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MONOTONE SUBMODULAR MAXIMIZATION OVER A MATROID
VIA NON-OBLIVIOUS LOCAL SEARCH*

YUVAL FILMUST AND JUSTIN WARD?

Abstract. We present an optimal, combinatorial 1 —1/e approximation algorithm for monotone
submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm
[G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182-196] our algorithm is extremely simple
and requires no rounding. It consists of the greedy algorithm followed by a local search. Both
phases are run not on the actual objective function, but on a related auxiliary potential function,
which is also monotone and submodular. In our previous work on maximum coverage [Y. Filmus
and J. Ward, FOCS, IEEE, Piscataway, NJ, 2012, pp. 659-668], the potential function gives more
weight to elements covered multiple times. We generalize this approach from coverage functions
to arbitrary monotone submodular functions. When the objective function is a coverage function,
both definitions of the potential function coincide. Our approach generalizes to the case where the
monotone submodular function has restricted curvature. For any curvature ¢, we adapt our algorithm
to produce a (1 — e~ ¢)/c approximation. This matches results of Vondrék [STOC, ACM, New York,
2008, pp. 67-74], who has shown that the continuous greedy algorithm produces a (1 — e ¢)/c
approximation when the objective function has curvature ¢ with respect to the optimum, and proved
that achieving any better approximation ratio is impossible in the value oracle model.
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1. Introduction. In this paper, we consider the problem of maximizing a mono-
tone submodular function f, subject to a single matroid constraint. Formally, let U
be a set of n elements and let f: 2 — R be a function assigning a value to each
subset of U. We say that f is submodular if

f(A)+f(B) = f(AUB) + f(ANB)

for all A, B C Y. If additionally f is monotone, that is f(A) < f(B) whenever A C B,
we say that f is monotone submodular. Submodular functions exhibit (and are, in fact,
alternately characterized by) the property of diminishing returns—if f is submodular,
then f(AU{z}) — f(4) < f(BU{z}) — f(B) for all B C A. Hence, they are useful
for modeling economic and game-theoretic scenarios, as well as various combinatorial
problems. In a general monotone submodular maximization problem, we are given a
value oracle for f and a membership oracle for some distinguished collection Z C 24
of feasible sets, and our goal is to find a member of Z that maximizes the value of f.
We assume further that f is normalized so that f(0)) = 0.

We consider the restricted setting in which the collection Z forms a matroid.
Matroids are intimately connected to combinatorial optimization: the problem of
optimizing a linear function over a hereditary set system (a set system closed under
taking subsets) is solved optimally for all possible functions by the standard greedy
algorithm if and only if the set system is a matroid [32, 11].
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In the case of a monotone submodular objective function, the standard greedy
algorithm, which takes at each step the element yielding the largest increase in f while
maintaining independence, is (only) a 1/2-approximation [20]. Recently, Calinescu et
al. [7, 8] and Vondrak [34] have developed a (1 — 1/e)-approximation for this problem
via the continuous greedy algorithm, which is reminiscent of the classical Frank—Wolfe
algorithm [21], producing a fractional solution. The fractional solution is rounded
using pipage rounding [1] or swap rounding [10]. Recently, a fast variant of this
algorithm running in time O(nz) has been designed by Ashwinkumar and Vondrék [3].

Feige [12] has shown that improving the bound (1 — 1/e) is NP-hard even if
f is an explicitly given coverage function (the objective function of an instance of
mazimum coverage). Nemhauser and Wolsey [30] have shown that any improvement
over (1 — 1/e) requires an exponential number of queries in the value oracle setting.

Following Vondrék [35], we also consider the case when f has restricted curvature.
We say that f has curvature c if for any two disjoint A, B C U,

f(AUB) = f(A) + (1 =) f(B).

When ¢ = 1, this is a restatement of monotonicity of f, and when ¢ = 0, linear-
ity of f. Vondrdk [35] has shown that the continuous greedy algorithm produces a
(1 — e=¢)/c approximation when f has curvature c¢. In fact, he shows that this is
true even for the weaker definition of curvature with respect to the optimum. Further-
more, for this weaker notion of curvature, he has shown that any improvement over
(1 —e~°)/crequires an exponential number of queries in the value oracle setting. The
optimal approximation ratio for functions of unrestricted curvature ¢ has recently been
determined to be (1 — ¢/e) by Sviridenko and Ward [33], who use the non-oblivious
local search approach described in this paper.

1.1. Our contribution. In this paper, we propose a conceptually simple ran-
domized polynomial time local search algorithm for the problem of monotone sub-
modular matroid maximization. Like the continuous greedy algorithm, our algorithm
delivers the optimal (1 — 1/e)-approximation. However, unlike the continuous greedy
algorithm, our algorithm is entirely combinatorial, in the sense that it deals only
with integral solutions to the problem and hence involves no rounding procedure. As
such, we believe that the algorithm may serve as a gateway to further improved al-
gorithms in contexts where pipage rounding and swap rounding break down, such as
submodular maximization subject to multiple matroid constraints. Its combinatorial
nature has another advantage: the algorithm only evaluates the objective function on
independent sets of the matroid.

Our main results are a combinatorial 1 — 1/e — € approximation algorithm for
monotone submodular matroid maximization, running in time O(¢~3r*n), and a com-
binatorial 1 — 1/e approximation algorithm running in time O~(r7n2)7 where 7 is the
rank of the given matroid and n is the size of its ground set. Both algorithms are
randomized, and succeed with probability 1 —1/n. Our algorithm further generalizes
to the case in which the submodular function has curvature ¢ with respect to the op-
timum (see section 2 for a definition). In this case the approximation ratios obtained
are (1—e ¢)/c—eand (1—e~°)/c, respectively, again matching the performance of the
continuous greedy algorithm [35]. Unlike the continuous greedy algorithm, our algo-
rithm requires knowledge of ¢. However, by enumerating over values of ¢ we are able
to obtain a combinatorial (1 — e~ ¢)/c algorithm even in the case that f’s curvature is
unknown.!

LFor technical reasons, we require that f has curvature bounded away from zero in this case.
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Our algorithmic approach is based on local search. In classical local search, the
algorithm starts at an arbitrary solution, and proceeds by iteratively making small
changes that improve the objective function, until no such improvement can be made.
A natural, worst-case guarantee on the approximation performance of a local search
algorithm is the locality ratio, given as min f(S)/f(O), where S is a locally optimal
solution (i.e., a solution which cannot be improved by the small changes considered
by the algorithm), O is a global optimum, and f is the objective function.

In many cases, classical local search may have a suboptimal locality ratio, im-
plying that a locally optimal solution may be of significantly lower quality than the
global optimum. For example, for monotone submodular maximization over a ma-
troid, the locality ratio for an algorithm changing a single element at each step is
1/2 [20]. Non-oblivious local search, a technique first proposed by Alimonti [2] and
by Khanna et al. [26], attempts to avoid this problem by making use of a secondary
potential function to guide the search. By carefully choosing this auxiliary function,
we ensure that poor local optima with respect to the original objective function are no
longer local optima with respect to the new potential function. This is the approach
that we adopt in the design of our local search algorithm. Specifically, we consider
a simple local search algorithm in which the value of a solution is measured with
respect to a carefully designed potential function g, rather than the submodular ob-
jective function f. We show that solutions which are locally optimal with respect to
¢ have significantly higher worst-case quality (as measured by the problem’s original
potential function f) than those which are locally optimal with respect to f.

In our previous work [17], we designed an optimal non-oblivious local search al-
gorithm for the restricted case of maximum coverage subject to a matroid constraint.
In this problem, we are given a weighted universe of elements, a collection of sets,
and a matroid defined on this collection. The goal is to find a collection of sets that
is independent in the matroid and covers elements of maximum total weight. The
non-oblivious potential function used in [17] gives extra weight to solutions that cover
elements multiple times. That is, the potential function depends critically on the
coverage representation of the objective function. In the present work, we extend
this approach to general monotone submodular functions. This presents two chal-
lenges: defining a non-oblivious potential function without referencing the coverage
representation, and analyzing the resulting algorithm.

In order to define the general potential function, we construct a generalized vari-
ant of the potential function from [17] that does not require a coverage representation.
Instead, the potential function aggregates information obtained by applying the objec-
tive function to all subsets of the input, weighted according to their size. Intuitively,
the resulting potential function gives extra weight to solutions that contain a large
number of good subsolutions or, equivalently, remain good solutions, in expectation,
when elements are removed by a random process. An appropriate setting of the
weights defining our potential function yields a function which coincides with the pre-
vious definition for coverage functions, but still makes sense for arbitrary monotone
submodular functions.

