Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Properties of an eclipsing double white dwarf binary NLTT 11748

Tools
- Tools
+ Tools

Kaplan, David L., Marsh, Tom, Walker, Arielle N., Bildsten, Lars, Bours, Madelon C. P., Breedt, Elmé, Copperwheat, Chris M., Dhillon, Vik S., Howell, Steve B., Littlefair, Stuart P., Shporer, Avi and Steinfadt, Justin D. R. (2013) Properties of an eclipsing double white dwarf binary NLTT 11748. The Astrophysical Journal, Volume 780 (Number 2). p. 167. doi:10.1088/0004-637X/780/2/167 ISSN 0004-637X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1088/0004-637X/780/2/167

Request Changes to record.

Abstract

We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M ☉) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M ☉) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R ☉) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10–5. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: The Astrophysical Journal
Publisher: Institute of Physics Publishing, Inc.
ISSN: 0004-637X
Official Date: 20 December 2013
Dates:
DateEvent
20 December 2013Published
10 January 2014Available
21 November 2013Accepted
19 July 2013Submitted
Volume: Volume 780
Number: Number 2
Page Range: p. 167
DOI: 10.1088/0004-637X/780/2/167
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us