Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets

Tools
- Tools
+ Tools

Veras, Dimitri, Shannon, Andrew and Gänsicke, B. T. (Boris T.) (2014) Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets. Monthly Notices of the Royal Astronomical Society, Volume 445 (Number 4). pp. 4175-4185. doi:10.1093/mnras/stu2026 ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1093/mnras/stu2026

Request Changes to record.

Abstract

The origin of trace hydrogen in white dwarfs (WDs) with He-dominated atmospheres is a long-standing problem, one that cannot satisfactorily be explained by the historically-favoured hypothesis of accretion from the interstellar medium. Here we explore the possibility that the gradual accretion of exo-Oort cloud comets, which are a rich source of H, contributes to the apparent increase of trace H with WD cooling age. We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the WD's Roche radius. We improve upon previous studies by considering a representative range of single WD masses (0.52-1.00 Solar masses) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of WD cooling. We find that about 10^{-5} of the material in an exo-Oort cloud is typically amassed onto the WD, and that the H deposits accumulate even as the cloud dissipates. This accumulation may account for the relatively large amount of trace H, 10^{22}-10^{25} g, that is determined frequently among WDs with cooling ages >= 1 Gyr. Our results also reaffirm the notion that exo-Oort cloud comets are not the primary agents of the metal budgets observed in polluted WD atmospheres.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Oxford University Press
ISSN: 0035-8711
Official Date: 2014
Dates:
DateEvent
2014Published
26 September 2014Accepted
26 September 2014Submitted
Volume: Volume 445
Number: Number 4
Page Range: pp. 4175-4185
DOI: 10.1093/mnras/stu2026
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us