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Abstract

The field of kernelization studies polynomial-time preprocessing routines for hard problems in
the framework of parameterized complexity. In this paper we show that, unless the polynomial
hierarchy collapses to its third level, the following parameterized problems do not admit a
polynomial-time preprocessing algorithm that reduces the size of an instance to polynomial in
the parameter:

• Edge Clique Cover, parameterized by the number of cliques,

• Directed Edge/Vertex Multiway Cut, parameterized by the size of the cutset, even
in the case of two terminals,

• Edge/Vertex Multicut, parameterized by the size of the cutset, and

• k-Way Cut, parameterized by the size of the cutset.

1 Introduction

In order to cope with the NP-hardness of many natural combinatorial problems, various algorithmic
paradigms such as brute-force, approximation, or heuristics may be applied. However, while the
paradigms are quite different, there is a commonly used opening move of first applying polynomial-
time preprocessing routines, before making sacrifices in either exactness or runtime. The aim of the
field of kernelization is to provide a rigorous mathematical framework for analyzing such prepro-
cessing algorithms. One of its core features is to provide quantitative performance guarantees for
preprocessing via the framework of parameterized complexity, a feature easily seen to be infeasible
in classical complexity (cf. [38]).

In the framework of parameterized complexity an instance x of a parameterized problem comes
with an integer parameter k, formally, a parameterized problem is defined as Q ⊆ Σ∗ × N for
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some finite alphabet Σ. We say that a problem is fixed parameter tractable (FPT ) if there ex-
ists an algorithm solving any instance (x, k) in time f(k)poly(|x|) for some (usually exponential)
computable function f . It is known that a problem is FPT if and only if it has a kernelization,
which is defined as follows: A kernelization (kernel for short) for a problem Q is a polynomial time
preprocessing routine that takes an instance (x, k) and in time polynomial in |x| + k produces an
equivalent instance (x′, k′) (i.e., (x, k) ∈ Q if and only if (x′, k′) ∈ Q) such that |x′|+ k′ ≤ g(k) for
some computable function g. The function g is the size of the kernel , and if it is polynomial, we
say that Q admits a polynomial kernel. If g is small, after preprocessing even an exponential-time
brute-force algorithm might be feasible. Therefore, small kernels, with g being linear or polynomial,
are of big interest. Polynomial kernels for a wide range of problems have been developed for the
last few decades; see the surveys of Guo and Niedermeier [37], Bodlaender [4], and Lokshtanov et
al. [51].

Still, a framework for proving kernelization lower bounds was discovered only recently by Bod-
laender et al. [5], with the backbone theorem proven by Fortnow and Santhanam [27]. The crux of
the framework is the following idea of a composition. Assume we are able to combine in polynomial
time an arbitrary number of instances x1, x2, . . . , xt of an NP-complete problem L into a single
instance (x, k) of a parameterized problem Q such that (x, k) ∈ Q if and only if at least one of the
instances xi is in L, while k is bounded polynomially in maxi |xi|. If such a composition algorithm
was pipelined with a polynomial kernel for the problem Q, we would obtain an OR-distillation of
the NP-complete language L: the resulting instance is of size polynomial in maxi |xi|, possibly sig-
nificantly smaller than t, but encodes a disjunction of all input instances xi (i.e., an OR-distillation
is a compression of the logical OR of the instances). As proven by Fortnow and Santhanam [27], the
existence of such an algorithm would imply NP ⊆ coNP/poly, which is known to cause a collapse
of the polynomial hierarchy to its third level [10, 67].

The astute reader may have noticed that the above description of a composition is actually using
the slightly newer notion of a cross-composition [?]. This generalization of the original lower bound
framework will be the main ingredient of our proofs. The framework of kernelization lower bounds
was also extended by Dell and van Melkebeek [22] to allow excluding kernels of some particular
exponent in the polynomial. Recently, Dell and Marx [21] and, independently, Hermelin and Wu
[39] simplified this approach and applied it to various packing problems.

The aforementioned (cross-)composition algorithm is sometimes called an OR-composition, as
opposed to an AND-composition, where we require that the output instance (x, k) is in Q if and only
if all input instances belong to L. Various problems have been shown to be AND-compositional,
with the most important example being the problem of determining whether an input graph has
treewidth no larger than the parameter [5]. It was conjectured by Bodlaender et al. [5] that no
NP-complete problem admits an AND-distillation, which would be a result of pipelining an AND-
composition with a polynomial kernel. In a recent breakthrough work Drucker [25] proved the
conjecture assuming that NP 6⊆ coNP/poly (among other results).

Although the framework of kernelization lower bounds has been applied successfully multiple
times over the last four years, there are still many important problems where the existence of a
polynomial kernel is widely open. A major reason for this situation is that the application of the
idea of a composition (or an appropriate reduction, see [7]) is far from being automatic. To obtain a
composition algorithm, usually one needs to carefully choose the starting language L (for example,
the choice of the starting language is crucial for compositions of Dell and Marx [21], and the core
idea of the composition algorithms for connectivity problems in degenerate graphs [17] is to use
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Graph Motif as a starting point) or invent sophisticated gadgets to merge the instances (for
example, the colors and IDs technique introduced by Dom et al. [23] or the idea of an instance
selector, used mainly for structural parameters [?, 6]).

Our results. The main contribution of this paper is a proof of non-existence of polynomial kernels
for four important problems.

Theorem 1. Unless NP ⊆ coNP/poly, Edge Clique Cover, parameterized by the number of
cliques, as well as Directed Multiway Cut, Multicut, and k-Way Cut, parameterized by the
size of the cutset, do not admit polynomial kernelizations.

The common theme of our compositions is a very careful choice of starting problems. Not only
do we select particular NP-complete problems, but we also restrict instances given as the input,
to make them satisfy certain conditions that allow designing cross-compositions. Each time we
constrain the set of input instances of an NP-complete problem we need to prove that the problem
remains NP-complete. Even though this paper is about negative results, in our constructions we
use intuition derived from the design of parameterized algorithms techniques, including iterative
compression (in case of Edge Clique Cover) introduced by Reed et al. [63] and important
separators (in case of Multicut) defined by Marx [54].

