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exoenzymes through soil metaexoproteomics

Ashley S Johnson-Rollings1, Helena Wright1, Grazia Masciandaro2, Cristina Macci2,
Serena Doni2, Leo A Calvo-Bado1, Susan E Slade1, Carlos Vallin Plou3
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Functionally important proteins at the interface of cell and soil are of potentially low abundance
when compared with commonly recovered intracellular proteins. A novel approach was developed
and used to extract the metaexoproteome, the subset of proteins found outside the cell, in the
context of a soil enriched with the nitrogen-containing recalcitrant polymer chitin. The majority of
proteins recovered was of bacterial origin and localized to the outer membrane or extracellular
milieu. A wide variety of transporter proteins were identified, particularly those associated with
amino-acid and phosphate uptake. The metaexoproteome extract retained chitinolytic activity and
we were successful in detecting Nocardiopsis-like chitinases that correlated with the glycoside
hydrolase family 18 (GH18) chi gene data and metataxonomic analysis. Nocardiopsis-like chitinases
appeared to be solely responsible for chitinolytic activity in soil. This is the first study to detect and
sequence bacterial exoenzymes with proven activity in the soil enzyme pool.
The ISME Journal (2014) 8, 2148–2150; doi:10.1038/ismej.2014.130; published online 18 July 2014

Metaproteomics is an emerging technique for
directly assessing cellular function and interactions
within an environment. In complex environments
such as soil, there is a vast dynamic range of
microbial species abundance and protein expression
levels. Data acquisition is biased towards high-
abundance proteins, for example, chaperonins,
ribosomal proteins, elongation factors and ATP
synthases (Benndorf et al., 2007; Dill et al., 2010).
Removal of these intracellular proteins could allow
access to functionally important low-abundance
proteins in the soil enzyme pool and at the interface
of cell and soil, the soil metaexoproteome.

Chitin provides one of the dominant sources of
organic nitrogen in soil (Gooday, 1990) and chit-
inases are implicated in its mineralization in a wide
range of contexts (Rhazi et al., 2000; Muzzarelli,
2011), especially in nitrogen-poor soils (Olander
and Vitousek, 2000). The molecular diversity of
chitinases in soil microbial communities has been
studied (Williamson et al., 2000; Metcalfe et al.,
2002; Hjort et al., 2010) but very few have focused
on the functional contributions of members of the
chitinolytic bacterial community. We report here the
first attempt to recover and analyse extracellular
proteins in soil adopting a novel approach to extract

the metaexoproteome. Our data indicate that one
actinobacterial group was disproportionately
responsible for chitin breakdown.

Soil was sampled from an island off the north
coast of Cuba known for its high biodiversity and
wide range of chitinolytic bacteria (Williamson
et al., 2000; Williamson, 2001). Microcosms were
constructed and amended with 1% crude crab shell
(a-chitin) or squid pen (b-chitin) to enrich the
microbial community, an unamended control was
included for the 16S rRNA gene metataxonomic
analysis (Supplementary Method S1). Community
DNA was extracted and sequenced on a 454 GS FLX
instrument with titanium reagents (Roche, Basel,
Switzerland) using eubacterial primers Gray28F and
Gray519R (Dowd et al., 2008) and GH18 Group A chi
primers GASQF and GASQR (Williamson et al.,
2000); the data were analysed with the bioinfor-
matics package QIIME (Caporaso et al., 2010)
(Supplementary Method S2). The metaexoproteome
extraction is a modification of Masciandaro et al.
(2008). In brief, 100 g soil was gently agitated with a
K2SO4-based extraction solution (1:3 w/v) then the
solid fraction and cells removed by centrifugation
and filter sterilization before dilution (3:1 v/v) with
18.2 MO cm water and dialysis overnight. The
retentate was concentrated to a final volume of
B1 ml by ultrafiltration and using a centrifugal
concentrator for direct loading onto a one-dimen-
sional SDS–polyacrylamide gel electrophoresis
gel. Gel-dependent nanoflow liquid chromato-
graphy-tandem MS (nanoLC-MS/MS) analysis was

Correspondence: EMH Wellington, School of Life Sciences,
University of Warwick, Coventry CV4 7AL, UK.
E-mail: e.m.h.wellington@warwick.ac.uk
Received 16 May 2014; accepted 3 June 2014; published online 18
July 2014

The ISME Journal (2014) 8, 2148–2150
& 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2014.130
mailto:e.m.h.wellington@warwick.ac.uk
http://www.nature.com/ismej


performed and the resultant Micromass peak list
files interrogated with the NCBInr database using
the MASCOT search engine (Matrix Science,
London, UK). The full list of proteins was filtered
to remove the few eukaryotic proteins and hits with
o2 significant unique peptides (Supplementary
Methods S3 and S4).