The analysis of the algorithm in [17] is relatively straightforward. For each type
of element in the universe of the coverage problem, we must prove a certain inequality
among the coefficients defining the potential function. In the general setting, however,
we need to construct a proof using only the inequalities given by monotonicity and
submodularity. The resulting proof is nonobvious and delicate.

This paper extends and simplifies a previous work by the same authors. The
paper [18], appearing in FOCS 2012, only discusses the case ¢ = 1. The general
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case is discussed in [19], which is contained in arXiv. The potential functions used
to guide the non-oblivious local search in both the unrestricted curvature case [18]
and the maximum coverage case [17] are special cases of the function g we discuss in
the present paper.? An exposition of the ideas of both [17] and [19] can be found in
the second author’s thesis [37]. In particular, the thesis explains how the auxiliary
objective function can be determined by solving a linear program, both in the special
case of maximum coverage and in the general case of monotone submodular functions
with restricted curvature.

1.2. Related work. Fisher, Nemhauser, and Wolsey [31, 20] analyze greedy and
local search algorithms for submodular maximization subject to various constraints,
including single and multiple matroid constraints. They obtain some of the earliest
results in the area, including a 1/(k + 1)-approximation algorithm for monotone sub-
modular maximization subject to k matroid constraints. A recent survey by Goundan
and Schulz [24] reviews many results pertaining to the greedy algorithm for submod-
ular maximization.

More recently, Lee, Sviridenko, and Vondrdk [29] consider the problem of both
monotone and non-monotone submodular maximization subject to multiple matroid
constraints, attaining a 1/(k+ ¢€)-approximation for monotone submodular maximiza-
tion subject to k£ > 2 matroid constraints using a local search. Feldman et al. [16]
show that a local search algorithm attains the same bound for the related class of
k-exchange systems, which includes the intersection of k& strongly base orderable ma-
troids, as well as the independent set problem in (k + 1)-claw free graphs. Further
work by Ward [36] shows that a non-oblivious local search routine attains an improved
approximation ratio of 2/(k + 3) — e for this class of problems.

In the case of unconstrained non-monotone maximization, Feige, Mirrokni, and
Vondrak [13] give a 2/5-approximation algorithm via a randomized local search al-
gorithm, and give an upper bound of 1/2 in the value oracle model. Gharan and
Vondrak [22] improved the algorithmic result to 0.41 by enhancing the local search al-
gorithm with ideas borrowed from simulated annealing. Feldman, Naor, and Schwarz
[15] later improved this to 0.42 by using a variant of the continuous greedy algorithm.
Buchbinder et al. have recently obtained an optimal 1/2-approximation algorithm [5].

In the setting of constrained non-monotone submodular maximization, Lee et
al. [28] give a 1/(k + 2 + 1 + €)-approximation algorithm for the case of k matroid
constraints and a (1/5 — €)-approximation algorithm for k& knapsack constraints. Fur-
ther work by Lee, Sviridenko, and Vondrak [29] improves the approximation ratio in
the case of k matroid constraints to 1/(k + 1 + 27 +€). Feldman et al. [16] attain
this ratio for k-exchange systems. Chekuri, Vondrak, and Zenklusen [9] present a gen-
eral framework for optimizing submodular functions over downward-closed families of
sets. Their approach combines several algorithms for optimizing the multilinear relax-
ation along with dependent randomized rounding via contention resolution schemes.
As an application, they provide constant-factor approximation algorithms for several
submodular maximization problems.

In the case of non-monotone submodular maximization subject to a single ma-
troid constraint, Feldman, Naor, and Schwarz [14] show that a version of the continu-
ous greedy algorithm attains an approximation ratio of 1/e. They additionally unify
various applications of the continuous greedy algorithm and obtain improved approx-

2The functions from [18, 19] are defined in terms of certain coefficients -, which depend on a
parameter E. Our definition here corresponds to the choice E = e®. We examine the case of coverage
functions in more detail in section 8.3.
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imations for non-monotone submodular maximization subject to a matroid constraint
or O(1) knapsack constraints. Buchbinder et al. [6] further improve the approximation
ratio for non-monotone submodular maximization subject to a cardinality constraint
to 1/e 4+ 0.004, and present a 0.356-approximation algorithm for non-monotone sub-
modular maximization subject to an exact cardinality constraint. They also present
fast algorithms for these problems with slightly worse approximation ratios.

1.3. Organization of the paper. We begin by giving some basic definitions
in section 2. In section 3 we introduce our basic, non-oblivious local search algo-
rithm, which makes use of an auxiliary potential function g. In section 4, we give the
formal definition of g, together with several of its properties. Unfortunately, exact
computation of the function g requires evaluating f on an exponential number of sets.
In section 5 we present a simplified analysis of our algorithm, under the assumption
that an oracle for computing the function g is given. In section 6 we explain how
we constructed the function g. In section 7 we then show how to remove this as-
sumption to obtain our main, randomized polynomial time algorithm. The resulting
algorithm uses a polynomial-time random sampling procedure to compute the func-
tion g approximately. Finally, some simple extensions of our algorithm are described
in section 8.

2. Definitions.
Notation. If B is some Boolean condition, then

1 if B is true,
[B] = e
0 if B is false.

For a natural number n, [n] = {1,...,n}. We use Hy to denote the kth Harmonic
number,

| =

k
Hy=>_
t=1

It is well known that Hy = O(Iln k), where In k is the natural logarithm.

For a set S and an element z, we use the shorthands S + 2z = S U {z} and
S—x = 5\{z}. We use the notation S+ even when = € S, in which case S+z = S,
and the notation S — x even when = ¢ S, in which case S —x = S.

Let U be a set. A set-function f on U is a function f: 24 — R whose arguments
are subsets of U. For x € U, we use f(z) = f({z}). For A, B C U, the marginal value
of B with respect to A is

fa(B) = f(AU B) = f(A).

Properties of set-functions. A set-function f is normalized if f(0) = 0. It is
monotone if whenever A C B, then f(A) < f(B). It is submodular if whenever
A C B and C is disjoint from B, fa(C) > fp(C). If f is monotone, we need not
assume that B and C are disjoint. Submodularity is equivalently characterized by
the inequality

f(A)+f(B) = f(AUB) + f(ANB)

for all A and B.
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The set-function f has total curvature ¢ if for all A C U and = ¢ A, fa(x) >
(1 —c¢)f(x). Equivalently, fa(B) > (1 —c¢)f(B) for all disjoint A, B C U. Note that if
f has curvature ¢ and ¢ > ¢, then f also has curvature ¢’. Every monotone function
thus has curvature 1. A function with curvature 0 is linear; that is, fa(x) = f(z).

Following [35] we shall consider the more general notion curvature of a function
with respect to some set B CU. We say that f has curvature at most ¢ with respect
to a set B if

(2.1) FLAUB) = f(B)+ Y fau—a(z) > (1—0)f(A)

z€ANB

for all sets A C Y. As shown in [35], if a submodular function f has total curvature
at most ¢, then it has curvature at most ¢ with respect to every set A C U.

Matroids. A matroid M = (U, Z) is composed of a ground set U and a nonempty
collection Z of subsets of U satisfying the following two properties: (1) if A € Z and
BC A then BeZ; (2)if A, B €T and |A| > |B|, then B+x € T for some z € A\ B.

The sets in Z are called independent sets. Maximal independent sets are known
as bases. Condition (2) implies that all bases of the matroid have the same size. This
common size is called the rank of the matroid.

One simple example is a partition matroid. The universe U is partitioned into r
parts Uy, ..., U,, and a set is independent if it contains at most one element from each
part.

If A is an independent set, then the contracted matroid MJ/A = (U \ A,Z/A) is
given by

T/A={BCU\A: AUB e M}.

Monotone submodular mazximization over a matroid. An instance of monotone
submodular mazimization over a matroid is given by (M = (U,Z), f), where M is a
matroid and f is a set-function on & which is normalized, monotone, and submodular.

The optimum of the instance is

f* =max f(0).
Because f is monotone, the maximum is always attained at some basis.
We say that a set S € Z is an a-approzimate solution if f(S) > «f(O). Thus
0 < a < 1. We say that an algorithm has an approzimation ratio of v (or, simply, that
an algorithm provides an a-approzimation) if it produces an a-approximate solution
on every instance.

3. The algorithm. Our non-oblivious local search algorithm is shown in Algo-
rithm 1. The algorithm takes the following input parameters.
(i) A matroid M = (U,Z), given as a ground set U and a membership oracle
for some collection Z C 2 of independent sets, which returns whether or not
X €T for any X CU.
(ii) A monotone submodular function f: 2¥ — Rx, given as a value oracle that
returns f(X) for any X C U.
(iii) An upper bound ¢ € (0,1] on the curvature of f. The case in which the
curvature of f is unrestricted corresponds to ¢ = 1.
(iv) A convergence parameter e.
Throughout the paper, we let r denote the rank of M and n = |U|.
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ALGORITHM 1. THE NON-OBLIVIOUS LOCAL SEARCH ALGORITHM.

Input: M = U,7), f, ¢, €

Set €1 = r;I

Let Sinit be the result of running the standard greedy algorithm on (M, g)
S 4= Shnit
repeat
foreach element x € S andy e U\ S do
S+ S—az+y
if S"€Z and g(5’') > (1 +¢€1)g(S) then {An improved solution S’
was found}
S« 5 {update the current solution}
L break {and continue to the next iteration}

until No exchange is made
return S

The algorithm starts from an initial greedy solution Si,it, and proceeds by re-
peatedly exchanging one element x in the current solution S for one element y not
in S, with the aim of obtaining an improved independent set S’ € Z. In both the
initial greedy phase and the following local search phase, the quality of the solution
is measured not with respect to f, but rather with respect to an auxiliary potential
function ¢ (as we discuss shortly, we in fact must use an estimate ¢ for g), which is
determined by the rank of M and the value of the curvature bound c.

We give a full definition of ¢ in section 4. The function is determined by a sequence
of coefficients depending on the upper bound ¢ on the curvature of f. Evaluating the
function g exactly will require an exponential number of value queries to f. Nonethe-
less, in section 7 we show how to modify Algorithm 1 by using a random sampling
procedure to approximate g. The resulting algorithm has the desired approximation
guarantee with high probability and runs in polynomial time.

At each step we require that an improvement increase g by a factor of at least
1+ €;. This, together with the initial greedy choice of Sjyis, ensures that Algorithm 1
converges in time polynomial in r and n, at the cost of a slight loss in its locality gap.
In section 8 we describe how the small resulting loss in the approximation ratio can be
recovered, both in the case of Algorithm 1, and in the randomized, polynomial-time
variant we consider in section 7.

The greedy phase of Algorithm 1 can be replaced by simpler phases, at the cost
of a small increase in the running time. The number of iterations of Algorithm 1 can
be bounded by log,, ., #;0, where ¢* = maxaez g(A). When Si,;¢ is obtained as
in Algorithm 1, g(Sinit) > g*/2 and so the number of iterations is at most log, |, 2 =
O(el_l). If instead we generate Sini¢ by running the greedy algorithm on f, Lemma 4.4
below shows that ¢(Sinit) > f(Sinit) > f*/2 > Q(g*/logr), where f* = maxacz f(A).
Hence the number of iterations is O(e; ! loglogr), and so the resulting algorithm is
slower by a multiplicative factor of O(loglogr). An even simpler initialization phase
finds z* = argmax,c;, f(z), and completes it to a set Siniy € Z arbitrarily. Such
a set satisfies f(Sinit) > f*/r = Q(g*/rlogr), hence the number of iterations is
O(efl logr), resulting in an algorithm slower than Algorithm 1 by a multiplicative
factor of O(logr).

4. The auxiliary objective function g. We turn to the remaining task needed
for completing the definition of Algorithm 1: giving a definition of the potential



MONOTONE SUBMODULAR MAXIMIZATION OVER A MATROID 521

function g. The construction we use for g will necessarily depend on ¢, but because
we have fixed an instance, we shall omit this dependence from our notation, in order to
avoid clutter. We also assume throughout that the function f is normalized (f(0) = 0).

4.1. Definition of g. We now present a definition of our auxiliary potential
function g. Our goal is to give extra value to solutions S that are robust with respect
to small changes. That is, we would like our potential function to assign higher
value to solutions that retain their quality even when some of their elements are
removed by future iterations of the local search algorithm. We model this general
notion of robustness by considering a random process that obtains a new solution 7'
from the current solution S by independently discarding each element of S with some
probability. Then we use the expected value of f(T') to define our potential function g.

It will be somewhat more intuitive to begin by relating the marginals g4 of g to
the marginals fa of f, rather than directly defining the values of g and f. We begin
by considering some simple properties that we would like to hold for the marginals,
and eventually give a concrete definition of g, showing that it has these properties.

Let A be some subset of U and consider an element z ¢ A. We want to define
the marginal value ga(x). We consider a two-step random process that first selects
a probability p from an appropriate continuous distribution, then a set B C A by
choosing each element of A independently with some probability p. We then define g
so that ga(x) is the expected value of fg(x) over the random choice of B.

Formally, let P be a continuous distribution supported on [0, 1] with density given
by ce“*/(e¢ — 1). Then, for each A C U, we consider the probability distribution g
on 24 given by

pa(B) = E_plPl(1 —p) A5l
p~P

Note that this is simply the expectation over our initial choice of p of the probability
that the set B is obtained from A by randomly selecting each element of A indepen-
dently with probability p. Furthermore, for any A and any A’ C A, if B ~ 4, then
BNA ~ A

Given the distributions p 4, we shall construct a function g so that

(4.1) ga(z) = E [fp(x)].

Brpa

That is, the marginal value ga(x) is the expected marginal gain in f obtained when x
is added to a random subset of A, obtained by the two-step experiment we have just
described.

We can obtain some further intuition by considering how the distribution P affects
the values defined in (4.1). In the extreme example in which p = 1 with probability
1, we have ga(z) = fa(z) and so g behaves exactly like the original submodular
function. Similarly, if p = 0 with probability 1, then ga(z) = fp(z) = f({z}) for
all A, and so ¢ is in fact a linear function. Thus, we can intuitively think of the
distribution P as blending together the original function f with some other “more
linear” approximations of f, which have systematically reduced curvature. We shall
see that our choice of distribution results in a function g that gives the desired locality
gap.

It remains to show that it is possible to construct a function g whose marginals
satisfy (4.1). In order to do this, we first note that the probability w4 (B) depends
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only on |A4| and |B|. Thus, if we define the values

b b b ocer b b
= E p*1—p)* b= pP(1—p)td
map = E p"(1-p) /0 w7 P (=P dp

for all @ > b > 0, then we have pa(B) = m4), 5. We adopt the convention that
mqp = 0 if either a or b is negative. Then, we consider the function g given by

(4.2) g(A) = Z m|A|71,\B|71f(B)-

BCA

The marginals of this function are given by

ga(z) = g(A+x) —g(A)
= Y mpayp-1f(B) = Y mia-1,p-1f(B)

BCA+x BCA
= > (myaps-1 = miaj-181-1) [(B) +mia /(B +2).
BCA

When b > 0, the term m4,,—1 — ma—1,,—1 evaluates to

Map1 — Ma—1p-1 = E [pP7H (1 —p)* T —pP~ 11 - p)*~ 7]

p~P
. b o a—b
= E[-r"(1-p)*]
= —Ma,b-
Since f is normalized, we trivially have (ma),—1 —mjaj—1,-1)f(0) = —m a0 (D). We

conclude that

ga(@) =" —mya i f(B) +myaj,p /(B +x)
BCA
= > mia /()
BCA
= E [fp(2)]

Br~pa

The values mgp used to define ¢ in (4.2) can be computed from the following
recurrence, which will also play a role in our analysis of the locality gap of Algorithm 1.
LEMMA 4.1. mgo =1, and fora >0 and 0 < b < a,

—c/(ec—1) ifb=0,
Mgy = (a—b)mg_1p—bmg_1p-1+<0 if 0 <a<b,
cef/(e€—1) ifa=0b.

Proof. For the base case, we have

1 ep
ce
= dp=1.
mo,0 /0 o 1 P
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The proof of the general case follows from a simple integration by parts:

1 cp
ce _
Mgy = c/ pP(1—p)*tdp
0

ec—1
ecp . p=1
=c ——pL-p)"
ec—1 p=0
! b—1 —b b —p-17 €7
R R e R P
0 _

:[[a:b]]ce —[[sz]}c+
ec—1

(a—b)yma_1p —bma_1p1.

(When b = 0 the integrand simplifies to ecfipl (1 —=p)%, and when a = b it simplifies
to ecfipl p) |

In future proofs, we shall also need the following upper bound on the sum of the
coefficients appearing in (4.2). Define

T(A) = Y mya_1m-1-

BCA

The quantity 7(A) depends only on |A|, so we can define a sequence ¢ by 7(A) =
¢)4). This sequence is given by the following formula and recurrence.
LEMMA 4.2. { is given by the formula

Uce? 11— (1—p)
ékZ/ «C. (1=p) dp
o e —1 P

and by the recurrence
ly=0, Llry1 =1L+ mpp.

Furthermore,

c

ce
0 <

_eC_

Hy,.
Tl

Proof. The formula for ¢}, follows directly from the formula for m,_; together with
the binomial formula:
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This formula allows us to bound /}:

c 1 k
1—(1-—
0 < —= / 1-p) dp
0

ec—1 p
ce 1 k=1 ,
=ec_1/0 (1—p)'dp
t=0
_cef g _cef o
T —14t4l 1"

Clearly ¢y = 0. The recurrence follows by calculating €1 — Cx:

Dee? [1—(1—p)Htl 1—(1—p)k
ce
€k+1—€k—/ : 1-p) - (1=p) dp
o e —1 p P

1 cp
ce
:/ 1 -(L=p)tdp=mpp. O
T

We thank an anonymous reviewer for simplifying the proof of the upper bound.
For an alternative proof of the formula and the recurrence, see section 8.3.

4.2. Properties of g. We now show that our potential function g shares many
basic properties with f.

LEMMA 4.3. The function g is normalized, monotone, submodular, and has cur-
vature at most c.

Proof. From (4.2) we have g(f)) = m_1 _1f(@) = 0. Thus, g is normalized.
Additionally, (4.1) immediately implies that g is monotone, since the monotonicity
of f implies that each term fp(x) is nonnegative. Next, suppose that A; C Ay and
x ¢ As. Then from (4.1), we have

gar(w) = E fp(@)< E fpoa(z)= B [fp(@)=ga(2),
~L Ay Brpag Brpay
where the inequality follows from submodularity of f. Thus, g is submodular. Finally,
for any set A C U and any element = ¢ A, we have

ga(z) = E fo(@) = (1 -c)f(z) = (1-c)g(z),

where the inequality follows from the bound on the curvature of f, and the second
equality from setting A = () in (4.1). Thus, g has curvature at most c. In fact, it
is possible to show that for any given |A|, ¢ has a slightly lower curvature than f,
corresponding to our intuition that the distribution P blends together f and various
functions of reduced curvature. For our purposes, however, an upper bound of ¢ is
sufficient. d

Finally, we note that for any S C U, it is possible to bound the value g(5) relative
to f(9).

LEMMA 4.4. For any A CU,

ce’

. 1H\A\f(A)'

Proof. Let A = {a1,...,a4} and define A; = {a,...,a;} for 0 <i < |A]. The
formula (4.1) implies that

f(A) <g(A) <

~

ga,(aip1) = LB fBlaiv1) > fa,(aiv1).

i
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Summing the resulting inequalities for i = 0 to |A| — 1, we get

9(A) —g(0) = f(A) - f(0).

The lower bound then follows from the fact that both g and f are normalized, so

g(0) = f(0)=0.
For the upper bound, (4.2) and monotonicity of f imply that

g(A) = Z mia|-1,B-1f(B) < f(A) Z M| A|-1,|B|-1-

BCA BCA

The upper bound then follows directly from applying the bound of Lemma 4.2 to the
final sum. d

4.3. Approximating g via sampling. Evaluating g(A) exactly requires eval-
uating f on all subsets B C A, and so we cannot compute g directly without using
an exponential number of calls to the value oracle f. We now show that we can
efficiently estimate g(A) by using a sampling procedure that requires evaluating f
on only a polynomial number of sets B C A. In section 7, we show how to use
this sampling procedure to obtain a randomized variant of Algorithm 1 that runs in
polynomial time.

We have already shown how to construct the function g, and how to interpret the
marginals of g as the expected value of a certain random experiment. Now we show
that the direct definition of g(A) in (4.2) can also be viewed as the result of a random
experiment.

For a set A, consider the distribution 4 on 24 given by

MjA|-1,|B|-1

) =)

Then, recalling the direct definition of g, we have:

g(A) = > myai_1,5-1f(B) = 7(A) E [f(B)]

B
BCA va

We can estimate g(A) to any desired accuracy by sampling from the distribution
v4. This can be done efficiently using the recurrences for mg, and 7(A) given by
Lemmas 4.1 and 4.2, respectively. Let By,..., By be N independent random samples
from v4. Then, we define

(4.3 3(4) = ()5 3 (B,

Then,
Pr|g(A) — g(S)| > eg(S)] = O (M~1).

Proof. We use the following version of Hoeffding’s bound.
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Fact 1 (Hoeffding’s bound). Let Xi,..., Xy be independently and identically
distributed nonnegative random variables bounded by B, and let X be their average.
Suppose that EX > pB. Then, for any ¢ > 0,

Pr[|X —EX| > e¢EX] < 2exp (—262,02N) .

Consider the random variables X; = 7(A) f(B;). Because f is monotone and each
B; is a subset of A, each X; is bounded by 7(A)f(A). The average X of the values
X satisfies

EX =g(A) > f(4),

where the inequality follows from Lemma 4.4. Thus, Hoeffding’s bound implies that

_ - — 2¢2N

By Lemma 4.2 we have 7(4) < ce’ Hiy < %Hn and so

ec—1

2exp<—%>§2exp(—lnM):O(M_l). a

5. Analysis of Algorithm 1. We now give a complete analysis of the runtime
and approximation performance of Algorithm 1. The algorithm has two phases: a
greedy phase and a local search phase. Both phases are guided by the auxiliary
potential function g defined in section 4. As noted in section 4.3, we cannot, in general,
evaluate ¢ in polynomial time, though we can estimate g by sampling. However,
sampling g complicates the algorithm and its analysis. We postpone such concerns
until the next section, and in this section suppose that we are given a value oracle
returning g(A) for any set A C U. We then show that Algorithm 1 requires only
a polynomial number of calls to the oracle for g. In this way, we can present the
main ideas of the proofs without a discussion of the additional parameters and proofs
necessary for approximating g by sampling. In the next section we use the results of
Lemma 4.5 to implement an approximate oracle for ¢ in polynomial time, and adapt
the proofs given here to obtain a randomized, polynomial time algorithm.

Consider an arbitrary input to the algorithm. Let S = {s1,..., s, } be the solution
returned by Algorithm 1 on this instance and O be an optimal solution to this instance.
It follows directly from the definition of the standard greedy algorithm and the type
of exchanges considered by Algorithm 1 that S is a base. Moreover, because f is
monotone, we may assume without loss of generality that O is a base, as well. We
index the elements o; of O by using the following lemma of Brualdi [4].

FacT 2 (Brualdi’s lemma). Suppose A, B are two bases in a matroid. There is a
bijection m: A — B such that for all a € A, A —a+m(a) is a base. Furthermore, w
is the identity on AN B.

The main difficulty in bounding the locality ratio of Algorithm 1 is that we must
bound the ratio f(5)/f(O) stated in terms of f, by using only the fact that S is
locally optimal with respect to g. Thus, we must somehow relate the values of f(.5)
and ¢(5). The following theorem relates the values of f and g on arbitrary bases of a
matroid. Later, we shall apply this theorem to S and O to obtain an approximation
guarantee both for Algorithm 1 and for the randomized variant presented in the next
section.

THEOREM 5.1. Let A = {as,...,a,} and B = {b1,...,b,} be any two bases of
M, and suppose f has curvature at most ¢ with respect to B. Further suppose that



MONOTONE SUBMODULAR MAXIMIZATION OVER A MATROID 527

we index the elements of B so that b; = 7(a;), where m: A — B is the bijection
guaranteed by Brualdi’s lemma. Then,

ce’

ec—1

f(A) = f(B) + Z[Q(A) —9(A —ai + b;)].

Proof. First, we provide some general intuition for the proof. In order to prove
the theorem, we fix a current base A of M and some other arbitrary base B, and
consider each of the individual swaps from Brualdi’s lemma. Each such swap removes
a single element of A and adds one element of B to the result. We consider the change
in g caused by each such swap. The value of g on any given set may be O(logn) times
larger than the corresponding value of f. Indeed, the value of g(A) is obtained by
summing appropriately weighted values of f(A’) over all subsets A’ C A. However,
we shall show that our definition of ¢ ensures that when all the differences g(A4) —
g(A—a;+b;) are added together, most of these values cancel. Specifically, cancellation
between corresponding values f(A’) leave us with an expression in which all terms
are bounded by f(A) or f(B). Specifically, we show that the sum of differences
Soi_ilg(A) — g(A — a; + b;)] reduces to a lower bound on the difference between f(B)
and << f(A).

Our proof involves two inequalities and one equation, each of which we shall prove
later as a separate lemma. The inequalities will pertain to the quantity

(51) Zgz‘\—ai(ai)v

which represents (up to scaling) the average total loss in g(A) when a single element
a; is removed from A.

In Lemma 5.2, we use the basic definition and properties of g to show that the
loss for each a; is bounded by the difference g(A) — g(A — a; + b;) and a combination
of marginal values of f. Then, by the linearity of expectation, we obtain

(62) D> ga-ala) =) [9(A) —g(A—ai b+ E > frov(b).
i=1 i=1 i=1

In Lemma 5.3 (similarly to Vondrak [35, Lemma 3.1]), we simplify the final term
in (5.2), using the fact that f has curvature at most ¢ with respect to B. The lemma
relates the sum of marginals fr_yp,(b;) to f(T'), showing that

S o, (b:) = £(B) — cf (T)
i=1

for any T C A and b; € B. Applying the resulting inequalities in (5.2), we obtain the
following bound on (5.1):

(6:3) > ga-alw) 2 [9(4) —g(A—ai+b)]+ [(B)—c E f(T).

Trpa

Finally, in Lemma 5.4 we reconsider (5.1), expanding the definition of g and
adding the final term cEz~,, f(T) of (5.3) to the result. By exploiting the recurrence
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of Lemma 4.1, we show that all terms except those involving f(A) vanish from the
resulting expression. Specifically, we show the following equality involving (5.1):

ce’

(5.4) D ga-aila) + c B f(T)= f(A).

¢ ~HA e —1
=1

Combining the equality (5.4) with the lower bound on (5.1) from (5.3) then completes
the proof. O

We now prove each of the necessary lemmas.

LEMMA 5.2. For all i € [r],

ga—a;(a;) > g(A) —g(A—a; +b;) + E fr_p,(bs).
Trpa

Proof. The proof relies on the characterization of the marginals of g given in
(4.1). We consider two cases: b; ¢ A and b; € A. If b; ¢ A then the submodularity of
g implies

JA—a; (a‘l) > JA—a;+b; (a‘l)
= g(A—H)i) — g(A —a; + bi)
=ga(bi) + 9(A) — g(A —a; + bi)
= g(A) — g(A — a; + bz) + E fT(bl)
Trpa

On the other hand, when b; € A, we must have b; = 7(a;) = a; by the definition
of m. Then,
9a-ai(ai) = E fr(a)

~HA—a,

= E fra(ai)

Trpa
- E —b: i
o Jrob.(bi)

= g(4) ~g(A) +_E fr ()
~HA
_g(A)_g(A_al+bZ)+ E fT—bi(bi)a
Trpa
where the second equality follows from the fact that if T ~ pa, then TN (AN a;) ~

MA*G@' D
LEMMA 5.3. For any T C A,

Z fr—v,(b:) > f(B) — cf(T).

Proof. Our proof relies only on the submodularity and curvature of f. We have

D Sren(bi) = D fri)+ Y fron(b)

biEB\T b, eBNT

> fTUB) (D) + 3 frs(b)

b, e BNT

>f(TUB)— f(T)+ > frus—,(b)

b;eBNT
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where the first two inequalities follow from the submodularity of f and the last in-

equality from (2.1), since f has curvature at most ¢ with respect to B. a0
LEMMA 5.4.
u ce
. _a,(a; E T) = A).
(55) Y gaala) e B FT) = o f(A)

i=1

Proof. The proof relies primarily on the recurrence given in Lemma 4.1 for the
values m, , used to define g. From the characterization of the marginals of g given in
(4.1) we have

ga-a;(ai) = . B [fr(a)]=_E [f(T+a)—f(T)]
~UA—a; Tr~pa—a;

Each subset D C A appears in the expectation. Specifically, if a; € D, then we have the
term pa—q, (D —a;)f(D), and if a; € A\ D, then we have the term —pa_q, (D) f(D).
Therefore the coefficient of f(D) in the left-hand side of (5.5) is thus given by

(Z fra—a, (D — ai)) - <Z fA-a; (D)> + cpa(D)

a; €D aiQD
= |D|m,_1,pj-1 — (r = |[D))m,_1,p| + cmy.|p)-

According to the recurrence for m, given in Lemma 4.1, the right-hand side vanishes
unless D = §), in which case we get ——%5f(0) = 0, or D = A, in which case it is
< f(4). O

We are now ready to prove this section’s main claim, which gives bounds on both
the approximation ratio and complexity of Algorithm 1.

THEOREM 5.5. Algorithm 1 is a (175% — €)-approximation algorithm, requiring
at most O(r*ne~'logn) evaluations of g.

Proof. We first consider the number of evaluations of g required by Algorithm 1.
The initial greedy phase requires O(rn) evaluations of g, as does each iteration of the
local search phase. Thus, the total number of evaluations of g required by Algorithm
1is O(rnI), where I is the number of improvements applied in the local search phase.
We now derive an upper bound on I.

Let ¢g* = maxaez g(A) be the maximum value attained by g on any independent
set in M. Algorithm 1 begins by setting S to a greedy solution Si,t, and each time
it selects an improved solution S’ to replace S by, we must have

9(8") > (1 +e1)g(S).

Thus, the number of improvements that Algorithm 1 can apply is at most

*

g
lo _
Eita 9(Sinit)

Fisher, Nemhauser, and Wolsey [20] show that the greedy algorithm is a 1/2-
approximation algorithm for maximizing any monotone submodular function subject
to a matroid constraint. In particular, because g is monotone submodular, as shown
in Lemma 4.3, we must have

_9
9(Sinit)
Next, we consider the approximation ratio of Algorithm 1. Recall that O is an

optimal solution of the arbitrary instance (M = (U,Z), f) on which Algorithm 1
returns the solution S. We apply Theorem 5.1 to the bases S and O, indexing S and

I<log,, <log ., 2= O(e;) = O(rHpe™') = O(re *logn).
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O as in the theorem so that S — s; + 0; € Z for all i € [r], to obtain

ce’

(5.6) ——

£(8) = f(O) + > [9(S) — g(S — si + 03)).
=1

Then, we note that we must have
g(S —si+0;) < (1+€1)g(S)
for each value i € [r]—otherwise, Algorithm 1 would have exchanged s; for o; rather

than returning S. Summing the resulting r inequalities gives

T

Z[Q(S) —g(8 —si+0;)] > —rerg(S).

i=1
Applying this and the upper bound on ¢(5) from Lemma 4.4 to (5.6) we then obtain

(& c

7 1(8) 2 £(0) = rarg(8) 2 £(0) - ——rer H,f(S)
> f(O) — ecce_ 1T€1Hrf(0).

Rewriting this inequality using the definition ¢; = % then gives

1—e¢
182 (£ <) 100,
and so Algorithm 1 is a ( % — €)-approximation algorithm. d

6. How g was constructed. The definition of our potential function g might
seem somewhat mysterious. In this section we try to dispel some of this mystery.
First, we explain how we initially found the definition of g by solving a sequence
of factor-revealing linear programs (LPs). Second, we show how the definition of g
follows directly from required properties in the proof of our main technical result,
Theorem 5.1.

6.1. Factor-revealing LP. The main idea behind our construction of the func-
tion g was to consider a general class of possible functions, and then optimize over this
class of functions. We consider a mathematical program whose variables are given by
the values defining a submodular function f and the parameters defining a related
potential function g, and whose objective function is the resulting locality gap for the
instance defined by f. This technique of using a factor-revealing LP, which gives the
approximation ratio of some algorithm over a particular family of instances, appears
formally in Jain et al. [25] in the context of greedy facility location algorithms, but
had been applied earlier by Goemans and Kleinberg [23] to analyze an algorithm for
the minimum latency problem. Here, however, we use the linear program not only
to find the best possible approximation ratio for our approach, but also to determine
the potential function g that yields this ratio.

The class of functions that we consider are functions of the form

(6.1) g(A) = > Glajp f(A).

BCA
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Since we assume that f is normalized, we can take G, = 0 when b = 0. Our local
search algorithm only evaluates g at sets whose sizes are the rank r of the matroid,
so we can assume that |A| = r. (The greedy phase evaluates g at sets of smaller size,
but as we explain in section 3, this phase can be replaced by phases not evaluating g
at all.) The optimal choice of coefficients G, i, and the resulting approximation ratio
are given by the following program II:

max min 7(3)

Gr1,,Grr  f f(O)
subject to (s.t.)
9(8) > g(S = si + 0;) for i € [r]

f is normalized and monotone submodular, and has curvature ¢ with respect to O.

Given the values of Gy1,...,G,,, the inner program (the part starting with
miny f(5)/f(0)) evaluates the approximation ratio of the resulting local search al-
gorithm, assuming that the optimal set O and the set produced by the algorithm S
are disjoint (the analysis of Algorithm 1 will have to show that the same approxi-
mation ratio is obtained even when O and S are not disjoint). The variables of the
inner program are the 22" values of the function f on all subsets of S U O, where
S = {s1,...,8.} and O = {o1,...,0,} are two fixed disjoint sets of cardinality 7.
The constraints g(S) > ¢(S — s; + 0;) state that the set S is locally optimal with
respect to the function ¢ (implicitly relying on Brualdi’s lemma). These constraints
are expanded into linear constraints over the variables of the program by substituting
the definition of ¢g given by (6.1).

The program II is equivalent to an LP. In order to convert II into an LP, we
first add an additional constraint f(O) = 1, thus making the inner program an LP.
We then dualize the inner program and obtain an LP with a maximized objective
function. Folding both maximization operators, we obtain an LP II' whose value is
the same as the value of II. Since the inner program in II has exponentially many
variables, the LP II' has exponentially many constraints. Symmetry considerations
allow us to reduce the number of variables in the inner program to O(r?), obtaining
an equivalent polynomial-size LP IT"” which can be solved in polynomial time. See
Ward [37, section 4.3] for more details.

We have implemented the LP II” on a computer, and calculated the coefficients
Gyr1,...,Gyr, and the resulting approximation ratio for various values of r and ¢. The
resulting approximation ratios are slightly larger than (1 —e¢) /¢, but as r becomes
bigger, the approximation ratio approaches (1 — e~ ¢)/c. The function g considered in
this paper is obtained by (in some sense) taking the limit r — o0o0.?

3In the case of maximum coverage, discussed in section 8.3, the idea of taking the limit r — co can
be explained formally. The general form of the function g in that case is g(A) = >°_ cy, £| Ay w(2),
where V is the universe of elements, w: V — Rs( is the weight function, A[z] is the subset of A
consisting of all sets containing z, and (¢¢)ten are the coefficients determining the function g. For
each rank r, one can construct an LP II, involving fg,...,¥¢, that determines the best choice of
coefficients. See Ward [37, section 3.4] for more details (there the sequence is known as (ot )ien).
For r1 < ro, the LP Il is obtained from II,, by removing all constraints involving ¢; for ¢t > r1.
We can thus construct an infinite LP Il in infinitely many variables (¢¢);cn which extends all LPs
II,. The program Il has the value 1 —1/e, attained by the unique choice of coefficients detailed in
section 8.3. This leads to a limiting function gps¢ in the case of maximum coverage. The function
g considered in this paper is the unique function of the form (6.1) which reduces to gyrc when f is
a coverage function.



532 YUVAL FILMUS AND JUSTIN WARD

6.2. Proof analysis. Another approach to understanding our choice of g is by
analyzing the proof of the locality ratio of Algorithm 1, given by Theorem 5.1:

ce’

e —1

£(8) = f(O) + > [9(S) — g(S — si + 03)).
=1

Here O = {o01,...,0,} is a global optimum of f (over the matroid), S = {s1,..., s},
and the indices are chosen so that S — s; + 0, € Z (using Brualdi’s lemma). The
locality ratio is the minimal possible value of f(S)/f(O) over all locally optimal S
(sets for which ¢(S) > g(S — s; + 0;) for all i € [r]), in this case (1 — e~ ) /c.

The analysis of Algorithm 1 relies on the fact that g satisfies (4.1) for some
coefficients pa(B), that is

ga@@) = 3 pa(B)fa(a).

BCA

We suppose that the value of ¢ is invariant under permutations of the ground set
U. Tt immediately follows that pua(B) should depend only on |Al,|B| and hence,
also be invariant under permutations of ¢/. We obtain more constraints on p4(B) by
examining the proof of the submodularity of ¢ in Lemma 4.3: if A; C Ay, then

@) = 3 wnB @) 2 Y paB) i@ L S ua (B) ) = ga, (@)

BCA, BCA, BCA,

Inequality () requires pa,(B) > 0, while (1) implies* that

(6.2) g pa,(B2) = pa, (Br).
B2CA>
BoNA1=B;

Summing this over all By C Ay, we deduce

Z :U“A2(BQ): Z :u’Al(Bl)'

BQQAQ B1§A1

Without loss of generality, we can assume that the common value of this sum is 1.
Since pa,(B) > 0, we can thus regard pa, as a probability distribution over subsets
of A. Equation (6.2) then states that if X ~ p4,, then X N A; ~ p14,.

We now show that this restriction property of the distributions p 4 allows us to
recover 14 up to the specific distribution P used in the definition g. Suppose that
the ground set U were infinite, say Y = N. For each n € N, pp, is a distribution
over subsets of [n]. We can define a single distribution p over subsets of N by the
following rule: if X ~ p, then for all n € N, X N [n] ~ pp,). Note that because
each pu,) satisfies the restriction property, the distribution yu is indeed well-defined.
We can think of 1 as a collection of indicator random variables (X;);en encoding the
chosen subset. Although the random variables X; are not independent, we note they
are exchangeable—because pa(B) is invariant under permutations of U, (X;);en has
the same distribution as (X (;)ien for all permutations 7 on N-—and so de Finetti’s

4In order to deduce submodularity, we in fact only need (1) to hold as an inequality; but for the
submodularity of g to be “tight,” equality is required.
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theorem implies that there exists a probability distribution P supported on [0, 1] such
that

BY— E »Bl(1_p)Al-I1BI
pa(B) Ep (1-p)

a

As in section 4.1, we can then define the values m,, = Epep p?(1 — p)*~t, and let g

be given by (4.2),

9(A) = > myai—1,15-1f(B).

BCA

It remains to deduce the exact distribution P. In order to do this, we consider
the other property of g used in the proof of Theorem 5.1, namely, Lemma 4.1. The
general form of this lemma is

Co ifb=0,
cMap = (a—b)ma_1p —bma_1p-1+40 if0<a<b,
Cl if a =b.

The locality ratio proved in Theorem 5.1 is 1/C7, and the proof requires Cy < 0.
Lemma 4.1 is proved using integration by parts. Let F’(p) be the density of P, and
let F(p) be an antiderivative of F’(p) (not necessarily the cumulative distribution
function of P). We can then restate the proof of Lemma 4.1 as follows:

1
P / F/(p) - p*(1 - p)*dp
0
a—pP=1
cF(p) - p"(1=p)" ",

- C/o F(p) - [bp" 1 (1 —p)*" — (a—b)p*(1 — p)*~*"]dp

D [a = b]cF(1) = [b = 0]cF(0) + (a — b)ma_1.5 — bima_1.-1.

In order for equation (1) to hold, F must satisfy the differential equation F’' = cF
whose solution is F(p) o e°P. Since P is a probability distribution supported on
[0,1], we must have F'(1) — F(0) = 1 and so F(p) = e?/(e® — 1). We deduce that
F'(p) = ce?/(e€—1), and that the locality ratiois 1/(cF(1)) = 1/F'(1) = (1—e~¢)/c.

7. A randomized, polynomial-time algorithm. Our analysis of Algorithm 1
supposed that we were given an oracle for computing the value of the potential func-
tion g. We now use the results of Lemma 4.5, which show that the value g(A) can be
approximated for any A by using a polynomial number of samples, to implement a
randomized, polynomial-time approximation algorithm that does not require an ora-
cle for g. The resulting algorithm attains the same approximation ratio as Algorithm
1 with high probability. The analysis of the modified algorithm, while somewhat
tedious, is standard and in the spirit of earlier results such as Calinescu at al. [8].

The modified algorithm is shown in Algorithm 2. Algorithm 2 uses an approxi-
mation g of g that is obtained by taking N independent random samples of f each
time g is calculated. The number of samples IV depends on the parameters € and «,
in addition to the rank r of M and the size n of U. As in Algorithm 1, ¢ governs
how much an exchange must improve the current solution before it is applied, and
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so affects both the approximation performance and runtime of the algorithm. The
additional parameter v controls the probability that Algorithm 2 fails to produce a
( % — €)-approximate solution. Specifically, we show that Algorithm 2 fails with
probability at most O(n™=%).

For the analysis, we assume that € < 1 and r > 2, which imply that e; < 1/12.

ALGORITHM 2. THE NON-OBLIVIOUS LOCAL SEARCH ALGORITHM.