For the three cut problems listed in Theorem 1 our kernelization hardness results complement
recent developments in the design of algorithm parameterized by the size of the cutset [8, 15, 55, 45].
In the following we give some motivation and related work for each of the four problems.

Edge clique cover. In the Edge Clique Cover problem the goal is to cover the edges of
an input graph G with at most k cliques all of which are subgraphs of G. This problem, NP-
complete even in very restricted graph classes [12, 40, 57], is also known as Covering by Cliques
(GT17), Intersection Graph Basis (GT59) [28], and Keyword Conflict [46]. It has multiple
applications in various areas in practice, such as computational geometry [1], applied statistics [33,
58], and compiler optimization [59]. In particular, Edge Clique Cover is equivalent to the
problem of finding a representation of a graph G as an intersection model with at most k elements
in the universe [26, 34, 64]. Therefore, an algorithm for Edge Clique Cover may be used to
reveal a structure in a complex real-world network [35]. Due to its importance, the Edge Clique
Cover problem was studied from various perspectives, including approximation upper and lower
bounds [2, 52], heuristics [3, 33, 46, 47, 58, 59], and polynomial-time algorithms for special graph
classes [40, 41, 53, 57].

From the point of view of parameterized complexity, Edge Clique Cover was studied by
Gramm et al. [32]. A simple kernelization algorithm is known that reduces the size of the graph to at
most 2k vertices; the best known fixed-parameter algorithm is a brute-force search on this 2k-vertex
kernel. The question of a polynomial kernel for Edge Clique Cover, probably first verbalized by
Gramm et al. [32], was repeatedly asked in the parameterized complexity community, for example
on the last Workshop on Kernels (WorKer, Vienna, 2011). We provide an AND-cross-composition
from (unparameterized) Edge Clique Cover to Edge Clique Cover parameterized by k,
thereby establishing that a polynomial kernelization is unlikely to exist.

Multicut and directed multiway cut. With Multicut and Directed Multiway Cut we
move on to the family of graph separation problems. The central problems of this area are two
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natural generalizations of the s − t cut problem, namely Multiway Cut and Multicut. In the
first problem we are given a graph G with designated terminals and we are to delete at most p
edges (or vertices, depending on the variant) so that the terminals end up in different connected
components. In the Multicut problem we consider a more general setting where the input graph
contains terminal pairs and we need to separate all pairs of terminals.

As generalizations of the well-known s−t cut problem, Multiway Cut and Multicut received
a lot of attention in past decades. Multiway Cut is NP-complete even for the case of three
terminals [20], thus the same holds for Multicut with three terminal pairs. Both problems were
intensively studied from the approximation perspective [11, 29, 30, 43, 56]. The graph separation
problems became one of the most important subareas in parameterized complexity after Marx
introduced the concept of important separators [54]. This technique turns out to be very robust,
and is now a key ingredient in fixed-parameter algorithms for various problems such as variants of
the Feedback Vertex Set problem [14, 19] or Almost 2-SAT [62]. A long line of research on
Multiway Cut in the parameterized setting include [13, 18, 36, 54, 60, 61, 66]; the currently fastest
algorithm runs in O(2pnO(1)) time [18]. It is not very hard to prove that Multicut, parameterized
by both the number of terminals and the size of the cutset, is FPT-reducible to Multiway Cut [54].
Fixed-parameter tractability of Multicut parameterized by the size of the cutset only, after being
a big open problem for a few years, was finally resolved positively in 2010 [8, 55].

In directed graphs Multiway Cut is NP-complete even for two terminals [30]. Very recently
Chitnis et al. [15] showed that Directed Multiway Cut is fixed-parameter tractable. The
directed version of Multicut, parameterized by the size of the cutset, is W [1]-hard [55] (i.e., an
existence of a fixed-parameter algorithm is unlikely). The parameterized complexity of Directed
Multicut with fixed number of terminal pairs or with the number of terminal pairs as an additional
parameter remains open. However, a subset of the present authors recently proved that Directed
Multicut parameterized by both number of terminals and the size of the cutset is fixed-parameter
tractable when restricted to directed acyclic input graphs [48].

Although the picture of the fixed-parameter tractability of graph separation problems becomes
more and more complete, very little is known about polynomial kernelization. Very recently,
Kratsch and Wahlström came up with an application of matroid theory to graph separation prob-
lems. They were able to obtain randomized polynomial kernels for Odd Cycle Transversal [49],
Almost 2-SAT, and Multiway Cut and Multicut restricted to a bounded number of termi-
nals, among others [50]. We are not aware of any other results on kernelization of graph separation
problems.

We prove that Directed Multiway Cut, even in the case of two terminals, as well as Mul-
ticut, parameterized by the size of the cutset, are OR-compositional, thus a polynomial kernel for
any of these two problems would cause a collapse of the polynomial hierarchy.

The k-way cut problem. The last part of this work is devoted to another generalization of
the s-t cut problem, but with a slightly different flavor. The k-Way Cut problem is defined as
follows: given an undirected graph G and integers k and s, remove at most s edges from G to obtain
a graph with at least k connected components. This problem has applications in numerous areas
of computer science, such as finding cutting planes for the traveling salesman problem, clustering-
related settings (e.g., VLSI design), or network reliability [9]. In general, k-Way Cut is NP-
complete [31] but solvable in polynomial time for fixed k: a long line of research [31, 42, 44, 65] led
to a deterministic algorithm running in time O(mn2k−2). The dependency on k in the exponent is
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probably unavoidable: from the parameterized perspective, the k-Way Cut problem parameterized
by k is W [1]-hard [24]. Moreover, the node-deletion variant is also W [1]-hard when parameterized
by s [54]. Somewhat surprisingly, in 2011 Kawarabayashi and Thorup presented a fixed-parameter
algorithm for (edge-deletion) k-Way Cut parameterized by s [45]. In this paper we complete the
parameterized picture of the edge-deletion k-Way Cut problem parameterized by s by showing
that it is OR-compositional and, therefore, a polynomial kernelization algorithm is unlikely to exist.

