunate because this is the range of variable DBV or V777 Her stars. Accurate atmospheric parameters are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs – the hot DQ – whose spectra are dominated by carbon lines. The analysis shows that their atmospheres are pure carbon. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs, as studied here. Our aim is to determine accurate atmospheric parameters and element abundances and study the implications for the evolution of white dwarfs of spectral classes DB and hot DQ. High-resolution UV spectra of five DBs were studied with model atmospheres. We determined stellar parameters and abundances or upper limits of C and Si. These objects were compared with cooler DBs below 20 000 K. We find photospheric C and no other heavy elements – with extremely high limits on the C/Si ratio – in two of the five hot DBs. We compare various explanations for this unusual composition that have been proposed in the literature: accretion of interstellar or circumstellar matter, radiative levitation, carbon dredge-up from the deeper interior below the helium layer, and a residual stellar wind. None of these explanations is completely satisfactory, and the problem of the origin of the hot DQ remains an open question.
Item Type: | Journal Article | ||||||||
---|---|---|---|---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||||||
Journal or Publication Title: | Astronomy & Astrophysics | ||||||||
Publisher: | EDP Sciences | ||||||||
ISSN: | 0004-6361 | ||||||||
Official Date: | 3 September 2014 | ||||||||
Dates: |
|
||||||||
Volume: | Volume 568 | ||||||||
Article Number: | Article number A118 | ||||||||
DOI: | 10.1051/0004-6361/201424231 | ||||||||
Status: | Peer Reviewed | ||||||||
Publication Status: | Published | ||||||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |