Regular Rather than Chaotic Origin of the Resonant Transport in Superlattices

S. M. Soskin,1,2,* I. A. Khovanov,3,4 and P. V. E. McClintock2

1Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine
2Physics Department, Lancaster University, Lancaster LAI 4YB, United Kingdom
3School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
4Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 12 September 2014; published 22 April 2015)

We address the enhancement of electron transport in semiconductor superlattices that occurs in combined electric and magnetic fields when cyclotron rotation becomes resonant with Bloch oscillations. We show that the phenomenon is regular in origin, contrary to the widespread belief that it arises through chaotic diffusion. The theory verified by simulations provides an accurate description of earlier numerical results and suggests new ways of controlling resonant transport.

DOI: 10.1103/PhysRevLett.114.166802 PACS numbers: 73.21.-b, 05.45.-a, 05.60.-k, 73.63.-b

Spatial periodicity plays a fundamental role in nature. In particular, it governs quantum electron transport in crystals [1]. In a perfect crystal lattice, an electron in a constant electric field would undergo Bloch oscillations, moving forwards and backwards periodically so that its average drift would be zero [1]. But real lattices are imperfect, and electrons may be scattered before reversing their motion, allowing them to acquire a steady drift. Typically, the Bloch oscillation period \( t_B \) greatly exceeds the average scattering time \( t_s \), because \( t_B \) is proportional to the reciprocal of the lattice period \( d_l \), which is very small. So, Bloch oscillations are not observed in real crystals. Nanoscale superlattices [2] (SLs) impose on the crystal an additional periodicity with a period \( d \) greatly exceeding \( d_l \) but still small enough for the quantum nature of the electron to be important: \( t_B \) may become comparable to or smaller than \( t_s \) so that Bloch oscillations can manifest themselves, significantly suppressing the current, generating gigahertz or terahertz electric signals, and causing other important effects [3,4].

The first description of electron drift in SLs [2] showed that the drift velocity \( v_d \) vs the electric field \( F \) along a one-dimensional SL possesses a peak at \( F = F_{ET} \) such that \( t_B \) (being \( \propto F^{-1} \)) is equal to \( t_s \). It has important consequences, in particular, a peak in the differential conductivity vs voltage.

Another remarkable effect was predicted more recently [5,6]. It was noticed that, if a magnetic field is added, the dynamics reduces to that of an auxiliary classical harmonic oscillator at the cyclotron frequency subject to a traveling wave at the Bloch frequency. Numerical calculations within this model and the relaxation-time approximation for scattering [2] revealed additional peaks in \( v_d(F) \) at the values of \( F \) corresponding to integer ratios between the Bloch and cyclotron frequencies. As is known from the theory of dynamical systems, the phase plane of a harmonic oscillator subject to a traveling wave is threaded by a so-called stochastic web if the ratio between the wave and oscillator frequencies is an integer [7,8]. This web plays an important role in many physical systems [9,10]. It was conjectured [5,6] that the dynamical origin of the peaks lies in chaotic diffusion along the web. This conjecture stimulated wide interest and numerous theoretical and experimental investigations of the effect and its applications (e.g., Refs. [11–21]). These and many other works (e.g., Refs. [22–27]) assumed the original conjecture to be correct, implying that resonant electron transport in SLs can be controlled by chaotic diffusion [18].

In the present Letter, we show that this commonly held belief is incorrect: the peaks originate in a regular dynamics, while chaos, when present, destroys them. Consider a one-dimensional SL. Because of the periodicity, it possesses minibands [2]. Let the SL parameters be such that only the lowest miniband is relevant [5,6,11,13–21]. The electron energy can [5,6] be approximated as \( E(\tilde{p}) = \Delta [1 - \cos(p_d/\hbar)/2 + (p_x^2 + p_y^2)/(2m^*)] \), where \( \tilde{p} \equiv (p_x, p_y, p_z) \) is its quasimomentum, the \( x \) axis is directed along the SL, \( \Delta \) is the miniband width, \( d \) is the SL period, and \( m^* \) is the electron effective mass for motion in the transverse plane. Let us apply an electric field antiparallel to the SL axis and a magnetic field tilted at an angle \( \theta < 90^\circ \): \( \tilde{F} = (-F, 0, 0) \) and \( \tilde{B} = (B \cos(\theta), 0, B \sin(\theta)) \), respectively. The semiclassical equations of motion are [1–5,14,17–19,28]

