Original citation:

Permanent WRAP url:
http://wrap.warwick.ac.uk/66338

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Power Sources of Combinational. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in http://dx.doi.org/10.1016/j.jpowsour.2014.07.184

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP url’ above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
Real-time displacement and strain mappings of commercial pouch lithium-ion batteries using three-dimensional digital image correlation

P. K. Leung1*, C. Moreno1, I. Masters1*, S. Hazra1, R. Bhagat1

WMG, Warwick University, Gibbet Hill Road, Coventry, CV4 7AL.

Abstract

This work presents the first application of three-dimensional digital image correlation for real-time displacement and strain analysis of a pouch type lithium-ion battery. During the electrochemical charge-discharge processes, displacements in the x-, y- and z- directions vary at different states-of-charge (SOCs) attributed to the expansion and the contraction of the interior structure. The z-displacement is observed to develop and concentrate at the vicinity of the openings of the jelly-roll structure. By resolving the displacement components, the progression and distribution of the surface strains, including principal and von-Mises strains, are computed in the charge-discharge processes. It is shown that the dominant strains are up to 0.12 \% in the rolling direction of the jelly-roll structure and distribute uniformly on the x-y plane over the surface.

Keywords: Digital image correlation, lithium-ion battery, principal strain, von-Mises strain. Corresponding author: P.Leung@warwick.ac.uk; IMasters@warwick.ac.uk
1. Introduction

Lithium-ion batteries (LIBs) have been the most widely used energy storage device for portable electronics. Due to their high specific energy, long cycle life and slow self-discharge, LIBs are considered to be suitable for electric and hybrid vehicle applications. For automobile industry, electrochemistry and mechanical integrity are important aspects to design the lithium-ion batteries from cell to module levels [1, 2]. Similar to most electrochemical energy storage systems, the chemical compositions of the active materials change during the charge-discharge processes. This induces strains in electrode particles and causes changes in electrode volume. The induced strain is considered to be the main cause of material cracking and other forms of performance degradation [3]. To evaluate the mechanism of strain generation during the electrochemical intercalation and de-intercalation processes, a number of theoretical and computational models have been developed at particle and electrode levels [4-6].

In comparison, the evolutions of stresses and strain in battery components have been investigated experimentally by only a few researchers using linear voltage displacement transducer (LVDT) [1], wafer curvature method [3] and two-dimensional digital image correlations (2D DIC) [7,8]. The reported methods were still limited to the electrode level and are completely based on two-dimensional measurements. In the cases of both LVDT and wafer curvature methods, strain measurements can only be made available at the points where the devices are mounted or bonded appropriately on the specimen surface. DIC is a non-contact optical technique that has been found increasing numbers of applications in different areas of engineering. This technique enables strain to be measured directly by tracking the movement of points on the surface through a sequence of digital images.

In conventional DIC technique, strain data is limited in two dimensions (x- and y-directions) as a single sensor is used to capture the digital images. To allow three-dimensional measurements (x-, y- and z-directions), a plurality of synchronized
stereo sensors are required and combined with the photogrammetric theories. To the best knowledge of the authors, this work is the first to propose the use of three-dimensional DIC (3D DIC) for real-time displacement and strain measurements for energy storage applications. In this paper, qualitative displacement and strain data were provided as a function of state-of-charge (SOC) in the x-, y- and z- directions. With this information, the principle and von-Mises strain values were computed and observed to increase gradually in the charging process.

Experimental procedures

The battery investigated was a pouch type lithium-ion polymer battery supplied by Lishen Battery Co. (model PP053759, China). The battery is based on nickel-manganese-cobalt oxide (NMC) chemistry and has a nominal capacity of c.a. 1200 mA h. Inside the aluminium-plastic pouch, the interior structure illustrated in Figure 1a is constructed by winding the ribbon-like electrode and separator to form a ‘jelly-roll’ structure. The negative and positive active materials are coated on each side of the separator materials. Thin layers of copper and aluminium foils are used as the current collectors.

