
A Python interface to CASTEP

G Corbett, J Kermode, D Jochym, K Refson

May 2015

 Technical Report
RAL-TR-2015-004

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2015 Science and Technology Facilities Council

This work is licensed under a Creative Commons Attribution 3.0
Unported License.

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:libraryral@stfc.ac.uk
http://epubs.stfc.ac.uk/
http://creativecommons.org/licenses/by/3.0/�

1

A Python interface to CASTEP

Greg Corbett1, James Kermode2, Dominik Jochym1 and Keith Refson1, 3

1
STFC Rutherford Appleton Laboratory

Harwell Oxford

Didcot

OX11 0QX

United Kingdom

2
Centre for Predictive Modelling

School of Engineering

University of Warwick

Coventry

CV4 7AL

United Kingdom

3
Department of Physics

Royal Holloway

University of London

Egham

TW20 0EX

United Kingdom

Abstract
This report documents a successful pilot project and feasibility study for adding a Python interface to

the CASTEP first principles materials modelling code. Such an interface will allow the growing

Python community within the scientific computing field access to CASTEP functionality, without the

requirement of learning Fortran.

To achieve this, changes have been made to the CASTEP source code to allow:

 Serially re-entrant calling of a major task routine, specifically

electronic_minimisation().

 Automated generation of a Python interface.

The reasoning behind these changes has been documented and coding practices that may hinder a full

move to serial re-entrancy in future have been noted. To demonstrate the success of the project, top-

level task control logic has been written in Python -- using the Fortran 2003 computational core to

perform multiple calls to electronic_minimisation().

2

1 Introduction
CASTEP is a UK-developed cutting edge scientific computer program, based on quantum mechanics,

for modelling of materials at the atomic level. Quantum mechanics-based simulation using density

functional theory (DFT) methods is a major activity in materials science, solid-state physics and

chemistry which is used by both academic, researchers and industry. CASTEP is written in portable,

modular Fortran 2003 and according to good software design practice and design principles. It has a

user base of well over a hundred UK university research groups, plus many more worldwide, and is

the third-ranked code in terms of CPU cycles used by the HECToR national HPC service until its

close in 2014. As of 2015, over 5000 peer-reviewed scientific articles have been published which cite

CASTEP.

At present CASTEP is operated using a simple, ASCII file I/O model. The user prepares input files

containing keywords to specify the calculation to be performed, initiates a run of a single executable

program, which writes text based output files during and at the end of the run. This has benefits for

code portability - eliminating I/O and graphics library dependencies, for use in a batch queuing

environment where interactivity with a running application is frequently disallowed, and for

massively parallel use on supercomputer-class machines, where the MPI model does not support any

asynchronous control. Some limited interactivity and computational steering is allowed by means of

updating an input file during the run. Typically, runs may take hours or days even on supercomputer-

class machines using thousands of processors. Final analysis and graphics preparation is done by post

processing analysis of CASTEP's output files - commonly on a different machine with a richer

software environment than supercomputers typically provide.

While this model works well in many cases, it is a generation old, and fails to support a more recent

style of use, characterized by the phrase "high-throughput simulation". Rather than individually set

up a few, large calculations, the idea is to run thousands of smaller ones, which have been set up,

controlled and analysed automatically by another computer program. The Materials Genome project

[1] attempts to run large numbers of calculations on variant structures with the aim of discovering

new materials. Ab-initio Random Structure Search [2] and evolutionary algorithms perform searches

through crystal structure space over thousands of variants. And projects such as the Atomic

Simulation Environment [3] are attempting to build a workflow platform for scientists closely

integrating calculation, visualisation and analysis. From an STFC point of view, integration with the

MANTID workflow framework [4] for neutron scatterers and DAWN [5] for Synchrotron X-Ray

users has been identified as an important goal. In each of these cases, the end-user no longer interacts

directly with the simulation code but through an additional software layer, delegating run setup,

control and steering, as well as automatic parsing, sorting, data-sifting and possibly database entry.