\[
\frac{d\tilde{p}}{dt} = -e\{\tilde{F} + [\tilde{v} \times \tilde{B}]\},
\]

\[
\tilde{v} = \left( \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right) = \left( \frac{\partial E}{\partial p_x}, \frac{\partial E}{\partial p_y}, \frac{\partial E}{\partial p_z} \right),
\]

where \( e \) is the absolute value of the electronic charge.
The electron velocity in the $x$ direction is
\[ v_x(t) \equiv \frac{dx}{dt} = \frac{\partial E}{\partial p_x} = \frac{\Delta d}{2\hbar} \sin \left( \frac{p_x(t)d}{\hbar} \right). \] (2)
Within the relaxation-time approximation [2], with a correction allowing for the difference between the elastic and inelastic scattering, the drift velocity is [3,6,37]
\[ v_d = \nu \int_0^\infty dt e^{-\nu t} v_x(t), \quad \nu \equiv \frac{1}{\mu t}, \quad \mu \equiv \sqrt{t_e + t_i}, \quad \nu \equiv \frac{1}{\mu t_i}, \] (3)
where $t_e$ and $t_i$ are the elastic and inelastic scattering times, respectively.

If $B = 0$, then $p_x(t) = eFt$. So, $v_x(t) \propto \sin(\omega_B t)$ where $\omega_B \equiv eF/\hbar$ is the Bloch frequency, and Eq. (3) gives the modified Esaki-Tsu (ET) result [2]:
\[ v_d(F) \equiv v_{\text{ET}}^{(\text{mod})}(\omega_B) = v_0^{(\text{mod})} v_{\text{ET}}(\frac{\omega_B}{\nu}), \]
\[ \omega_B \equiv \frac{eF}{\hbar}, \quad v_0^{(\text{mod})} \equiv \frac{\Delta d}{2\hbar}, \quad v_{\text{ET}}(x) \equiv \frac{x}{1+x^2}. \] (4)
The function $v_{\text{ET}}(\omega_B/\nu)$ (4) has a maximum at $\omega_B = \nu$.

If $B \neq 0$, the dynamics is much more complicated because the components of $\vec{p}$ are interwoven. Remarkably, however, the dynamics of $p_x$ reduces to a relatively simple form, and $p_x$ and $p_y$ can be expressed in terms of $p_z$ [5]. In terms of scaled quantities [19],
\[ \frac{d^2 \tilde{p}}{dt^2} + \tilde{p} = e \sin(\omega t - \tilde{p} + \phi_0), \]
\[ \tilde{p} \equiv \tilde{p}_z(t) = p_z(t) \frac{d\tan(\theta)}{h}, \]
\[ \tilde{t} \equiv \omega e t, \quad \omega e \equiv \frac{eB \cos(\theta)}{m}, \quad \omega \equiv \frac{\omega_B}{\omega_e}, \]
\[ e \equiv \frac{\Delta m^*}{2} \left( \frac{d\tan(\theta)}{h} \right)^2, \quad \phi_0 = \phi_{p0} + \phi_{p0}, \]
\[ \phi_{p0} \equiv \tilde{p}_z(0), \quad \phi_{p0} \equiv \tilde{p}_x(0), \quad \tilde{p}_z(\tilde{t}) = p_x(t) \frac{d}{h}. \] (5)

Two other scaled components of the momentum are related to $\tilde{p}_z(t)$ as follows: $\tilde{p}_z(t) \equiv p_{x0} + \omega t - (\tilde{p}_z(t) - p_{x0})$ and $\tilde{p}_x(t) \equiv p_x(t) + \omega t \frac{d}{h} = d\tilde{p}_z(t)/dt$.

The physical origin of the dynamics (5), its relevance to $v_x(t)$, and the physical meanings of $\omega_e$ and $e$ are as follows. The transverse component of the magnetic field and electron motion along the SL generate a Lorentz force oscillating at frequency $\omega_B$. It excites a cyclotron rotation in the transverse plane which modulates $p_x$ and, via $p_x$, the angle of the Bloch oscillation. The frequency of the cyclotron rotation, which we will call the cyclotron frequency, is $\omega_c$. The amplitude of the Lorentz force in dimensionless units is $e$. For details, see Ref. [28].

We consider the case of zero temperature, which is the most important one [5,6,13–21]. Only zero initial momenta are then relevant [5,17,19,28]. So, the scaled drift velocity reads
\[ \tilde{v}_d \equiv \tilde{v}_d^{(\text{mod})} = \tilde{\nu} \int_0^\infty dt e^{-\tilde{\nu} t} \sin(\omega t - \tilde{p}), \quad \tilde{\nu} \equiv \frac{\nu}{\omega_c}, \] (6)
where $\tilde{p} \equiv \tilde{p}(\tilde{t})$ is a solution of Eq. (5) with
\[ \tilde{p}(0) = 0, \quad \frac{d\tilde{p}(0)}{dt} = 0, \quad \phi_0 = 0, \] (7)
and $\tilde{\nu}$ is the scattering rate in terms of the dimensionless “time” $\tilde{t}$ (5).

We will show that the resonance peak in $\tilde{v}_d(\omega)$ at $\omega \approx 1$ may be of magnitude $\sim 1$ for arbitrarily small $e$. In contrast, the resonance contributions near multiple or rational frequencies necessarily vanish in the asymptotic limit $e \to 0$. These small contributions are ignored in our theory.

Necessary (but not sufficient) conditions for the distinct resonance peak are
\[ \tilde{\nu} \ll 1, \quad e/4 \ll 1. \] (8)
If any of these conditions fail, the resonant component of $v_x(t)$ cannot accumulate for long. Besides, if the second condition fails, the peaks at multiple or rational frequencies are significant and/or the dynamics at the relevant time scales is chaotic. We assume further that the conditions (8) hold true unless otherwise specified.

As is clear from Eqs. (5)–(7), the function $\tilde{v}_d(\omega)$ depends on two parameters: $\tilde{\nu}$ and $e$. But we show below that the magnitude and scaled shape of the resonance component depend only on a single parameter
\[ \alpha \equiv \frac{e}{4\tilde{\nu}}. \] (9)
It is proportional to the ratio of the two time scales—the scattering time and the time of the strong modulation of the Bloch oscillation angle—which in terms of dimensionless time (5) are $\tilde{t}_c = \tilde{t}^{-1}$ and $\tilde{t}_{\text{SM}} = e^{-1}$, respectively. To illustrate the latter time scale, consider the exact resonance $\omega_B = \omega_c$. The modulation amplitude $A_{\text{SM}}$ then grows linearly with time, as $A_{\text{SM}} = \epsilon t/2$, until $A_{\text{SM}} \sim 1$. The latter range is reached just by $\tilde{t} \sim \tilde{t}_{\text{SM}}$, and so strong modulation essentially changes the dynamics (5). However, if $\alpha \ll 1$, then the scattering occurs before the modulation becomes strong, so that the latter is irrelevant. Otherwise, the strong modulation comes into play, and the drift enhancement occurs differently.

We consider first the limit $\alpha \ll 1$. In this case, the magnitude of $\tilde{p}$ at the scattering time scale $\tilde{t} \equiv \tilde{t}^{-1}$ is $\sim \alpha \ll 1$, so that we can neglect $\tilde{\nu}$ in $\sin(\omega t - \tilde{p})$ on the rhs of the equation of motion (5), which then reduces to the
equation of the constrained vibration. Solving it with zero initial conditions (7) and substituting the result into the integrand of the integral (6), approximating \( \sin(\alpha t - \tilde{p}) \) by \( \sin(\alpha t) - \cos(\alpha t) \tilde{p} \), integrating, and neglecting asymptotically small terms, we obtain

\[
\tilde{v}_d = \tilde{v}_{ET}(\omega/\tilde{v}) + \tilde{v}_{d,a}^{(res)},
\]

\[
\tilde{v}_{d,a}^{(res)} = \frac{2\alpha \omega(1 + \omega^2)}{1 + ((\omega - 1)/\omega)^2}, \quad \alpha \ll 1.
\]  

(10)

This is a superposition of the ET peak (4) and the resonance peak \( \tilde{v}_{d,a}^{(res)}(\omega) \). The latter has an asymptotically Lorentzian shape with a half-width \( \tilde{v} \) and maximum \( \alpha \) acquired at \( \omega = 1 \). The physical origin of the peak is as follows. If \( \omega_B = \omega_c \), the modulation amplitude of the Bloch oscillation angle grows with time, while the modulation-induced deviation of \( v_x(t) \) possesses a component that retains its sign and also grows with time, thus, being accumulated. If \( \omega_B - \omega_c \neq 0 \), the modulation amplitude grows more slowly, and, moreover, if \( |\omega_B - \omega_c| > \nu \), the sign of the deviation changes many times during \( t_s \) so that the drift averages to zero.

We now compare Eq. (10) with numerical simulations for the SL used in most experiments [6,11,13] and a typical magnetic field. So, let \( d = 8.3 \, \text{nm}, \, \Delta = 19.1 \, \text{meV}, \, \nu = 4 \times 10^{12} \, \text{s}^{-1}, \, m^* = 0.067 m_e \) (where \( m_e \) is the free electron mass), and \( B = 15 \, T \). Then,

\[
\tilde{v} \approx 0.102 \frac{\cos(\theta)}{\cos(\phi)}, \quad \epsilon \approx 0.578 \frac{\sin(\phi)}{\cot(\theta)}, \quad \alpha \approx 1.42 \frac{\sin^2(\phi)}{\cos(\phi)}.
\]  

(11)

Figure 1 presents the results for \( \theta = 12^\circ \) and \( 20^\circ \), where \( \alpha = 0.063 \) and 0.177, respectively. For \( \theta = 12^\circ \), the theory and simulations are virtually indistinguishable. For \( \theta = 20^\circ \), the theory only slightly exceeds the simulations. As \( \theta \) increases further, the excess of the theoretical resonant peak (10) over that in the simulations grows: \( \tilde{v}_d(\omega = 1) \) in the simulations for \( \theta = 40^\circ \) is about half that given by Eq. (10). The invalidity of Eq. (10) here is unsurprising because \( \alpha \approx 0.77 \) is not small.

To encompass arbitrary \( \alpha \), we develop an approach suggested earlier [7,8] in a different context. If \( \omega \approx 1 \) in Eq. (5), then, neglecting small fast oscillations, the dynamics reduces to that of the “resonant” Hamiltonian [7–10]:

\[
H_r(I, \tilde{\varphi}) = -(\omega - 1)I + \epsilon J_1(\rho) \cos(\tilde{\varphi}),
\]

\[
I = \frac{\tilde{p}^2 + \tilde{p}^2}{\rho}, \quad \rho = \sqrt{2}I,
\]

\[
\tilde{\varphi} = \varphi - \omega t + \pi, \quad \varphi = \arctan\left(\frac{\tilde{p}}{\rho}\right),
\]

\[
\tilde{p} = \rho \sin(\varphi), \quad \dot{\tilde{p}} = \rho \cos(\varphi),
\]  

(12)

where \( J_1(x) \) is a Bessel function of the first order [29].

If \( |\omega - 1| \) is sufficiently small, the Hamiltonian (12) possesses saddles generating separatrices [Figs. 2(a) and 2(b)]. When \( \omega = 1 \), the separatrices merge into a single infinite grid [Fig. 2(a)]. For the original system (5), the neglected fast-oscillating terms dress this grid with a chaotic layer, thus, forming a stochastic web (SW). Formally, chaotic diffusion along the vertical filaments of the SW might transport the system to arbitrarily high values of \( I \), so that \( |\tilde{p}| \) might become arbitrarily large. In all former works, e.g., Refs. [5,6,11–27], it was this chaotic diffusion that was believed to be the origin of the resonant drift. This cannot be the case, however, because (i) at \( \epsilon/4 \ll 1 \), the time scale at which chaos manifests [7–10] is much larger than that for the formation of the resonant peak (being \( \sim \omega^{-1} \min\{\tilde{t}, \tilde{t}_{SM}\} \)), and (ii) at \( \epsilon/4 \gtrsim 1 \), when chaos is pronounced, \( \tilde{p} \) varies chaotically at relevant time scales indeed, but this leads to a chaotic variation of the value and sign of \( v_x(t) \) in the integrand of the integral in Eq. (3), which decreases the integral rather than increasing it; therefore, chaos suppresses the drift.