Input: M= U,T), f, ¢, ¢, «
Set €9 = £

Set I = ( 1;2) (2 4+ 3res) — 1) 651

1 c :
Set N = 3 ( < ﬂ) In (I +1)rn'*e)

€2

Let g be an approximation to g computed by taking N random samples
Let Sinit be the result of running the standard greedy algorithm on (M, g)
S < Sinit

v 4 G(Sinit)
for i+ 1to I do {Search for at most I iterations}
done « true
foreach element x € S andy e U\ S do
S+ S—az+y
if S’ € Z then
v+ g(9")
if v/ > (14 €2)v then  {An improved solution S’ was found}
v v and S+ 5’ {update v and S}
done < false
break {and continue to the next iterationmn}
if done then return S {No improvement was found, return local
optimum}

return Error (Search did not converge in I iterations)

The local search routine in Algorithm 2 runs some number I of iterations, signaling
an error if it fails to converge to a local optimum after this many improvements. In
each iteration, the algorithm searches through all possible solutions S’ = S — z + y,
sampling the value g(S”) if " € Z. If the sampled value of §(S’) exceeds the sampled
value for g(S) by a factor of at least (1 4 €2), the algorithm updates S and moves to
the next iteration. Otherwise, it returns the current solution. Note that we store the
last sampled value g(.5) of the current solution in v, rather than resampling §(.S) each
time we check an improvement S’.

The analysis of Algorithm 2 follows the same general pattern as that presented in
the previous section. Here however, we must address the fact that g does not always
agree with g. First, we estimate the probability that all of the computations of g
made by Algorithm 2 are reasonably close to the value of g.

LEMMA 7.1. With probability 1 — O(n™%), we have |g(A) — g(A)| < eag(A) for
all sets A for which Algorithm 2 computes g(A).

Proof. We first bound the total number of sets A for which Algorithm 2 computes
g(A). The initial greedy phase requires fewer than rn evaluations, as does each of the
I iterations of the local phase. The total number of evaluations is therefore less than
(I + 1D)rn.
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Algorithm 2 uses

1 ce®  H,\’ lia

N =3 (ec—1 - ) In ((1 +1)rn'*®)

samples for every computation of g(A). By Lemma 4.5, the probability that we have
lg(A) — g(A)| > eag(A) for any given set A is then 6 = O(W)

Let the sets at which Algorithm 2 evaluates g be A1, ..., Ay, where M < (I + 1)rn;
both M and the sets A; are random variables depending on the execution of the algo-
rithm. The events |g(A;) — §(A;)| > e29(A4;) are independent, and so from the union
bound, the probability that at least one of the sets A; does not satisfy the desired
error bound is at most O((I(ff)%) =0(n™%). n|

We call the condition that |g(A) — §(A)| < eag(A) for all sets A considered by Al-
gorithm 2 the sampling assumption. Lemma 7.1 shows that the sampling assumption
holds with high probability.

Now, we must adapt the analysis of section 5, which holds when ¢ is computed
exactly, to the setting in which g is computed approximately. In Theorem 5.5, we
showed that g(Sinit) is within a constant factor of the largest possible value that g
could take on any set A C U. Then, because the algorithm always improved g by a
factor of at least (1 + €1), we could bound the number of local search iterations that
it performed. Finally, we applied Theorem 5.1 to translate the local optimality of S
with respect to g into a lower bound on f(5).

Here we follow the same general approach. First, we derive the following result,
which shows that the initial value §(Sinit) is within a constant factor of the maximum
value §* of g(A) on any set A considered by Algorithm 2.5

LEMMA 7.2. Suppose that the sampling assumption is true, and let g* be the
mazimum value of G(A) over all sets A considered by Algorithm 2. Then,

1+ 5 -
(24 3rez) <1 62) (Sinit) > G".

— €9

Proof. The standard greedy algorithm successively chooses a sequence of sets
0 =8y,S1,...,S, = Siit, where each S; for i > 0 satisfies S; = S;_1 + s; for some
element s; € U\ S;_1. The element s; is chosen at each phase according to the formula

s; = argmax @¢(S;—1+ x).
z€U\S;i—1
st.S;_1+x el
Let O be any base of M on which ¢ attains its maximum value. According to
Brualdi’s lemma, we can index O = {o1,...,0,} so that o; = 7(s;) for all i € [r].
Then, the set S;_; + o0; is independent for all ¢ € [r]. Thus, we must have

9(Sic1 +8:) > G(Si—1 + 0;)

for all ¢ € [r]. In order to use monotonicity and submodularity, we translate this into
an inequality for g. From the sampling assumption, we have

(14 €2)g(Siz1 +si) > G(Si—1 +5i) > §(Si—1 +0i) > (1 — €2)g(Si—1 + 0:).

5A similar result for the greedy algorithm applied to an approximately calculated submodular
function is given by Calinescu et al. [8]. However, in their model, the marginals of a submodu-
lar function are approximately calculated, while in ours, the value of the submodular function is
approximately calculated. For the sake of completeness, we provide a complete proof for our setting.



536 YUVAL FILMUS AND JUSTIN WARD

Then, since (1 + €3)/(1 — €2) < 1+ ey for all eo < 1/3,

(]. + 62)
(1 — 62)

Subtracting ¢(S;—1) from each side above, we obtain

(14 3€2)g(Si—1 +si) > g(Si—1 + si) > g(Si—1 + 0;).

3629(51') + gSi—l(Si) > gSi—l(Oi)
for each ¢ € [r]. Summing the resulting r inequalities, we obtain a telescoping sum-
mation, which gives
T T ks
Bea Y 9(Si) + 9(Simie) > Y gs. 1 (0) =Y g5 (03)
i=1 i=1 i=1
2 951 (0) = 9(O U Sinit) — 9(Sinit),

where we have used submodularity of g for the second and third inequalities. Then,
using the monotonicity of g, we have 3e2>_._; g(Sinit) > 3€2 Y :_; g(S;) on the left,
and g(O U Sinit) > g(Sinit) on the right, and so

(7.1) 3rezg(Sinit) + 29(Sinit) = 9(0).

Finally, by the sampling assumption we must have §(Sinit) > (1 — €2)g(Sinit) and
also (14 €2)g(0) > (1 4+ €2)g(A) > g(A) for any set A considered by the algorithm.
Thus, (7.1) implies

14 €

(2+ 3rey) (1

) 9(Sinit) > G". O

The next difficulty we must overcome is that the final set S produced by Algo-
rithm 2 is (approximately) locally optimal only with respect to the sampled function
g(S). In order to use Theorem 5.1 to obtain a lower bound on f(S), we must show
that S is approximately locally optimal with respect to g as well. We accomplish this
in our next lemma, by showing that any significant improvement in § must correspond
to a (somewhat less) significant improvement in g.

LEMMA 7.3. Suppose that the sampling assumption holds and that g(A) <
(1+ €2)g(B) for some pair of sets A, B considered by Algorithm 2. Then

9(A) < (144e2)g(B).
Proof. From the sampling assumption, we have
(1—e€2)g(A) < g(A) < (1+€)g(B) < (14 e2)(1 +e2)g(B).
Thus

(1 + 62)2

<
9(4) = = e

9(B) < (1+4e2)9(B),
where the second inequality holds since ez < 1/5. a

We now prove our main result.

THEOREM T7.4. Algorithm 2 runs in time O(rine~>a) and returns a (2=4— — ¢)-
approzimation with probability 1 — O(n™%).
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Proof. As in the proof of Theorem 5.5, we consider some arbitrary instance
(M = U,T), f) of monotone submodular matroid maximization with upper bound
¢ on the curvature of f, and let O be an optimal solution of this instance. We
shall show that if the sampling assumption holds, Algorithm 2 returns a solution
S satistying f(S) > (% —¢)f(0). Lemma 7.1 shows that this happens with
probability 1 — O(n~%).

As in Algorithm 2, set

1
= (( +€2) (2—|—3’I‘€2)—1) &
1—62

Suppose that the sampling assumption holds, and let g* be the maximum value taken
by g(A) for any set A considered by Algorithm 2. At each iteration of Algorithm 2,
either a set S is returned, or the value v is increased by a factor of at least (1 + €2).
Suppose that the local search phase of Algorithm 2 fails to converge to a local optimum
after I steps, and so does not return a solution S. Then we must have

1+ €
1—62

02 () 3(Sm) > (14 1)) = (102 ) (24 3rea)ilS) > 0
where the last inequality follows from Lemma 7.2. But, then we must have g(A4) > g*
for some set A considered by the algorithm. Thus Algorithm 2 must produce a
solution S.

As in Theorem 5.5, we apply Theorem 5.1 to the bases S and O, indexing S and
O as in the theorem so that S —s; + 0; € Z for all i € [r], to obtain

ce®

(7.2) S

£(S) = f(0) + Z[g<5> —g(S — s +03)).