For this, an API and interface to the CASTEP routines would have great benefits compared to file-

based I/O.

The eventual goal will be to provide an API, application program interface, interface which will allow

CASTEP's high-level internal routines to be accessible from Python code – essentially to turn

CASTEP into a library. This will allow far more flexibility than current parser-driven Fortran driver

code by

 Allowing the major “driver” logic of a calculation to be written and rewritten by a larger set

of peripheral scientist/software developers cum end-end users.

3

 Making “parameter-sweep” type calculations easy to implement using looping, for example

convergence testing, including extraction, collation and graphing of calculation results

 Providing a framework for direct implementation of “high-throughput” and AIRSS-style

calculations,

 Allowing tight integration with a variety of existing frameworks including AIRSS, ASE,

MANTID, DAWN and more.

Python is the strongest choice of language because

 It is available on all major platforms and operating systems including HPC-class machines

 It is widely taught at undergraduate level, and as a foundation for computational physicists [6]

 It provides a low entry-barrier for new developments around CASTEP

 It is a scripting language, so short-circuits the compile-edit-run cycle during the development

process

 A number of software tools are available to automate or semi-automate the generation of

interfaces with CASTEP Fortran code

 A wide range of scientific libraries such as NUMPY, GUI and graphics libraries are available

and under active development.

However some challenges must be overcome before CASTEP is fit for use as a library;

 It was not designed as a library and the current Fortran API will require refactoring for library

use.

 It was not designed to be re-entrant and makes extensive use of module-scope (“static”)

variables.

 There is extensive caching of intermediate computation results which cannot be avoided for

computational efficiency. More flexible catalogued caching will be required.

 The new API should provide direct access to CASTEP's basic data types (“classes”) so they

can be manipulated by Python code.

 The resulting code must be maintainable. It is vital to avoid or hide complexity which would

inhibit further development.

The twofold goals of this pilot project are more modest; to explore and document the current features

of the code which are obstacles to re-entrancy, and to assess the feasibility of automatic interface

generation using available software tools.

2 Technology
There is often a need for programs written in different languages to interface with each other.

Common reasons include the fact that one language may not be suited to all requirements, for

example, a language that is very efficient at matrix operations may not be the language of choice for a

GUI. It may also be undesirable or impractical to port code to a new language. For example, the effort

to port LAPACK [7], a larger numerical linear algebra package, to a different language has been

stated to represent more than fifty person-years of programming time [8]. Ongoing maintenance

following a code port to another language may require much additional work, and accumulation of

unavoidable, if unintentional, differences as the code evolves [8].

4

One alternative approach is to provide an interface layer of software implementing an inter-language

interface. An interface between Python and CASTEP is desirable as it would allow the growing

Python community with in the scientific computing field access to CASTEP functionality. Some of

the issues that would arise from building such an interlanguage interface can be anticipated. Common

problems include array index origin differences, array storage-order differences, run time differences

such as I/O handling and differing representations of data types [8]. Another approach would be a

loosely-coupled approach using AWK and shell scripts to make such programs work together.

However this approach has many inherent problems and limitations that will surface in the long run

[9].

This project looked into the suitability of existing technologies that automated the process of building

Python wrappers. Manually wrapping the CASTEP source in Python would be impractical due to the

codebase having approximately 250,000 lines of code. Tools researched included:

 f2py [10] [11]: now part of NumPy, the fundamental package for scientific computing with

Python [12]

 f90wrap [13]: developed by James Kermode to overcome shortcomings in f2py.

 Forthon [14]: an alternative Python-Fortran connection tool developed by Berkeley Lab.

 PyFort [15]: another Python-Fortran connection tool developed by Lawrence Livermore

National Laboratory

 Fwrap [16]: another Python-Fortran connection tool

 Cython [17] [18], in conjunction with a C interface implemented using ISO_C_BINDING

This project was intended as a proof of concept that top-level task control logic for the underlying

Fortran code could be implemented in Python, and therefore picked a single, promising route using

the f2py and f90wrap tools. These were chosen in part because of their shallower learning curve -

trivial examples of a Python-Fortran interface using derived types were constructed quickly - and

because of the availability of expert support from f90wrap developer James Kermode. No attempt was

made to evaluate other tools but it is recommended that any follow-on project should undertake such a

comparison prior to committing significant effort to a port.

2.1 f2py

f2py scans Fortran code to produce signature files (.pyf files). The signature files contain all the

information (function names, arguments and their types, etc.) that is needed to construct Python

bindings to Fortran (or C) functions. The syntax of signature files is borrowed from the Fortran 90/95

language specification and has some f2py specific extensions. The signature files can be modified to

dictate how Fortran (or C) programs are called from Python [19].

All basic Fortran types, multi-dimensional arrays of all basic types as well as attributes and statements

are supported by f2py but derived types are not [19]. This is unlikely to change as it “may require the

next edition of f2py” [20] and development appears to have stalled since around 2005.

Practice has shown that f2py generated interfaces (to C or Fortran functions) are less error prone and

even more efficient than handwritten extension modules. The f2py generated interfaces are easy to

maintain and any future optimization of f2py generated interfaces transparently apply to extension

modules by just regenerating them with the latest version of f2py [21].

f2py seemed the most viable option initially, with trivial examples of a Python-Fortran interface able

to be constructed quickly, although additional work would be needed to overcome the lack of derived

type support.

https://www.llnl.gov/
https://www.llnl.gov/

5

2.2 f90wrap

f90wrap is a tool that overcomes the short comings of f2py with regards to derived types. f90wrap

parses Fortran code and first creates a Fortran wrapper where references to derived types have been

replaced with opaque pointers, which f2py can handle. These f90wrap files are then passed to a

slightly modified version of f2py, f2py-f90wrap, which creates the shared library file [22].

3 Serially Re-entrant CASTEP
A serial re-entrant method is one that has been defined as a method that must not leave anything

behind that changes the path of a subsequent process [23]. A serially re-entrant CASTEP would be

able calculate to properties of one material, then calculate the properties of another material and have

the results be consistent with the same materials simulated on different execution images. To identify

and investigate obstacles in the code which prevent re-entrant use, in the style of a library, a top-level

control module was developed which ran two separate calculations within a single execution image.

The execution of this single image was compared to the same calculations running as separate images,

differences were tracked down using a comparative debugging approach with the singular runs acting

as the working baseline. This process was aided with the TotalView debugger [24].

Changes were made to both top-level control module as well as the underlying code in the Functional,

Fundamental and Utility directories. A patch file with these changes is available on CCPForge,

available to registered CASTEP users.

For a description of the underlying structure of the CASTEP source code, see Appendix E.

3.1 Top-level control module

In order to simulate a second material with CASTEP in a single execution image, the following steps

must be undertaken before beginning the second simulation.

 De-allocate main_model; this acts as a container for the properties of the system that have

been calculated.

 Finalise and then initialise the trace module which provides timing data via the

trace_entry() and trace_exit() subroutines. Internally, trace times how long

CASTEP spent between the entry and exit point and associates that time with the subroutine

[25].

 Read the new cell file. A cell file defines the data associated with a unit cell and stores the

current unit cell which is to be modelled.

 Read or generate new pseudopotentials in ion_atom. The ion module provides the data and

operations which describe the properties of the ionic cores of the atoms in the system. Note,

ion was not de-allocated, as such a method does not exist, instead the top-level control

module used ion_read() to overwrite data.

 Read the new param file, which stores all the parameters that control the calculation and

provides default values

 Call cell_distribute_kpoints(), this subroutine distributes arrays containing k-point

data among processors in a parallel run. In a serial run, it copies the initial data structure into

the current_cell data structure.