During the three-dimensional strain measurement, a galvanostatic charge-discharge cycle was carried out at constant current (1200 mA, 1-C rate) at 22.5 °C using a Bio-logic VMP3 potentiostat. To eliminate the strain attributed to the gas build-up, the measurements were made directly on the interior structure in an inert environment. As shown in Figure 1b, the battery was charged up to a cell voltage of 4.1 V followed by a taper charge of this potential (4.1 V) for an overall charge cycle of 1 h. After that, the discharge is performed using the same current down to a cut-off voltage of 2.8 V. The state-of-charge (SOC) of the battery was defined as the percentage of the charged capacity over its rated value (c.a. 1200 mA h).

The 3D DIC analysis was conducted by using the GOM Aramis system (Germany)
comprising a pair of stereo sensors and a data-processing software. The two sensors have a resolution of up to 2 megapixels and were equipped with 50 mm lenses. The two digital sensors were mounted at c.a. 800 mm above the battery specimen. Before the experiment, each sensor was calibrated using the calibration panel at the orientations as requested by the software. To ensure the measurement volume and the sensor positions were aligned properly, the calibration deviation were maintained between 0.01 and 0.04 pixels [9]. In a typical test, the DIC system requires the surface of the battery specimen to be sprayed with a random speckle pattern. After adjusting the light source and the shutter speed, images were recorded at a regular time interval of 15 seconds over 140 minutes (560 images).

During the analysis of the digital images, the areas at the edges were eliminated from the analyzing area. This is because the facets at the edges tend to be matched with the incorrect facets. The selected analyzing area was therefore limited to 29 mm x 49 cm. After defining the starting point, the surface points were computed within the digital image at the reference stage. These data point were then tracked at sub-pixel accuracy to measure the displacement over the specimen surface by means of square facets in the x-, y- and z- directions. The facet size used in this study was 15 x 15 pixels. Subsequent data processing, such as principal strain vectoring and von-Mises strain calculation, were performed in the ARAMIS® software.

Results and discussions

During the 3D DIC measurement, the selected LIB underwent a galvanostatic charge-discharge cycle at 1C-rate (1200 mA). As shown in Figure 2a, the displacement in z-direction (at the centre of the battery) increased steadily and reached 177 jim at the fully charged state, and then decreased down to 55 jim after the discharge process. The variation of the z-displacement depended upon the thickness increment of the ‘jelly-roll’ structure. In the charge-discharge processes, the reversible trend of the z-displacement is attributed to the lattice expansion of the active materials, which has been reported to be a highly reversible process (up to c.a. 100 % for lithiated carbon
In contrast, physical and electrochemical swellings caused by binder expansion and particle stacking are less reversible [3, 10]. This explains the phenomenon that the residual z-displacement was observed after the charge-discharge cycle.

The progression and distribution of z-displacement at different SOCs are illustrated in Figure 2a. In the initial state, the contour pattern was relatively uniform over the surface. While charging the battery, the displacement in z-direction developed and concentrated on the left and right sides of the battery. These regions are at the vicinity of the openings of the ‘jelly-roll’ structure (Please refer to Figure 1a), which are less constrained to enable displacement and relaxation to take place than the other parts of the structure. When the battery was fully charged, the z-displacements in these regions were observed to reach c.a. 200—220 jim. These values were approximately 30—40 jim higher than those in the central areas (c.a. 160—180 jim).

In comparison, the displacement values in x- and y- directions were relatively small (<60 jim) and highly influenced by the increment of the z-displacement during the electrochemical processes. As determined by the DIC system, the resulting x- and y-displacement distributions are illustrated in Figure 2b and 2c. As shown in Figure 2b, the displacement in x- direction progressed mainly on the upper-right side and decreased slightly on the lower-left side during the charging process. On the contrary, the displacements in the y-direction (Figure 2c) tended to be larger and smaller on the upper-left and the lower-right sides of the battery, respectively.

As in the case of the z- displacement, the x- and y-displacements in the central area increased and decreased in the charge-discharge processes. As shown in Figure 2b and c, the x- and y-displacements increased up to c.a. 5.0 jim and c.a. 22.5 jim at the fully charged state, and decreased down to c.a. –2.2 jim and c.a. 10.5 jim as the residual displacements after the discharge process.