To successfully target the metaexoproteome, cell
integrity must be maintained. Minimal cell lysis
during the extraction was demonstrated experimen-
tally by spiking soil with Escherichia coli over-
expressing His-tagged phosphoribosyl isomerase A
in the cytoplasm and attempting to detect the His-
tag in the extract by western blot (Supplementary
Method S5), as no protein was detected we believe
the method did not lyse cells. The majority of 52
recovered proteins were Gram-negative in origin and
attributed to the extracellular fraction or outer
membrane (Supplementary Tables S1 and S2).
Across both amendments, 73% of proteins were
predicted to have a signal peptide (Nielsen et al.,
1997), 13% to have transmembrane helices
(Sonnhammer et al., 1998; Krogh et al., 2001), 17%
to be TRAP transporters and 52% to be ABC
transporters. These features are suggestive of export
or being membrane bound and indicate that the
metaexoproteome is representing the functional
interface between cell and environment. In vitro
secretomes commonly feature a similar range of
TRAP and ABC transporters in addition to selected
extracellular enzymes depending on the enrichment
(Adav et al., 2010; Christie-Oleza and Armengaud,
2010; Christie-Oleza et al., 2012). The only extra-
cellular enzymes identified were chitinases.

Recovered proteins were affiliated with three
phyla, Proteobacteria, Actinobacteria and Bactero-
idetes, this correlated well with the 16S rRNA gene
data set (Figure 1). Only two genera dominated
the metaexoproteome, both in terms of number
of proteins recovered and protein abundance

measured by emPAI (Ishihama et al., 2005), the
actinomycete Nocardiopsis and the rhizobiale Nitra-
tireductor. Approximately 17% of the identified
proteins were matched to Nocardiopsis. The family
Nocardiopsaceae was undetected in the unamended
16S rRNA gene data set but was one of the few
actinobacterial groups to increase in abundance
with a-chitin amendment, accounting for 3.7% of
the community.

The majority of proteins were related to the
transport and metabolism of amino acids, carbohy-
drates and inorganic ions, namely phosphate and
phosphonate. Two GH18 chitinases were identified
by peptides from within their catalytic domains,
ChiA from Nocardiopsis lucentensis and N. dasson-
villei (Supplementary Table S1). Corresponding
Nocardiopsis chiA-like sequences were identified
in the GH18 chi gene pyrosequencing data set
(Figure 1). Nocardiopsis chitinases have been shown
to have chitinolytic activity against a- and b-chitin
(Tsujibo et al., 2003) and to be capable of fast and
complete degradation of crystalline chitin in liquid
media (Sorokin et al., 2012).

A fluorogenic chitinase assay (Sigma-Aldrich, St
Louis, MO, USA) was performed on the extracts
from a-chitin-amended microcosm soil and
metaexoproteome (Supplementary Method S6). Both
extracts showed activity against the monomeric
substrate but the metaexoproteome extract had
proportionally higher activity against the more
representative di-NAG and tri-NAG substrates. It is
probable that the chitinase activity detected in the
metaexoproteome extract is attributable to the
Nocardiopsis chiA-like chitinases detected in
the sequenced aliquot of the extract and represents
the first example of an active exoenzyme extracted,
assayed and sequenced from a soil.

The efficiency of mass spectrometry via in-gel
digestion would preclude recovery of low-
abundance peptides. Nocardiopsis-like proteins

Figure 1 A visual summary of the assigned bacterial community structure, recovered metaexoproteome community and GH18 chi gene
taxonomic matches for the combined a- and b-chitin-amended soil. For clarity, low-abundance taxa have been grouped under ‘Other’ and
for the GH18 chi gene pie chart Stenotrophomonas, Amycolatopsis and Verrucosispora are not labelled as each account for o0.06% of
their respective class segment.
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must therefore contribute disproportionately to the
functional activity of the soil and thus the degrada-
tion of chitin. This is in marked contrast to the
prevalence data for 16S rRNA gene analysis and
GH18 chi gene analysis. Despite numerous attempts
it was not possible to cultivate Nocardiopsis-like
strains directly from the soil.
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