 Initialise ion, again, without de-allocating it previously as no routine exists.

 Initialise basis again, basis contains all of the code for generating and storing the

distribution of the FFT grids and plane wave basis set

 Call ion_real_initalised() which initialises memory within the ion module

 initialise the new main_model

6

 Call ewald_reset() to explicitly set the ewald module to behave as if this is a first pass.

This module calculates the ion-ion contribution to the total energy (and its derivatives) using

the Ewald sum technique.

After the second electronic_minimisation(), clean up, such as de-allocating the model, exiting

trace and finalising CASTEP should be called.

3.2 Changes to CASTEP Functional/, Fundamental/, Utility/ source

For full technical details on the changes to trace, ewald and ion please refer to Appendices B, C

and D. The following is a brief summary of the changes.

3.2.1 trace.f90

CASTEP contains a trace module which provides, amongst other functionality, timing data via the

trace_entry and trace_exit subroutines. There is a call to trace_entry() at the start of most

CASTEP subroutines, and a corresponding call to trace_exit() at each exit point. Internally the

trace module times how long CASTEP spent between the entry and exit point, and associates that

time with the subroutine. The trace module also supports the association of a subroutine with a class

of operation, allowing the large amount of timing data to be reported per class of operation rather than

per individual subroutine [25].

Because the trace module was not being reset between the runs, it was maintaining some state after

the first run. This saved state was removed by finalising and then re-initialising the module between

the two runs, ensuring all allocated arrays are de-allocated by the finalising method, removing the

save attribute from variables and reworking the code so no variable inherits the save variable

implicitly.

The above changes did not have a noticeable effect on the reliability of timings produced by the
trace module; however this was not tested rigorously.

3.2.2 ewald.f90

The ewald module was not designed with serial re-entrancy in mind. It maintains a lot of persistent

data, to avoid re-computing an unchanged Ewald contribution. This contribution remains the same

provided the unit cell has not changed.

Each subroutine in ewald had a first_pass variable which is one of the ways CASTEP uses to

determine whether it needs to recalculate the Ewald contribution. Because these variables are

subroutine level variables, they cannot be changed outside the subroutine. Changing the first_pass
variables was necessary to clear the persistent data after reading a new .cell file.

The first solution was to create a module level first_pass variable that all subroutines would share

and a method to reset that variable when required. However, all the ewald subroutines sharing the

same first_pass variable led to a failure of the CASTEP test suite. As such, a separate

first_pass module variable was created for the offending subroutine whilst the other subroutines

continued to use their subroutine level variable.

In future, the way the ewald module maintains persistent data will need to be changed to allow for

serial re-entrancy.

3.2.3 ion.F90

The changes made to the ion module highlight a situation where the cause of the problem and the

effects of the problem are fairly separate.

7

In the ewald module, an array could not be de-allocated during the second run. This was tracked

down to be a memory leak in ion, in which an array was not being de-allocated and re-allocated

between the two runs. The cause of this error was an if-statement of the form, “if not allocated, then

allocate”. The intention was very likely to cache a computational result between calls under the

assumption that the pseudopotentials are never changed during a run. Re-entrant use breaks this

assumption. During the first run the behaviour is as expected, but for the second run the array

remained allocated and as such was not reallocated, causing the memory leak. The if-statement was

changed to read, “if the array is allocated, then de-allocate and later re-allocate.

However, that this is not the optimal, general, solution as there is frequently a need to preserve data

from one call to the next. The current workaround could result in certain cases failing, where data is

meant to be preserved, similar to what was observed with the naïve attempt to reset first_pass in

ewald. Perhaps a method to de-allocate ion is needed, this would allow a programmer to explicitly

tell CASTEP to de-allocate arrays.

4 Python interface to CASTEP
A hand written Python interface to CASTEP is impractical to achieve due to its large codebase. The

tools f90wrap and f2py were used to automate this process. f90wrap generates Fortran wrappings of

the selected source code, so that the derived types are concealed through the use of opaque pointers.