Then, since Algorithm 2 returned S, we must then have
g(S —si+0i) < (1+€2)g(5)
for all ¢ € [r]. From Lemma 7.3 we then have
9(S =i+ 0i) < (14 4e2)g(5)

for all 4 € [r]. Summing the resulting r inequalities gives
T

ST 19(S) = 9(8 — si+ 0:)] > —4reag(S).

i=1
Applying Theorem 5.5 and the upper bound on ¢(S) from Lemma 4.4 in (7.2), we

then have

C CeC

ec—1

ce
ec—1

f(8) = f(O) = 4rexg(S) = f(O) — dreo H, f(S)

ce®

> f(O) — e 147“62H,,f(0).

Rewriting this inequality using the definition e; = -5~ then gives

1—e¢

c

7(5)> < - ) 7(0).
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The running time of Algorithm 2 is dominated by the number of calls it makes
to the value oracle for f. We note, as in the proof of Lemma 7.1, that the algorithm
evaluates §(A) on O(rnl) sets A. Each evaluation requires N samples of f, and so
the resulting algorithm requires

O(rnIN) = O(rney 2a) = O(r*ne3a)
calls to the value oracle for f. d

8. Extensions. The algorithm presented in section 3 produces a (% —€)-
approximation for any ¢ > 0, and it requires knowledge of c¢. In this section we
show how to produce a clean (1 — e~ ¢)/c-approximation, and how to dispense with
the knowledge of ¢. Unfortunately, we are unable to combine both improvements for
technical reasons.

It will be useful to define the function

1—e¢

p(c) P

which gives the optimal approximation ratio.

8.1. Clean approximation. In this section, we assume c¢ is known, and our
goal is to obtain a p(c) approximation algorithm. We accomplish this by combining
the algorithm from section 7 with partial enumeration.

For « € U we consider the contracted matroid M/x on U — x whose independent
sets are given by Z, = {A C U —x : A+ = € I}, and the contracted submodular
function (f/z) which is given by (f/x)(A) = f(A + z). Tt is easy to show that this
function is a monotone submodular function whenever f is, and has curvature at most
that of f. Then, for each x € U, we apply Algorithm 2 to the instance (M/z, f/x)
to obtain a solution S,. We then return S, + x for the element x € U maximizing
f(S, + ).

Nembhauser, Wolsey, and Fisher [31] analyze this technique in the case of submod-
ular maximization over a uniform matroid, and Khuller, Moss, and Naor [27] make
use of the same technique in the restricted setting of budgeted maximum coverage.
Calinescu et al. [7] use a similar technique to eliminate the error term from the approx-
imation ratio of the continuous greedy algorithm for general monotone submodular
matroid maximization. Our proof relies on the following general claim.

LEMMA 8.1. Suppose A C O and B C U\ A satisfy f(A) > (1 —64)f(0) and
fa(B) = (1= 08)f4(0\ A). Then

f(A U B) > (1 — GAHB)f(O)
Proof. We have

f(AUB) = fa(B) + f(4)
> (1—-05)fa(O\ A)+ f(4)
=(1-05)f(0)+05f(A)
> (1=05)f(0) +05(1—04)f(0)
=(1-040p)f(0). O
Using Lemma 8.1 we show that the partial enumeration procedure gives a clean
p(c)-approximation algorithm.

THEOREM 8.2. The partial enumeration algorithm runs in time 0(r7n2a), and
with probability 1 — O(n™%), the algorithm has an approzimation ratio of p(c).
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Proof. Let O = {o1,...,0,} be an optimal solution to some instance (M, f).
Since the submodularity of f implies

> floi) > £(0),
=1

there is some z € O such that f(z) > f(O)/r. Take A = {z} and B = S, in
Lemma 8.1. Then, from Theorem 7.4 we have (f/xz)(S:) > (p(c) — €)f(O) with
probability 1 — O(n~=%) for any e. We set ¢ = (1 — p(¢))/r. Then, substituting 64 =
1—1/rand 05 =1—p(c) + (1 — p(c))/r, we deduce that the resulting approximation
ratio in this case is

1—(1—%) (1—p(c)+1%”(c)>:1—(1—%> <1+%> (1= p(c))
> 1 (1 p(e)) = plo)

The partial enumeration algorithm simply runs Algorithm 2 n times, using € = Oo(r—1)
and so its running time is O(r"n?a). 0O

8.2. Unknown curvature. In this section, we remove the assumption that c is
known, but retain the error parameter e. The key observation is that if a function
has curvature ¢, then it also has curvature ¢’ for any ¢’ > c. This, combined with the
continuity of p, allows us to “guess” an approximate value of c.

Given ¢, consider the following algorithm. Define the set C' of curvature approxi-
mations by

C={ke:1<k<|eJu{l}.

For each guess ¢/ € C, we run the main algorithm with that setting of ¢’ and error
parameter €¢/2 to obtain a solution S... Finally, we output the set S. maximizing
f(Sc’)'

THEOREM 8.3. Suppose f has curvature c. The unknown curvature algorithm
runs in time O(r*ne=*a), and with probability 1 — O(n~%), the algorithm has an
approximation ratio of p(c) — e.

Proof. From the definition of C' it is clear that there is some ¢’ € C satisfying
¢ < <c+e Since f has curvature ¢, the set Sy is a (p(¢’) — €/2)-approximation.
Elementary calculus shows that on (0, 1], the derivative of p is at least —1/2, and so
we have

p(cd)—€/2>plc+e)—e€/2>plc) —€/2—¢/2=p(c)—e. O

8.3. Maximum coverage. In the special case that f is given explicitly as a
coverage function, we can evaluate the potential function g exactly in polynomial time.
A (weighted) coverage function is a particular kind of monotone submodular function
that may be given in the following way. There is a universe V with nonnegative weight
function w: V — R>(. The weight function is extended to subsets of V linearly, by
letting w(S) = > ,cgw(s) for all S C V. Additionally, we are given a family {V4}acu
of subsets of V, indexed by a set U. The function f is then defined over the index set
U, and f(A) is simply the total weight of all elements of V that are covered by those
sets whose indices appear in A. That is, f(A) =w (U,ca Va)-

We now show how to compute the potential function g exactly in this case. For
aset A C U and an element z € V, we denote by Alx] the collection {a € A:z € V,}
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of indices a such that z is in the set V. Then, recalling the definition of g(A) given
in (4.2), we have

g(A4) = Z mia|-1,B|-1f(B)

BCA

= Z mMA|-1,|B|-1 Z w(z)

BCA z€Upe Vo

=D w(@) D muysi-1

eV BCA s.t.
Alz]NB#0

Consider the coefficient of w(z) in the above expression for g(A). We have

E : mjA|-1,|B|-1 = E :m\A\—l,IB\—l - E : M|A|-1,|B|-1

BCA s.t. BCA BCA\Alx]

Alz]NB#D
[A\A[]|
o |AN Al]| }
miaA|-1,i—1 Z i MAl-1,i—1

=0

Il
Il
o
T
RN

_ (|A\f4[$]|> E [pi—l(l _p)\A\—i]

p~P

Z <|:1|)pi(1 —p)A=

211 [A\A[z]]
(1 —pAl <|A\A[x]|)pi(l _ p)lA\Al]|—i
(2

p i=1

| S|

Thus, if we define

we have
9(A) = apw(z),
zeV

and so to compute g, it is sufficient to maintain for each element x € V a count of
the number of sets A[x] with indices in A that contain x. Using this approach, each
change in ¢(S) resulting from adding an element = to S and removing an element e
from S during one step of the local search phase of Algorithm 1 can be computed in
time O(|V)).

We further note that the coefficients ¢}, are easily calculated using the following
recurrence. For k =0,

1- (1]9—19)0} o,
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while for £ > 0,

lons p@p{l_(l_p)kﬂ] _ & [1—(1—p)’“+p(1—p)’“

p p
=0+ E (1-p)* =l + My .
p~P

p~P

The coefficients ¢; obtained in this fashion in fact correspond (up to a constant scaling
factor) to those used to define the non-oblivious coverage potential in [17], showing
that our algorithm for monotone submodular matroid maximization is indeed a gen-
eralization of the algorithm already obtained in the coverage case.

When all subsets V,, consist of the same element V, = {z} of weight w(z) = 1,

9(A) = > mya—1 -1 f(B) = > mua—1p-1 = 7(A).
BCA BCA s.t.
B0

(The quantity 7(A) is defined in section 4.1.) On the other hand, g(A) = £4. We
conclude that 7(A4) = £) 4.
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