We uncover the true origin of the resonant peak in the general case by an analysis of the regular dynamics along the trajectory of the resonant Hamiltonian (12) starting from \( (I = +0, \tilde{\varphi} = \pi/2) \) [28]. In the equations of motion for the system (12), we transform from \( I \) to \( r \) and scale the time and frequency shift by the slow “time” \( \tilde{t}_{SM} \) and its reciprocal, respectively,

\[
\frac{dp}{d\tilde{t}_{SM}} = J_1(\rho) \sin(\tilde{\varphi}), \quad \frac{d\tilde{p}}{d\tilde{t}_{SM}} = -\delta \frac{dJ_1(\rho)}{d\rho} \cos(\tilde{\varphi}),
\]

\[
\tau \equiv \frac{\tilde{t}}{\tilde{t}_{SM}} \equiv \epsilon \tilde{t}, \quad \delta \equiv \frac{\omega - 1}{\tilde{t}_{SM}}, \quad \approx \frac{\omega - 1}{\epsilon}.
\]  

(13)

For \( |\omega - 1| \ll 1 \), the slow dynamics of \( \tilde{p} \) is fully described by solution of Eq. (13) with appropriate initial conditions [28]

\[
\rho(\tau = 0) = +0, \quad \tilde{\varphi}(\tau = 0) = \pi/2.
\]  

(14)

The drift velocity is [28]

\[
\tilde{v}_d = \tilde{v}_{ET}(\omega/\tilde{v}) + \tilde{v}_{d,a}^{(res)}(\delta, \alpha),
\]

\[
\tilde{v}_{d,a}^{(res)} = \int_0^{\tilde{t}_{SM}} d\tau \exp\left(-\frac{\tau}{\alpha\tau}\right)J_1(\rho(\tau)) \sin(\tilde{\varphi}(\tau)) \frac{2}{4\alpha[1 - \exp\left(-\frac{\tilde{t}_{SM}}{\alpha}\right)]},
\]  

(15)
where $\tau_p$ is the period of the trajectory (13) and (14). Figure 3 demonstrates the effectiveness of Eq. (15). Figure 3(a) relates to the aforementioned case (11) with $\theta = 40^\circ$: the agreement between the theory and simulations in the range of the resonant peak is excellent. Figure 3(b) shows the evolution of $\tilde{\nu}_d(\alpha)$ in the vicinity of $\omega = 1$ as $\alpha$ grows while $\tilde{\nu} = 0.02$. In addition to perfect agreement for $\alpha \equiv 4\tilde{\nu} < 0.4$ and reasonable agreement for higher $\alpha$ up to 0.8, it illustrates the key features discussed below.

A striking feature of Fig. 3(b) is the nonmonotonic dependence of the peak maximum on $\alpha$ (the analytic formula is given in Eq. (S.6) of [28]). It attains the maximum $A_{\text{max}} \approx 0.38$ at $\alpha = \alpha_{\text{max}} \approx 1.16$ while its small-$\alpha$ and large-$\alpha$ asymptotes are $\alpha$ and $(x_1^{(1)})^2/(8\alpha) \approx 1.84/\alpha$, respectively. Figure 4(b) compares $\tilde{\nu}_d(\omega = 1)$ and $\tilde{\nu}_d(1/\tilde{\nu} + A_{\text{max}}/4\tilde{\nu})$ as functions of $\tilde{\nu}$ for a given $\tilde{\nu} = 0.02$. The agreement is excellent up to $\tilde{\nu} \approx 0.3$ and good up to $\tilde{\nu} \approx 0.7$.