Organization of the paper. In Section 2 we give some basic notation and recall the neces-
sary kernelization lower bound tools. In Sections 3 through 6 we prove the claimed kernelization
lower bounds by giving cross-compositions to the target problems. In Section 3 we give an AND-
cross-composition for the Edge Clique Cover problem. In Section 4 we provide an OR-cross-
composition for Directed Multiway Cut. In Section 5 we provide an OR-cross-composition for
Multicut. Section 6 gives an OR-cross-composition from Clique to k-Way Cut. We conclude
in Section 7.

2 Preliminaries

Notation. We use standard graph notation. For a graph G, by V (G) and E(G) we denote
its vertex and edge set (or arc set in case of directed graphs), respectively. For v ∈ V (G), its
neighborhood NG(v) is defined by NG(v) = {u : uv ∈ E(G)}, and NG[v] = NG(v) ∪ {v} is the
closed neighborhood of v. We extend this notation to subsets of vertices: NG[X] =

⋃
v∈X NG[v]

and NG(X) = NG[X] \ X. For X ⊆ V (G) by δG(X) we denote the set of edges in G with one
endpoint in X and the other in V (G) \X. For simplicity for a single vertex v we let δ(v) = δ({v}).
We omit the subscripts if no confusion is possible. For a set X ⊆ V (G) by G[X] we denote the
subgraph of G induced by X. For a set X of vertices or edges of G, by G \X we denote the graph
with the vertices or edges of X removed; in case of a vertex removal, we remove also all its incident
edges. For sets X,Y ⊆ V (G), the set E(X,Y ) contains all edges of G that have one endpoint in X
and the second endpoint in Y . In particular, E(X,X) = E(G[X]) and E(X,V (G) \X) = δG(X).
For a (directed) graph G by an st-path we denote any path that starts in s and ends in t.

For two disjoint vertex sets S, T by an S–T cut we denote any set of edges, whose removal
ensures that there is no path from a vertex in S to a vertex in T in the considered graph. By
minimum S–T cut we denote an S–T cut of minimum cardinality.

Parameterized complexity. In the parameterized complexity setting, an instance comes with
an integer parameter k — formally, a parameterized problem Q is a subset of Σ∗×N for some finite
alphabet Σ. We say that the problem is fixed parameter tractable (FPT ) if there exists an algo-
rithm solving any instance (x, k) in time f(k)poly(|x|) for some (usually exponential) computable
function f . It is known that a problem is FPT if and only if it is kernelizable: a kernelization
algorithm for a problem Q takes an instance (x, k) and in time polynomial in |x|+ k produces an
equivalent instance (x′, k′) (i.e., (x, k) ∈ Q if and only if (x′, k′) ∈ Q) such that |x′|+ k′ ≤ g(k) for
some computable function g. The function g is the size of the kernel , and if it is polynomial, we
say that Q admits a polynomial kernel.

Kernelization lower bounds framework. We use the cross-composition technique introduced
by Bodlaender et al. [?] which builds upon work of Bodlaender et al. [5], Fortnow and San-
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thanam [27], and Drucker [25].

Definition 1 (Polynomial equivalence relation [?]). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if (1) there is an algorithm that given two strings x, y ∈ Σ∗ decides
whether R(x, y) in (|x| + |y|)O(1) time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R
partitions the elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 2 (AND/OR-cross-composition [?]). Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized problem. An OR-cross-com-
position of L into Q (with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗

of L belonging to the same equivalence class of R, takes time polynomial in
∑t

i=1 |xi| and outputs
an instance (y, k) ∈ Σ∗ × N such that:

“PB”: The parameter value k is polynomially bounded in maxi |xi|+ log t.
“OR”: The instance (y, k) is yes for Q if and only if at least one instance xi is yes

for L.

An AND-cross-composition of L into Q (with respect to R) is an algorithm that, instead, fulfills
Properties “PB” and “AND”.

“AND”: The instance (y, k) is yes for Q if and only if all instances xi are yes for L.

We say that L OR-cross-composes, respectively AND-cross-composes, into Q if a cross-composition
algorithm of the relevant type exists for a suitable relation R.

Let us recall that OR-cross-compositions are commonly called cross-compositions, without the
preposition, due to the prevalence of this type in the literature. It is known that both forms of
cross-composition can be used to rule out polynomial kernelizations and compressions under the
assumption that the polynomial hierarchy does not collapse.

Theorem 2 ([?], Corollary 1). If an NP-hard language L AND/OR-cross-composes into the param-
eterized problem Q, then Q does not admit a polynomial kernelization or polynomial compression
unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

Observe that any polynomial equivalence relation is defined on all words over the alphabet Σ
and for this reason whenever we define a cross-composition, we should also define how the relation
behaves on words that do not represent instances of the problem. In all our constructions the
defined relation puts all malformed instances into one equivalence class, and the corresponding
cross-composition outputs a trivial NO-instance, given a sequence of malformed instances. Thus,
in the rest of this paper, we silently ignore the existence of malformed instances.

3 Clique Cover

This section addresses the Edge Clique Cover problem parameterized by the maximum num-
ber k of cliques to be used in the cover. The problem is formally defined as follows.

Edge Clique Cover
Input: An undirected graph G and an integer k.
Task: Does there exist a set of k subgraphs of G, such that each subgraph is a clique and each
edge of G is contained in at least one of these subgraphs?
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We give an AND-cross-composition for Edge Clique Cover parameterized by k, thereby
ruling out polynomial kernelizations and compressions.

Theorem 3. Edge Clique Cover AND-cross-composes to Edge Clique Cover parameterized
by k.

Proof. For the equivalence relation R we take a relation that puts two instances (G1, k1), (G2, k2)
of Edge Clique Cover in the same equivalence class if and only if k1 = k2 and the number
of vertices in G1 is equal to the number of vertices in G2. Therefore, in the rest of the proof we
assume that we are given a sequence (Gi, k)t−1

i=0 of Edge Clique Cover instances that are in the
same equivalence class of R (let us point out that in this proof we number everything starting from
zero). Let n be the number of vertices in each of the instances. W.l.o.g. we assume that n = 2hn

for a positive integer hn, since otherwise we may add isolated vertices to each instance. Moreover,
we assume that t = 2ht for some positive integer ht, since we may copy some instance if needed,
while increasing the number of instances at most by a factor two.

Now we construct an instance (G∗, k∗), where k∗ is polynomial in n + k + ht. Initially as G∗

we take the disjoint union of the graphs Gi for i = 0, . . . , t − 1 with added edges between every
pair of vertices from Gi and Gj for i 6= j. Next, in order to cover all the edges between different
instances with few cliques we introduce the following construction. Let us assume that the vertex
set of Gi is Vi = {vi

0, . . . , v
i
n−1}. For each 0 ≤ a < n, for each 0 ≤ b < n and for each 0 ≤ r < ht

we add to G∗ a vertex w(a, b, r) which is adjacent to exactly one vertex in each Vi, that is vi
`

where ` = (a+ bb i
2r c) mod n. By W we denote the set of all added vertices w(a, b, r). As the new

parameter k∗ we set k∗ = |W | + k = n2ht + k. Note that W is an independent set in G∗ and,
moreover, each vertex in W is non-isolated.

Let us assume that for each i = 0, . . . , t − 1 the instance (Gi, k) is a YES-instance. To show
that (G∗, k∗) is a YES-instance we create a set C of k∗ cliques. We split all the edges of G∗ into the
following groups: (i) edges incident to vertices of W , (ii) edges between two different graphs Gi,Gj ,
and (iii) edges in each graph Gi. For each vertex w ∈ W we add to C the subgraph G∗[N [w]],
which is a clique since every two vertices from two different graphs Gi, Gj are adjacent. Moreover,
let Ci = {Ci

0, . . . , C
i
k−1} be any solution for the instance (Gi, k). For each ` = 0, . . . , k − 1 we add

to C a clique G∗
[⋃t−1

i=0 C
i
`

]
. Clearly all the edges mentioned in (i) and (iii) are covered. Consider

any two vertices vi
x ∈ Vi and vj

y ∈ Vj for i < j. Let r be the greatest integer such that (j − i) is
divisible by 2r. Note that 0 ≤ r < ht and z := b j

2r c−b i
2r c ≡ 1 (mod 2) since otherwise (j−i) would

be divisible by 2r+1. Consequently, there exists 0 ≤ b < n satisfying the congruence bz ≡ y − x
(mod n), since the greatest common divisor of z and n is equal to one (recall that n is a power
of 2). Therefore, when we set a = y − bb j

2r c we obtain

a+ b
⌊ i

2r

⌋
≡ b(

⌊ i
2r

⌋
−
⌊ j

2r

⌋
) + y ≡ y − bz ≡ x (mod n)

a+ b
⌊ j

2r

⌋
≡ y (mod n)

and both vi
x, v

j
y belong to the clique of C containing the vertex w(a, b, r).

Now let us assume that (G∗, k∗) is a YES-instance and let C be a set of at most k∗ cliques in G∗

that cover every edge in G∗. We define C′ ⊆ C as the set of these cliques in C which contain at
least two vertices from some set Vi. Since W is an independent set in G∗, edges incident to two
different vertices in W need to be covered by two different cliques in C. Moreover, no clique in C′
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contains a vertex from W , because each vertex in W is incident to exactly one vertex in each Vi.
Therefore, |C′| ≤ |C| − |W | ≤ k and a set Ci = {X ∩ Vi : X ∈ C′} for i = 0, . . . , t − 1 is a solution
for (Gi, k), as no clique in C \ C′ covers an edge between two vertices in Vi for any i = 0, . . . , t− 1.
Hence each instance (Gi, k) is a YES-instance.

As a consequence, by Theorem 2 we obtain the following result.

Corollary 1. There is no polynomial kernel or compression for the Edge Clique Cover problem
parameterized by k unless NP ⊆ coNP/poly.

4 Directed Multiway Cut

In the Directed Multiway Cut problem we want to disconnect every pair of terminals in a
directed graph. The problem was previously studied in the following two versions.

Directed Edge Multiway Cut
Input: A directed graph G = (V,A), a set of terminals T ⊆ V and an integer p.
Task: Does there exist a set S of at most p arcs in A, such that in G \ S there is no path
between any pair of terminals in T?

Directed Vertex Multiway Cut
Input: A directed graph G = (V,A), a set of terminals T ⊆ V , a set of forbidden vertices V∞ ⊇
T and an integer p.
Task: Does there exist a set S of at most p vertices in V \ V∞, such that in G \ S there is no
path between any pair of terminals in T?

As a side note, observe that by replacing each vertex of V∞ \ T with a p + 1-clique (i.e., a
graph on p + 1 vertices pairwise connected by arcs in both directions), one can reduce the above
Directed Vertex Multiway Cut version to a version, where the solution is allowed to remove
any nonterminal vertex. Moreover, it is well known, that given an instance I of one of the two
problems above, one can in polynomial time create an equivalent instance I ′ of the other problem,
where both the number of terminals and the value of p remain unchanged (e.g. see [15]). Therefore
we show a cross-composition to Directed Vertex Multiway Cut and as a corollary we prove
that Directed Edge Multiway Cut also does not admit a polynomial kernel. The starting
point is the following restricted variant of Directed Vertex Multiway Cut, which we prove to
be NP-complete with respect to Karp reductions.

Promised Directed Vertex 2-Multiway Cut
Input: A directed graph G = (V,A), two terminals T = {s1, s2}, a set of forbidden ver-
tices V∞ ⊇ T and an integer p. Moreover, after removing any set of at most p/2 vertices
of V \ V∞, both an s1s2-path and an s2s1-path remain.
Task: Does there exist a set S of at most p vertices in V \ V∞, such that in G \ S there is
no s1s2-path nor s2s1-path?

The assumption that any set of size at most p/2 cannot hit all the paths from s1 to s2 (and
similarly from s2 to s1) will help us in constructing a cross-composition. Note that this property

8



can be efficiently verified for any input by computing a min s1–s2 cut and a min s2–s1 cut and
checking that both cuts have size exceeding p/2. It follows that the problem is contained in NP.

Lemma 1. Promised Directed Vertex 2-Multiway Cut is NP-complete with respect to Karp
reductions.

Proof. To prove that the problem is NP-hard we use the NP-completeness result of Garg et
al. [30] for Directed Vertex Multiway Cut with two terminals. Consider an instance I =
(G,T = {s1, s2}, V∞, p) of Directed Vertex Multiway Cut. As the graph G′ we take G
with z = p + 1 vertices {u1, . . . , uz} added. In G′ for i = 1, . . . , z we add the following four
arcs {(s1, ui), (ui, s1), (ui, s2), (s2, ui)}. Let I ′ = (G′, T, V∞, p + z) be an instance of Promised
Directed Vertex 2-Multiway Cut. Since after removal of less than z vertices in G′ at least
one vertex ui remains, we infer that I ′ is indeed a Promised Directed Vertex 2-Multiway
Cut instance. To prove that I is a YES-instance if and only if I ′ is a YES-instance it is enough to
observe that any solution in I ′ contains all the vertices {u1, . . . , uz}.

Equipped with the Promised Directed Vertex 2-Multiway Cut problem definition, we
are ready to show a cross-composition into Directed Vertex Multiway Cut parameterized
by p.

Theorem 4. Promised Directed Vertex 2-Multiway Cut cross-composes into Directed
Vertex Multiway Cut with two terminals, parameterized by the size of the cutset p.

Proof. For the equivalence relation R, we take a relation that groups instances according to the
value of p, i.e., (Gi, Ti, V

∞
i , pi) and (Gj , Tj , V

∞
j , pj) are in the same equivalence class inR if and only

if pi = pj . We assume that we are given a sequence Ii = (Gi, Ti = {si
1, s

i
2}, V∞i , p)t

i=1 of Promised
Directed Vertex 2-Multiway Cut instances that are in the same equivalence class of R. As
the graph G′ we take the disjoint union of all the graphs Gi. Moreover for each i = 1, . . . , t − 1,
in G′ we identify the vertices si

2 and si+1
1 . Let I ′ = (G′, {s11, st

2},
⋃t

i=1 V
∞
i , p) be an instance of

Directed Vertex Multiway Cut. Note that
⋃t

i=1 V
∞
i contains both terminals from all input

instances.
Let us assume that there exists 1 ≤ i0 ≤ t such that Ii0 is a YES-instance of Promised

Directed Vertex 2-Multiway Cut, and let S ⊆ V (Gi) \ V∞i be any solution for Ii0 . Since
any s11s

t
2-path and any st

2s
1
1-path in G′ goes through both si0

1 and si0
2 , we observe that G′ \ S is a

solution for I ′ and, consequently, I ′ is a YES-instance.
In the other direction, let us assume that I ′ is a YES-instance. Let S ⊆ V (G) \

⋃t
i=1 V

∞
i be

any solution for I ′. Observe that if the set S contains at most p/2 vertices of V (Gi) \ V∞i for
some 1 ≤ i ≤ t, then S \ V (Gi) is also a solution for I ′, since after removing at most p/2 vertices
of V (Gi) there is still a path both from si

1 to si
2 and from si

2 to si
1. Because |S| ≤ p, we infer that

w.l.o.g. S contains only vertices of a single set V (Gi0) for some 1 ≤ i0 ≤ t. Therefore, Ii0 is a
YES-instance.

The equivalence of Directed Vertex Multiway Cut and Directed Edge Multiway Cut
together with Theorem 2 give us the following corollary.

Corollary 2. Directed Vertex Multiway Cut and Directed Edge Multiway Cut do not
admit polynomial kernels or compressions when parameterized by p unless NP ⊆ coNP/poly, even
in the case of two terminals.
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5 Multicut

In this section we prove that both the edge and vertex versions of the Multicut problem do not
admit a polynomial kernel, when parameterized by the size of the cutset.

Edge (Vertex) Multicut
Input: An undirected graph G = (V,E), a set of pairs of terminals T = {(s1, t1), . . . , (sk, tk)}
and an integer p.
Task: Does there exist a set S ⊆ E (S ⊆ V ) such that no connected component of G\S contains
both vertices si and ti, for some 1 ≤ i ≤ k?

It is known that the vertex version of the Multicut problem is at least as hard as the edge
version.

Lemma 2 (folklore). There is a polynomial time algorithm, which given an instance I = (G, T , p)
of Edge Multicut produces an instance I ′ = (G′, T ′, p) of Vertex Multicut, such that I is a
YES-instance iff I ′ is a YES-instance.

In order to show a cross-composition into the Multicut problem parameterized by p we con-
sider the following restricted variant of the Multiway Cut problem with three terminals.

3-Multiway Cut
Input: An undirected graph G = (V,E), a set of three terminals T = {s1, s2, s3} ⊆ V and an
integer p.
Task: Does there exist a set S of at most p edges in E, such that in G \ S there is no path
between any pair of terminals in T?

Promised 3-Multiway Cut
Input: An undirected graph G = (V,E), a set of three terminals T = {s1, s2, s3} ⊆ V and an
integer p. An instance satisfies: (i) deg(s1) = deg(s2) = deg(s3) = d > 0, (ii) for each j = 1, 2, 3
and any non-empty set X ⊆ V \ T we have |δ(X ∪ {sj})| > d, and (iii) d ≤ p < 2d.
Task: Does there exist a set S of at most p edges in E, such that in G \ S there is no path
between any pair of terminals in T?

Condition (i) ensures that degrees of all the terminals are equal, whereas condition (ii) guar-
antees that the set of edges incident to a terminal sj is the only minimum size sj–(T \ {sj}) cut.
Having both (i) and (ii), condition (iii) verifies whether an instance is not a trivially YES- or NO-
instance, because by (i) and (ii) there is no solution of size less than d and removing all the edges
incident to two terminals always gives a solution of size at most 2d.

