Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

In vitro metabonomic study detects increases in UDP-GlcNAc and UDP-GalNAc, as early phase markers of cisplatin treatment response in brain tumor cells

Tools
- Tools
+ Tools

Pan, Xiaoyan, Wilson, Martin P., Mirbahai, Ladan, McConville, Carmel, Arvanitis, Theodoros N., Griffin, Julian L., Kauppinen, Risto A. and Peet, Andrew C. (2011) In vitro metabonomic study detects increases in UDP-GlcNAc and UDP-GalNAc, as early phase markers of cisplatin treatment response in brain tumor cells. Journal of Proteome Research, Volume 10 (Number 8). pp. 3493-3500. doi:10.1021/pr200114v

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1021/pr200114v

Request Changes to record.

Abstract

O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is important in a number of biological processes and diseases including transcription, cell stress, diabetes, and neurodegeneration and may be a marker of tumor metastasis. Uridine diphospho-N-acetylglucosamine (UDP-GlcNAc), the donor molecule in O-GlcNAcylation, can be detected by 1H nuclear magnetic resonance spectroscopy (1H NMR), giving the potential to measure its level noninvasively, providing a novel biomarker of prognosis and treatment monitoring. In this in vitro metabonomic study, four brain cancer cell lines were exposed to cisplatin and studied for metabolic responses using 1H NMR. The Alamar blue assay and DAPI staining were used to assess cell sensitivity to cisplatin treatment and to confirm cell death. It is shown that in the cisplatin responding cells, UDP-GlcNAc and uridine diphospho-N-acetylgalactosamine (UDP-GalNAc), in parallel with 1H NMR detected lipids, increased with cisplatin exposure before or at the onset of the microscopic signs of evolving cell death. The changes in UDP-GlcNAc and UDP-GalNAc were not detected in the nonresponders. These glycosylated UDP compounds, the key substrates for glycosylation of proteins and lipids, are commonly implicated in cancer proliferation and malignant transformation. However, the present study mechanistically links UDP-GlcNAc and UDP-GalNAc to cancer cell death following chemotherapeutic treatment.

Item Type: Journal Article
Divisions: Faculty of Science > WMG (Formerly the Warwick Manufacturing Group)
Journal or Publication Title: Journal of Proteome Research
Publisher: American Chemical Society
ISSN: 1535-3893
Official Date: 2011
Dates:
DateEvent
2011Published
Volume: Volume 10
Number: Number 8
Page Range: pp. 3493-3500
DOI: 10.1021/pr200114v
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us