References: |
Y. Avishai, D. Berend and D. Glaubman. Minimum-dimension trace maps for substitution sequences. Phys. Rev. Lett. 72 (1994), 1842–1845. M. Baake, U. Grimm and D. Joseph. Trace maps, invariants, and some of their applications. Internat. J. Modern Phys. B 7 (1993), 1527–1550. M. Baake and J. A. G. Roberts. Reversing symmetry group of Gl(2,Z) and PGl(2,Z) matrices with connections to cat maps and trace maps. J. Phys. A: Math. Gen. 30 (1997), 1549–1573. J. Birman. Braids, Links and Mapping Class Groups (Annals of Mathematics Studies, 82). Princeton University Press, Princeton, NJ, 1974. W. Bosma and J. Cannon. MAGMA (University of Sydney), 1994. M. Casdagli. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Comm. Math. Phys. 107 (1986), 295–318. A. J. Casson and S. A. Bleiler. Automorphisms of Surfaces after Nielsen and Thurston (London Mathematical Society Student Texts, 9). Cambridge University Press, Cambridge, 1988. D. B. A. Epstein. Almost all subgroups of a Lie group are free. J. Algebra 19 (1971), 261–262. Fathi, Laudenbach and Po´enaru. Travaux de Thurston sur les surfaces. Ast´erisque 66–67 (1979). R. Fricke and F. Klein. Vorlesungen uber die Theorie der automorphen Funktionen, I. Teubner, Leipzig, 1897. Reprint: Johnson Reprint Corp., New York, 1965. W. M. Goldman. Topological components of spaces of representations. Invent. Math. 93 (1988), 557–607. S. P. Humphries. An approach to automorphisms of free groups and braids via transvections. Math. Z. 209 (1992), 131–152. S. P. Humphries. An action of subgroups of mapping class groups on polynomial algebras. Preprint, 2005. K. Iguchi. A class of new invariant surfaces under the trace maps for nary Fibonacci lattices. J. Math. Phys. 35 (1994), 1008–1019. A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (with a supplement by A. Katok and L. Mendoza) (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995. A. P. Liu and Z. X. Wen. Characterizations of the trace maps associated with invertible substitution. J. Wuhan Univ. Natur. Sci. Ed. 49 (2003), 289–292. Q. H. Liu, J. Peyri`ere and Z. Y. Wen. Periodic polynomial of trace maps. Bull. Sci. Math. doi: 10.1016/j.bulsci.2006.04.004. W. Magnus. Rings of Fricke characters and automorphism groups of free groups. Math. Z. 170 (1980), 91–103. W. Magnus, A. Karrass and D. Solitar. Combinatorial Group Theory. Dover, New York, 1976. J. Palis Jr. and W. de Melo. Geometric Theory of Dynamical Systems. An Introduction. Translated from Portuguese by A. K. Manning. Springer, Berlin, 1982. J. Peyri`ere. Trace maps. Beyond Quasicrystals (Les Houches, 1994). Springer, Berlin 1995, pp. 465–480. J. Peyri`ere, Z. X. Wen and Z. Y. Wen. On the dynamic behaviours of the iterations of the trace map associated with substitutive sequences. Nonlinear Problems in Engineering and Science—Numerical and Analytical Approach (Beijing, 1991). Science Press, Beijing, 1992, pp. 259–266. T. J. Rivlin. The Chebyshev Polynomials. Wiley, New York, 1974. J. A. G. Roberts. Escaping orbits in trace maps. Phys. A 228 (1996), 295–325. J. A. G. Roberts and M. Baake. Trace maps as 3D reversible dynamical systems with an invariant. J. Statist. Phys. 74 (1994), 829–888. J. A. G. Roberts and M. Baake. The dynamics of trace maps. Hamiltonian Mechanics (Toru´n, 1993)(NATO Adv. Sci. Inst. Ser. B Phys., 331). Plenum, New York, 1994, pp. 275–285. C. Robinson. Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, 2nd edn (Studies in Advanced Mathematics). CRC Press, Boca Raton, FL, 1999. Z.-X.Wen and Z.-Y.Wen. A characterization of invertible trace maps associated with a substitution. Tokyo J. Math. 22 (1999), 65–74. R. F. Williams. The ‘DA’ maps of Smale and structural stability. Global Analysis (Proc. Symp. Pure Math., XIV, Berkeley, CA, 1968). American Mathematical Society, Providence, RI, 1970, pp. 329–334. |