Lemma 3. Promised 3-Multiway Cut is NP-complete with respect to Karp reductions.

Proof. To prove the lemma we may observe that the first NP-hardness reduction to the Multiway
Cut problem by Dahlhaus et al. [20] in fact yields a Promised 3-Multiway Cut instance. For
sake of completeness, we present here how to reduce an arbitrary instance of the Multiway Cut
problem with three terminals to a Promised 3-Multiway Cut instance.

Let I = (G,T = {s1, s2, s3}, p) be an instance of 3-Multiway Cut. As observed by Marx [54],
we can assume that for each terminal si the cut δ(si) is the only minimum cardinality si–(T \
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{si}) cut, since otherwise w.l.o.g. we may contract some edge incident to si obtaining a smaller
equivalent instance. Therefore condition (ii) would be satisfied if only degrees of terminals were
equal. Let G1, G2, G3 be three copies of the graph G, where terminals in the i-th copy are denoted
by Ti = {si

1, s
i
2, s

i
3}. Construct a graph G′ as a disjoint union of G1, G2 and G3. Next in G′

we identify vertices {s11, s22, s33} into a single vertex s′1, similarly identify vertices {s12, s23, s31} into a
single vertex s′2, and finally identify vertices {s13, s21, s31} into a single vertex s′3. Let I ′ = (G′, T ′ =
{s′1, s′2, s′3}, p′ = 3p}. Observe that due to the performed identification I ′ is a YES-instance of
Multiway Cut if and only if I is a YES-instance of Multiway Cut. Therefore, to finish the
reduction it suffices to argue that I ′ satisfies (i), (ii) and (iii).

Let d =
∑3

i=1 degG(si). Note that in G′ for each i = 1, 2, 3 we have degG′(s′i) = d, hence
condition (i) is satisfied. Observe that if there exists 1 ≤ j ≤ 3 and s′j–(T ′ \ {s′j}) cut in G′ of size
at most d, which is different from δ(s′j), then there exists 1 ≤ r ≤ 3 and sr–(T \ {sr}) cut in G
of size at most degG(sr) which is different from δG(sr), a contradiction. Hence condition (ii) is
satisfied. Unfortunately, it is possible that p′ ≤ d or p′ ≥ 2d. However, if p′ ≥ 2d then clearly I ′ is a
YES-instance (we can remove edges incident to two terminals), and hence I is a YES-instance. On
the other hand if p′ < d, then I ′ (and consequently I) is a NO-instance, since any s′1–{s′2, s′3} cut has
size at least d. Therefore, if condition (iii) is not satisfied, then in polynomial time we can compute
the answer for the instance I, and as the instance I ′ we set a trivial YES- or NO-instance.

Theorem 5. Promised 3-Multiway Cut cross-composes into Edge Multicut parameterized
the size of the cutset p.

Proof. For the equivalence relation R, we take a relation that groups instances according to the
values of p and d, i.e., (Gi, Ti, pi) and (Gj , Tj , pj) are in the same equivalence class in R if and
only if pi = pj and the degree of each terminal in Gi equals the degree of each terminal in Gj . We
assume that we are given a sequence Ii = (Gi, Ti = {si

1, s
i
2, s

i
3}, p)

t−1
i=0 of Promised 3-Multiway

Cut instances that are in the same equivalence class of R (note that we number instances starting
from 0). Let d be the degree of each terminal in each of the instances. W.l.o.g. we assume that t ≥ 5
is an odd integer, since we may copy some instances if needed, and let h = (t− 1)/2.

Construction. Let G′ be the disjoint union of all graphs Gi for i = 0, . . . , t − 1. For each i =
0, . . . , t − 1 we add d parallel edges between vertices si

2 and s
(i+1) mod t
1 . To the set T we add

exactly t pairs, that is for each i = 0, . . . , t− 1 we add to T the pair (s′i = si
3, t
′
i = s

(i+h) mod t
3 ). We

set p′ = p+ d and I ′ = (G′, T , p′) is the constructed Edge Multicut instance. Note that in order
to avoid using parallel edges it is enough to subdivide them.

Analysis. First assume that there exists 0 ≤ i0 < t such that Ii0 is a YES-instance of Promised
3-Multiway Cut and let S ⊆ E(Gi0) be any solution for Ii0 . Let S1 be the set of edges in G′

between s(i0+h) mod t
2 and s(i0+h+1) mod t

1 (see Fig. 1). We prove that S′ = S ∪S1 is a solution for I ′.
Observe that |S′| = |S|+ |S1| ≤ p+d. Consider any pair (s′, t′) ∈ T such that s′, t′ 6= si0

3 . Note that
in G′ \ S′ there is neither an si0

1 s
i0
2 -path, nor an s

(i0+h) mod t
2 s

(i0+h+1) mod t
1 -path. Therefore, there

is no s′t′-path in G′ \ S′. Moreover, in G′ \ S′ there is neither an si0
3 s

i0
1 -path, nor an si0

3 s
i0
2 -path.

Consequently, for each (s′, t′) ∈ T , where s′ = si0
3 or t′ = si0

3 , there is no s′t′-path in G′ \ S′, so I ′

is a YES-instance of Edge Multicut.
Now assume that I ′ is a YES-instance and our goal is to show that for some 0 ≤ i < t

the instance Ii is a YES-instance. Let Ei = E(Gi) and let E′i be the set of edges between si
2
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Figure 1: Construction of the graph G′ for t = 5 and d = 3. Dashed edges represent pairs of
vertices in T .

and s
(i+1) mod t
1 in G′. Let S′ ⊆ E(G′) be any solution for I ′. Note that if for some E′i, where 0 ≤

i < t, the set S′ contains less than d edges from the set E′i, then S′ \ E′i is also a solution for I ′.
By conditions (i) and (ii) of the Promised 3-Multiway Cut problem definition we have the
following: if for some 0 ≤ i < t the set S′ contains less than d edges from the set Ei, then S′ \Ei is
also a solution for I ′. Indeed, if S′ contains less than d edges from Ei, then in the graph G′ \Ei all
the vertices si

