Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Stochastic models for cell populations undergoing transitions

Tools
- Tools
+ Tools

Rana, Anas A. (2014) Stochastic models for cell populations undergoing transitions. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Rana_2014.pdf - Submitted Version - Requires a PDF viewer.

Download (14Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2745136~S1

Request Changes to record.

Abstract

Transformations on a cellular level caused by changes in gene expression, protein abundance, or epigenetic features present in cells play a key role in differentiation, reprogramming and disease. Such transformations are frequently stochastic on a single-cell level. The result is a heterogeneous cell population with an ever-changing mixture. Often cells undergo transformation via intermediate stages, which further convolute the transformation process. Reliable high-throughput data is commonly obtained on a cell population level therefore elucidating the underlying single-cell process is challenging. In this thesis we present and analyse models that probe population level data to answer questions about the transformation process and to distinguish between states.

We investigate a recently proposed stochastic model for transition processes called STAMM, which is based on a latent Markov chain at the single-cell level. We present a computationally efficient unbiased approach to estimation, model selection and setting of tuning parameters. To complement our understanding of properties and behaviour of the model we implement a single-cell simulation setup. This not only allows us to investigate parameter estimation but we can also explore behaviour under violations of model assumptions. We also empirically investigate identifiability of the model. We apply the model to oncogenic transformation where the data time-course consists of genome-wide RNA-seq measurements. We also compare results from application of STAMM to a stem cell reprogramming microarray time-course to single-cell measurements carried out independently. Results show that not only is the model robust under mild violations of assumptions but state specific results can be compared to single-cell measurements. Under stronger violation of assumptions transitions between states are not estimated well. The model is therefore especially useful to steer further experiments in the right direction.

We then present a model that examines the response of cells in the cell cycle to incident radiation at different doses. Cells can either undergo programmed cell death or re-enter the cell cycle after an interruption. A genome-wide RNA-seq measurement is made at the initial time point and subsequently fractions of cells with contrasting cell-fates can be distinguished and counted. The model assigns a score to each gene corresponding to its importance in determining cell fate. We implement a single-cell level simulation procedure and carry out illustrative simulations for one gene and for four genes. Parameter estimation in this model allows distinguishing genes that are important from genes that are not. This is only possible as long as the noise level is not too high.

Item Type: Thesis (PhD)
Subjects: Q Science > QH Natural history > QH301 Biology
Library of Congress Subject Headings (LCSH): Cells -- Mathematical models, Cell populations -- Mathematical models, Cell transformation -- Mathematical models
Official Date: January 2014
Dates:
DateEvent
January 2014Submitted
Institution: University of Warwick
Theses Department: Department of Physics ; Centre for Complexity Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Mukherjee, Sach ; Nicodemi, Mario
Extent: ix, 97, 15 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us