Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Magnetic properties of geometrically frustrated SrGd2O4

Tools
- Tools
+ Tools

Young, Olga, Balakrishnan, Geetha, Lees, Martin R. and Petrenko, Oleg (2014) Magnetic properties of geometrically frustrated SrGd2O4. Physical Review B (Condensed Matter and Materials Physics), Volume 90 (Number 9). 094421. doi:10.1103/PhysRevB.90.094421

An open access version can be found in:
  • ArXiv
Official URL: http://dx.doi.org/10.1103/PhysRevB.90.094421

Request Changes to record.

Abstract

A study of the magnetic properties of the frustrated rare-earth oxide SrGd2O4 has been completed using bulk property measurements of magnetization, susceptibility, and specific heat on single-crystal samples. Two zero-field phase transitions have been identified at 2.73 and 0.48 K. For the field H, applied along the a and b axes, a single boundary is identified that delineates the transition from a low-field, low-temperature magnetically ordered regime to a high-field, high-temperature paramagnetic phase. Several field-induced transitions, however, have been observed with H∥c. The measurements have been used to map out the magnetic phase diagram of SrGd2O4, suggesting that it is a complex system with several competing magnetic interactions. The low-temperature magnetic behavior of SrGd2O4 is very different compared to the other SrL2O4 (L = Lanthanide) compounds studied so far, even though all of the SrL2O4 compounds are isostructural, with the magnetic ions forming a low-dimensional lattice of zigzag chains that run along the c axis. The differences are likely to be due to the fact that in the ground state Gd3+ has zero orbital angular momentum and therefore the spin-orbit interactions, which are crucial for other SrL2O4 compounds, can largely be neglected. Instead, given the relatively short Gd3+–Gd3+ distances in SrGd2O4, dipolar interactions must be taken into account for this antiferromagnet alongside the Heisenberg exchange terms.

Item Type: Journal Article
Divisions: Faculty of Science > Physics
Journal or Publication Title: Physical Review B (Condensed Matter and Materials Physics)
Publisher: American Physical Society
ISSN: 1098-0121
Official Date: 29 September 2014
Dates:
DateEvent
29 September 2014Published
12 August 2014Submitted
Volume: Volume 90
Number: Number 9
Article Number: 094421
DOI: 10.1103/PhysRevB.90.094421
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Open Access Version:
  • ArXiv

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us