1, si
2, si

3 are in the same connected component, since otherwise for some a ∈ Ti there
would be an a–(Ti \ {a}) cut in Gi of size smaller than d. Let us recall that |S′| ≤ p′ = p+ d < 3d.
Therefore, w.l.o.g. we may assume that the set S′ has a non-empty intersection with at most two
sets from the set E = {E0, . . . , Et−1, E

′
0, . . . , E

′
t−1}. Moreover we assume that if S′ has non-empty

intersection with some set from E , then this intersection is of size at least d.
Case 1. Consider the case, when S′ has an empty intersection with each of the sets Ei for 0 ≤

i < t. Since |E′i| = d and p′ ≥ 2d, w.l.o.g. S′ has a non-empty intersection with exactly two
sets E′i0 , E′i1 for i0 6= i1. Since t is odd, in the graph G′ \S′ either there is an si0

3 s
(i0−h) (mod t)
3 -path

or an s
(i0+1) mod t
3 s

(i0+1+h) mod t
3 -path. Hence we have a contradiction.

Case 2. Next assume that S′ has a non-empty intersection with some set Ei0 for 0 ≤ i0 < t.
By symmetry w.l.o.g. we may assume that i0 = 0. Since the set S′ hits all the s13s

h+1
3 -paths as well

as all the sh
3s

t−1
3 -paths in the graph G′, we infer that S′ has non-empty intersection with exactly

one of the sets Eh, E′h, Eh+1.
Case 2.1. In this case we assume that S′ has a non-empty intersection with E′h. Since S′

hits all s03s
h
3 -paths in G′, in G0 \ S′ there is no s03s

0
2-path. Similarly, since S′ hits all s03s

h+1
3 -paths

in G′, in G0 \ S′ there is no s03s
0
1-path. Moreover, since S′ hits all st−1

3 sh−1
3 -paths in G′, in G0 \ S′

there is no s01s
0
2-path. Since |S′| ≤ p′ = p + d and |S′ ∩ E′h| = d, we infer that |S′ ∩ E0| ≤ p, and,

consequently, I0 is a YES-instance.
Case 2.2. Since S′ has a non-empty intersection with one of the sets Eh, Eh+1, by symmetry
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we assume that S′∩Eh 6= ∅. Recall that t ≥ 5, and hence h > 1. Since S′ hits all s13s
h+1
3 -paths and

all s13s
t+1−h
3 -paths in G′, we infer that in G0\S′ there is no s01s

0
2-path and in Gh\S′ there is no sh

1s
h
2 -

path. Moreover, S′ hits all s03s
h+1
3 -paths and all sh

3s
t−1
3 -paths in G′; therefore, in G0 \ S′ there is

no s03s
0
1-path and in Gh \ S′ there is no sh

3s
h
2 -path. Finally since S′ hits all s03s

h
3 -paths in G′, either

in G0 \S′ there is no s03s
0
2-path, or in Gh \S′ there is no sh

3s
h
1 -path. Since |S′| ≤ p+d, |S′∩E0| ≥ d

and |S′ ∩ Eh| ≥ d, we infer that |S′ ∩ E0| ≤ p and |S′ ∩ Eh| ≤ p. Consequently, either I0 or Ih is a
YES-instance, which finishes the proof of Theorem 5.

6 k-Way Cut

In this section we study the k-Way Cut problem, defined as follows.

k-Way Cut
Input: An undirected connected graph G and integers k and s.
Task: Does there exist a set X of at most s edges in G such that G\X has at least k connected
components?

The k-Way Cut problem, parameterized by s, was proven to be fixed-parameter tractable by
Kawarabayashi and Thorup [45]. The problem is W [1]-hard when parameterized by k [24], as well
as when we allow vertex deletions instead of edge deletions, and parameterize by s [54].

Note that in the problem definition we assume that the input graph is connected and, therefore,
for k > s+ 1 the input instances are trivial. However, if we are given an instance (G, k, s) where G
has c > 1 connected components, we can easily reduce it to the connected version: we add to G a
complete graph on s + 2 vertices (so that no two vertices of the complete graph can be separated
by a cut of size s), connect one vertex from each connected component of G to all vertices of the
complete graph, and decrease k by c− 1. Thus, by restricting ourselves to connected graphs G we
do not make the problem easier.

The main result of this section is that k-Way Cut, parameterized by s, does not admit a
polynomial kernel (unless NP ⊆ coNP/poly). We show a cross-composition from the Clique
problem, well-known to be NP-complete.

Clique
Input: An undirected graph G and an integer `.
Task: Does G contain a clique on ` vertices as a subgraph?

Theorem 6. Clique cross-composes to k-Way Cut parameterized by s.

Proof. We start by defining a relationR on Clique input instances as follows: (G, `) is in relationR
with (G′, `′) if ` = `′, |V (G)| = |V (G′)|, and |E(G)| = |E(G′)|. Clearly, R is a polynomial
equivalence relation. Thus, in the designed cross-composition, we may assume that we are given t
instances (Gi, `), 1 ≤ i ≤ t, of the Clique problem and |V (Gi)| = n, |E(Gi)| = m for all 1 ≤ i ≤ t.
Moreover, we assume that m ≥

(
`
2

)
and 1 < ` ≤ n, as otherwise all input instances are trivial.

We first consider a weighted version of the k-Way Cut problem where each edge may have a
positive integer weight and the cutset X needs to be of total weight at most s. The weights in our
construction are polynomial in n and m. At the end we show how to reduce the weighted version
to the unweighted one.
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We start by defining the following integer values

k = n− `+ 1, w1 = m, w2 = m

(
n

2

)
,

s = w2(n− `) + w1

((
n

2

)
−
(
`

2

))
+m−

(
`

2

)
.

Note that s < w2(n− `+ 1) and s < w2(n− `) + w1(
(
n
2

)
−
(

`
2

)
+ 1).