After obtaining the displacement components, principle strains and their
corresponding directions were computed on the x-y plane using equations (1) and (2):

\[E_{1,2} = \sqrt{E_{yy}^2 + \gamma_{xy}^2} \pm \sqrt{E_{xx}^2 - 2E_{xx}E_{yy} + \gamma_{xy}^2} \]

\[0 = \sqrt{E_{xx}^2 - E_{yy}^2} \]

where \(c_{1,2} \) are the major and minor principal strains; \(\Theta \) is the principal angle; \(c_{xx} = c_{yy} \) are the strains acting on the planes normal to the x- and y- axes, respectively; \(\gamma_{xy} \) is the shear strain acting on the plane normal to the x-axis directed to the y-direction. These equations were based on ‘plane strain state’, which are two-dimensional simplifications used for thick structures. It should be noted that ‘surface strain’ only takes account of the in-plane strains in most mechanical calculations.

Figure 3a shows the evolutions of the major principal strains on the x-y plane during the charging process. The black and white arrows represent the directions of the major and minor principal strains, respectively. Most of the major principal strains aligned in the y-direction and developed uniformly over the surface. On the contrary, minor strain tends to be smaller (–0.06 to +0.03%) and orient in the x-direction. The major strain direction (y-direction) is associated with the design of the ‘jelly-roll’ structure. This is similar to the case of a pressurized cylinder, in which the corresponding ‘hoop strain’ is developed in the tangential direction to resist the inflation effect caused by the internal pressure. This shows that the major strains on the x-y plane were generated uniformly in the rolling direction (y-direction) and attributed to the expansion of the ‘jelly-roll’ structure.

To evaluate the overall ‘surface strains’ on the x-y plane, the multiple principal and shear strain components were resolved into a single strain value regardless of the
direction using the von-Mises strain equation:

$$E_{v-m} = \frac{J^2}{2} (E_1^2 + E_2^2)$$

(3)

where $\varepsilon_{v,m}$ is the von-Mises strain; ε_1 and ε_2 are the major and minor principal strains. Figure 3c shows the progression and distribution of the von-Mises strains on the x-y plane at different SOCs. The von-Mises strain values were observed to increase at a gradual rate in the charging process. When the battery was at 100 % SOC, the von-Mises strains reached up to c.a. 0.12 % and distributed uniformly over the surface. It is also shown that the magnitude and the distribution of the von-Mises strain were similar to those of the major strains in the y-direction. This is because the principal strains in the y-direction were significantly higher than in the x-direction. This further justifies that the strains in the y-direction (rolling direction of the ‘jelly-roll’ structure) were the most dominants strains generated on the battery surface.

Conclusions

In conclusion, the three-dimensional digital image correlation is shown to be an efficient and accurate technique to measure the displacement and strain distributions of the pouch type lithium-ion batteries. During the electrochemical charge-discharge processes, the displacements in the x-, y- and z- directions vary at different states-of-charge (SOCs) attributed to the expansion and the contraction of the interior structure. The computed surface strains, including principal and von-Mises strains, were shown to increase and decrease in the charge and discharge processes, respectively. The most dominant strains were observed in the rolling direction of the ‘jelly-roll’ structure and distributed uniformly on the x-y plane over the surface.

References

Figure captions

Figure 1. Schematics of the pouch type lithium-ion battery: (a) internal jelly-roll structure, (b) charge-discharge voltage profile.

Figure 2. Displacement distributions of the lithium-ion battery at 30 %, 70 % and 100 % SOC: (a) z-displacement, (b) x-displacement and (c) y-displacement. Displacement vs. time curves based on the central point of the battery.

Figure 3. Strain distribution of the lithium-ion battery at 30 %, 70 % and 100 % SOC: (a) major strains, (b) von-Mises strains. Strain vs. time curves based on the central point of the battery. (Black arrow: Major strain directions; white arrow: Minor strain directions)
Figure 1.

[Diagrams and labels for a battery cell, including side view, front view, cross-sectional view, and expanded view with labels for components such as cathode, anode, and separator.]

CC: Constant current
CV: Constant voltage
Charge
Discharge
Figure 2.
Figure 3.