
The Library
Mammoth : gearing Hadoop towards memory-intensive MapReduce applications
Tools
Shi, Xuanhua, Chen, Ming, He, Ligang, Xie, Xu, Lu, Lu, Jin, Hai, Chen, Yong and Wu, Song (2015) Mammoth : gearing Hadoop towards memory-intensive MapReduce applications. IEEE Transactions on Parallel and Distributed Systems, 26 (8). pp. 2300-2315. doi:10.1109/TPDS.2014.2345068 ISSN 1045-9219.
|
PDF
WRAP_He_0584410-cs-161214-2014-tpds-mammoth_.pdf - Accepted Version - Requires a PDF viewer. Download (1729Kb) | Preview |
Official URL: http://dx.doi.org/10.1109/TPDS.2014.2345068
Abstract
The MapReduce platform has been widely used for large-scale data processing and analysis recently. It works well if the hardware of a cluster is well configured. However, our survey has indicated that common hardware configurations in small and medium-size enterprises may not be suitable for such tasks. This situation is more challenging for memory-constrained systems, in which the memory is a bottleneck resource compared with the CPU power and thus does not meet the needs of large-scale data processing. The traditional high performance computing (HPC) system is an example of the memory-constrained system according to our survey. In this paper, we have developed Mammoth, a new MapReduce system, which aims to improve MapReduce performance using global memory management. In Mammoth, we design a novel rule-based heuristic to prioritize memory allocation and revocation among execution units (mapper, shuffler, reducer, etc.), to maximize the holistic benefits of the Map/Reduce job when scheduling each memory unit. We have also developed a multi-threaded execution engine, which is based on Hadoop but runs in a single JVM on a node. In the execution engine, we have implemented the algorithm of memory scheduling to realize global memory management, based on which we further developed the techniques such as sequential disk accessing, multi-cache and shuffling from memory, and solved the problem of full garbage collection in the JVM. We have conducted extensive experiments with comparison against the native Hadoop platform. The results show that the Mammoth system can reduce the job execution time by more than 40% in typical cases, without requiring any modifications of the Hadoop programs. When a system is short of memory, Mammoth can improve the performance by up to 5.19 times, as observed for I/O intensive applications, such as PageRank. Given the growing importance of supporting large-scale data processing and analysis and the proven success of the MapReduce platform, the Mammoth system can have a promising potential and impact.
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software | ||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Computer Science | ||||||
Library of Congress Subject Headings (LCSH): | Electronic data processing, Memory management (Computer science) | ||||||
Journal or Publication Title: | IEEE Transactions on Parallel and Distributed Systems | ||||||
Publisher: | IEEE | ||||||
ISSN: | 1045-9219 | ||||||
Official Date: | 1 August 2015 | ||||||
Dates: |
|
||||||
Volume: | 26 | ||||||
Number: | 8 | ||||||
Page Range: | pp. 2300-2315 | ||||||
DOI: | 10.1109/TPDS.2014.2345068 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||
Date of first compliant deposit: | 28 December 2015 | ||||||
Date of first compliant Open Access: | 28 December 2015 | ||||||
Funder: | Guo jia zi ran ke xue ji jin wei yuan hui (China) [National Natural Science Foundation of China] (NSFC), National Science and Technology Pillar Program, MOE-Intel Special Research Fund of Information Technology, Chinese Universities Scientific Fund | ||||||
Grant number: | 61370104 (NSFC), 61133008 (NSFC), 2012BAH14F02 (Pillar), MOE-INTEL-2012-01 | ||||||
Embodied As: | 1 |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year