These wrappers are then passed to a patched version of f2py to generate the Python library file to

allow Python and CASTEP to interface.

4.1 Wrapping

Because f90wrap is still under development, it was decided to focus attention on porting the cut down,

top-level control file from the first half of the project to Python, rather than the complete functionality

of CASTEP. As such the following modules were identified as being necessary after a visual

inspection of control.

Utility/ Fundamental/ Functional/

 constants

 algor

 comms.serial

 io

 trace

 license

 parameters

 cell

 basis

 ion

 density

 wave

 model

 electronic

 ewald

constants was identified as being the “easiest” module to wrap first, as it did not rely on any other

modules. The process identified features of Fortran that the f90wrap tool was not initially

programmed to handle, although these were incorporated into the tool relatively quickly. From there,

the Utility modules listed were wrapped, followed by Fundamental and Functional, with the effort

necessary decreasing with each module. ewald was not needed to be wrapped originally for a simple

proof of concept Python control logic, but was needed for a serial re-entrant example and as such

f90wrap did not need to be modified specifically to handle it. Because the code style is very consistent

in CASTEP, ewald was wrapped without any errors or changes.

Some changes to the Fortran code base were necessary to allow the current f90wrap to create a

CASTEP library file that could be used in a Python script. A patch file is also available on CCPForge,

available to registered CASTEP users.

8

1) Array declarations of the form
1
:

real(kind=dp), dimension(:,:,:), intent(out) :: eigenvalues

needed to become

real(kind=dp), dimension(size(occ,1),size(occ,2),size(occ,3)),

intent(out) :: eigenvalues

This is considered a general limitation of Fortran/Python interfacing, rather than a fault in f2py or

f90wrap. The explicit dimensions are required because these arrays are declared as intent(out) in

Fortran. The Python equivalent of an intent(out) argument is an extra returned item, and since this

extra argument doesn’t exist on entry to the subroutine we need to know how big it will be in order to

allocate it.

For a subroutine with a single intent(out) argument, the Fortran and corresponding Python calls

look similar like this:

 A Fortran soubroutine “sub” with intent(out) argument “out_array”:

! size is the known dimension of the array

allocate(out_array(size))

! do something with out_array

Python method calling the Fortran subroutine “sub”:

out_array = sub() # out_array is implicitly allocated by the Fortran

#subroutine

There are two alternatives to providing explicit dimensions. Firstly, f2py could automatically add an

extra integer argument to specify the size of each unknown dimension, so the Python call about would

become:

size = 100 #user has to know in advance how big return array will

#be

out_array = sub(size)

Alternatively, intent(out) arguments could be converted to intent(in, out), and require the

Python user to take care of allocating memory, but this is error-prone as they need to ensure the

memory is Fortran-contiguous:

size = 100 # still need to know size in advance

out_array = np.zeros(size, order=‘F’)

sub(out_array)

2) 'target' attribute to module elements of derived type are needed i.e.:

1
 In this example, occ is the “KS Band Occupancies” and is an array passed to the
electronic_minimisation routine.

9

type(unit_cell), public, save ::current_cell ! Declare current_cell

becomes

type(unit_cell), public, save, target :: current_cell ! Declare

current_cell

The target attribute is required for module-level derived type instances because Python accesses such

variables by passing around an opaque pointer to them. The Fortran standard insists that anything that

can be the target of a pointer must have the target attribute. This is not a problem for derived type

instances created from Python on-the-fly with allocate(), or for derived types within other derived

types, so it only affect module-level variables like current_cell and current_params.

3) Patch io_initialise() so that it works without command line arguments

The motivation for this project was to be able to swap in and out different materials and perform

calculations on them in the fashion of a library; hence requiring command line input of material

properties is no longer required or useful.

