Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Post-main-sequence debris from rotation-induced YORP break-up of small bodies

Tools
- Tools
+ Tools

Veras, Dimitri, Jacobson, S. A. and Gänsicke, B. T. (Boris T.) (2014) Post-main-sequence debris from rotation-induced YORP break-up of small bodies. Monthly Notices of the Royal Astronomical Society, Volume 445 (Number 3). pp. 2794-2799. doi:10.1093/mnras/stu1926 ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1093/mnras/stu1926

Request Changes to record.

Abstract

Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky–O'Keefe–Radviesvki–Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m–10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Oxford University Press
ISSN: 0035-8711
Official Date: 11 December 2014
Dates:
DateEvent
11 December 2014Published
20 October 2014Available
14 September 2014Accepted
24 July 2014Submitted
Volume: Volume 445
Number: Number 3
Page Range: pp. 2794-2799
DOI: 10.1093/mnras/stu1926
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Adapted As:

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us