For each graph Gi, 1 ≤ i ≤ t, we define a graph G′i as a complete graph on n vertices with
vertex set V (Gi), where the edge uv has weight w1 + 1 if uv ∈ E(Gi) and weight w1 otherwise.
We construct a graph G as follows. We take the disjoint union of all graphs G′i for 1 ≤ i ≤ t, add
a root vertex r, and for each 1 ≤ i ≤ t, v ∈ V (G′i) we add an edge rv of weight w2. Clearly G is
connected, s is polynomial in n and m, and the graph G can be constructed in polynomial time.
We claim that (G, k, s) is a weighted k-Way Cut YES-instance if and only if at least one of the
input Clique instances (Gi, `) is a YES-instance.

First, assume that for some 1 ≤ i ≤ t, the Clique instance (Gi, `) is a YES-instance. Let C ⊆
V (Gi) be a witness: |C| = ` and Gi[C] is a clique. Consider a set X ⊆ E(G) containing all edges
of G incident to V (G′i) \ C. Clearly, G \ X contains k = n − ` + 1 connected components: we
have one large connected component with vertex set (V (G) \ V (G′i))∪C and each of n− ` vertices
of V (G′i) \ C is an isolated vertex in G \ X. Let us now count the total weight of edges in X.
The set X contains n − ` edges of weight w2 that connect V (G′i) \ C to the root r. Moreover, X
contains

(
n
2

)
−
(

`
2

)
edges of G′i, of weight w1 or w1 + 1. Since Gi[C] is a clique, only m−

(
`
2

)
of the

edges in X are of weight w1 + 1. Thus the total weight of edges in X is equal to

w2(n− `) + w1

((
n

2

)
−
(
`

2

))
+m−

(
`

2

)
= s.

In the other direction, let X ⊆ E(G) be a solution to the k-Way Cut instance (G, k, s). Let Z
be the connected component of G\X that contains the root r. Let Y ⊆ V (G) be the set of vertices
that are not in Z. If v ∈ Y , then X contains the edge rv of weight w2. As s < w2(n − ` + 1), we
have |Y | ≤ n− `. As k = n− `+ 1, we infer that G \X contains n− `+ 1 connected components:
Z and n− ` isolated vertices. That is, |Y | = n− ` and all vertices in Y are isolated in G \X. Note
that X must include all n− ` edges of weight w2 that connect the root r with the vertices of Y .

The next step is to prove that all vertices of Y are contained in one of the graphs G′i. To this
end, let ai = |Y ∩ V (G′i)| for 1 ≤ i ≤ t. Note that X ∩ E(G′i) contains at least

(
ai
2

)
+ ai(n − ai)

edges of weight w1 or w1 + 1. Thus, the number of edges of weight w1 or w1 + 1 contained in X is
at least:

t∑
i=1

((
ai

2

)
+ ai(n− ai)

)
=
(
n− 1

2

) t∑
i=1

ai −
1
2

t∑
i=1

a2
i = (n− `)

(
n− 1

2

)
− 1

2

t∑
i=1

a2
i

≥ (n− `)
(
n− 1

2

)
− 1

2

(
t∑

i=1

ai

)2

= (n− `)
(
n− 1

2

)
− 1

2
(n− `)2

=
(
n

2

)
−
(
`

2

)
.
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As s < w2(n−`)+w1

((
n
2

)
−
(

`
2

)
+ 1
)

, we infer that the number of edges in X of weight w1 or w1+1

is exactly
(
n
2

)
−
(

`
2

)
. This is only possible if

∑t
i=1 a

2
i = (

∑t
i=1 ai)2. As ai are nonnegative integers,

we infer that only one value ai is positive.
Thus Y ⊆ V (G′i) for some 1 ≤ i ≤ t. Let C = V (Gi) \ Y . Note that |C| = `. The set X

contains all
(
n
2

)
−
(

`
2

)
edges of G′i that are incident to Y . As the total weight of the edges of X is

at most s, X contains at most m−
(

`
2

)
edges of weight w1 + 1. We infer that there are at least

(
`
2

)
edges in the graph Gi[C], that Gi[C] is a clique, and that (Gi, `) is a YES-instance of the Clique
problem.

To finish the proof, we show how to reduce the weighted version of the k-Way Cut problem to
the unweighted one. We replace each vertex u with a complete graph Hu on s+ 2 vertices and for
each edge uv of weight w we add to the graph w arbitrarily chosen edges between Hu and Hv (note
that in our construction all weights are smaller than s). Note that this reduction preserves the
connectivity of the graph G. Let X be a solution to the unweighted instance (G, k, s) constructed in
this way. As no cut of size at most s can separate two vertices of Hu, each clique Hu is contained in
one connected component of G \X. Moreover, to separate Hu from Hv, the set X needs to include
all w edges between Hu and Hw. Thus, the constructed unweighted instance is indeed equivalent to
the weighted one. Note that in the presented cross-composition the edge weights were polynomial
in n and m, so the presented reduction can be performed in polynomial time.

By applying Theorem 2 we obtain the following corollary.

Corollary 3. k-Way Cut parameterized by s does not admit a polynomial kernel or compression
unless NP ⊆ coNP/poly.

7 Conclusion and open problems

We have shown that four important parameterized problems do not admit a kernelization algorithm
with a polynomial guarantee on the output size unless NP ⊆ coNP/poly and the polynomial
hierarchy collapses. We would like to mention here some open problems very closely related to our
work.

• The OR-composition for Directed Multiway Cut in the case of two terminals excludes
the existence of a polynomial kernel for most graph separation problems in directed graphs.
There are two important cases not covered by this result: one is the Multicut problem in
directed acyclic graphs, and the second is a variant of Directed Multiway Cut where the
cutset is allowed to contain terminals.

• Both our OR-compositions for Multicut use a number of terminal pairs that is linear in the
number of input instances. Is Multicut parameterized by both the size of the cutset and
the number of terminal pairs similarly hard to kernelize?

Acknowledgements. We would like to thank Jakub Onufry Wojtaszczyk for some early discus-
sions on the kernelization of the graph separation problems.
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