Figure 3(b) demonstrates also that, as $\alpha$ increases, the width of the peak grows monotonically while its shape evolves from being domelike to being spikelike. Analytic results are presented in Ref. [28].

Finally, Fig. 3(b) demonstrates that chaos comes into play only at $\tilde{\nu} \sim 1$, leading to fluctuations in $\tilde{\nu}_d(\omega)$ (see the curve for $\alpha = 10$). As $\epsilon$ increases further, fluctuations intensify while the peak disappears [see the curve for $\alpha = 15$ and the range $\epsilon \gtrsim 1.2$ in Fig. 4(b)]. See Ref. [28] for regime, the probability $P_{\text{RD}}$ for electron to undergo the resonant drift is $\sim \tilde{\nu}_d/\tilde{\nu}_s$. Since $\tilde{\nu}_d(\omega)$ is proportional to $P_{\text{RD}}$, it decreases together with $\tilde{\nu}_d = \epsilon^{-1}$. The optimal regime is $\tilde{\nu} \sim \tilde{\nu}_d$, i.e., $\alpha \sim 1$.

Figure 4(a) shows the universal function $A(\alpha)$ representing the resonant peak maximum $\tilde{\nu}_d(\omega = 1)$ and $\tilde{\nu}_d(1/\tilde{\nu} + A_{\text{max}}/4\tilde{\nu})$ as functions of $\tilde{\nu}$ for a given $\tilde{\nu} = 0.02$. The agreement is excellent up to $\tilde{\nu} \approx 0.3$ and good up to $\tilde{\nu} \approx 0.7$.

FIG. 3 (color online). Scaled drift velocity vs the ratio between the Bloch and cyclotron frequencies: the general theory (15) and the numerical simulations for (a) the case Eq. (11) with $\theta = 40^\circ$, (b) $\tilde{\nu} = 0.02$ as $\alpha \equiv \epsilon/(4\tilde{\nu})$ increases.
details. Thus, chaos may be relevant only at $\epsilon \gtrsim 1$, playing a destructive role for the resonant drift, contrary to the established belief [5,6,11–27] about its constructive role. The latter belief suggested that the best performance of the resonant drift occurs when chaos is strong. However, neither simulations nor experiments [6,17,18,21] confirm this: as $\theta \to 90^\circ$, when chaos intensifies to its maximum extent, the drift vanishes. Our work shows that the ways needed to control the resonant drift are different. If the model (1) is valid and $\nu \ll 1$ and $\epsilon/4 \ll 1$, it is controlled by a single parameter $\alpha$. The best performance corresponds to $\alpha = \alpha_{\text{max}} \approx 1.16$. The drift is negligible if any of the following conditions hold: $\alpha \lesssim 0.1$, $\alpha \gtrsim 20$, $\nu \gtrsim 1$. As $\epsilon$ grows above 1, the resonant drift at $\omega \approx 1$ gradually decays (at multiples, it first rises and then decays too). See Ref. [28] for illustrations.

In conclusion, we have shown that the enhancement of the electron drift occurring if the Bloch and cyclotron frequencies are close, originates in a regular dynamics, contrary to the widespread belief that its origin is in chaotic diffusion. The enhancement is explained as follows. The electron motion along the SL and the tilted magnetic field produce a Lorentz force oscillating at the Bloch frequency. It excites cyclotron rotation which modulates the angle of the Bloch oscillation of the instantaneous velocity. Beyond resonance, the velocity change caused by the modulation oscillates during the relevant time scale, and so the drift averages to zero. In contrast, the change in the resonant case keeps its sign, thus, being accumulated.

Discussions with Vladimir Kravtsov, Oleg Yevtushenko, Boris Glavin, and Oleg Raichev are much appreciated. S. M. S. acknowledges the CMSP section of the Abdus Salam International Centre for Theoretical Physics for the support of his visit there when a part of the Letter was prepared. The research was supported in part by the Engineering and Physical Sciences Research Council UK (Grant No. EP/G070660/1).

*stanislav.soskin@gmail.com


[28] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166802, which includes Refs. [29–36], for a discussion of the physical origin of the dynamics and initial conditions; a general analytic treatment of the resonant peak; additional details about the role of chaos; and illustrations of control over the drift.