4.2 Usage

After the successful creation of the CASTEP library file, it can be used from Python by adding the

following to a Python file.

import castep

Methods and constants are then accessed by:

castep.modulename.methodname

castep.modulename.constant

where “castep” refers to the shared object library imported, so if the module has been aliased, the

alias name must be used in the place of “castep”.

For example:

print castep.constants.pi

print castep.constants.cmplx_i

would print 3.141592665359 and 1j respectively

 castep.cell.cell_read(“test”)

would read the cell file called test.cell

 current_cell = castep.cell.get_current_cell()

would then set Python variable current_cell to be the cell read by the preceding cell_read()

call.

Data from within the current cell could then be accessed by, e.g.:

10

 current_cell.num_ions_in_species[ispec]

Python classes corresponding to Fortran types, such as cell, are automatically created by f90wrap

and can be accessed by

 typename.membername

as in the current_cell example above.

Two example Python CASTEP top level control modules haves been implemented. One, called

singlepoint.py performs one electronic minimisation. The other, called castep_reentrant.py

performs two successive, serially re-entrant, electronic minimisations. For this example to work

correctly, both the serial_re_entrancy patch and the PyCASTEP patch must be applied. Both

files can be found on CCPForge, available to registered CASTEP users.

5 Summary
The two aims of the project were to:

1. Explore and document the current features of the code which are obstacles to re-entrancy

2. Assess the feasibility of automatic interface generation using available software tools

These aims have been met.

A serially re-entrant Fortran example, involving two calls to the electronic minimisation()

routine within the same execution image, has been created. See section 3 for details on how serial re-

entrancy was achieved. This example highlighted three coding practices that may inhibit full serial re-

entrancy. Full serial re-entrancy is be required before a future move of CASTEP away from an ASCII

file I/O model to an API interface would be possible.

A Python interface to CASTEP has also been generated using the f90wrap tool. Using this interface,

simple examples of a Python top level driver have been created. A serially re-entrant Python example

has also been created. See section 4.2 for details on using the interface. The interface is maintainable

as any future changes to CASTEP can be propagated by regenerating the interface with the latest

version of f90wrap.

Having achieved both these aims, "high-throughput simulation" and “parameter-sweep” type

calculations will be easier to implement and be implementable by a larger set of peripheral

scientist/software developers cum end-end users. The interface also allows for tighter integration with

a variety of existing frameworks including AIRSS, ASE, MANTID and DAWN.

6 Future
The work undertaken to create a serial re-entrant example of CASTEP execution and to create a

partial Python wrapper of CASTEP serve as a proof of concept only. At this stage, it cannot be said

that the entirety of CASTEP is serially re-entrant. However the work has shown that a subsequent full

scale project is feasible. Such a project has been adopted by the CASTEP developers.

11

This pilot project has provided insight into what a full migration to serial re-entrancy might involve.

6.1 Recommendations for serial re-entrancy
Very few changes to the code base have had to be made. This speaks to the robustness and good

coding practices of the CASTEP code. Below is a summary of coding practises that may impact

serial-re-entrancy in the future.

1) Variables with the save attribute have the potential to be a problem for serial re-entrancy.

Also any variable that is declared and initialised at the same time, i.e.:

integer :: current_index=-1

automatically inherits the save attribute and hence is likely to be a problem for serial re-entrancy, as

after one run there is no guarantee of the state of current_index. Such instances should be avoided

where possible and replaced with an explicit initialisation in the initialise method or a reset method.

The modified trace_init() method now explicitly sets current_index=-1 in trace_init(),

rather than at declare time.

2) If-statements of the form:

if(.not.allocated(QLnm_to_index)) then

allocate(QLnm_to_index(0:2*lmax,max_ps_projectors, &

max_ps_projectors,current_cell%num_species),stat=ierr)

end if

may cause problems with serial re-entrancy as well. This is because on subsequent runs the arrays

could be allocated, hence they would not be reallocated, and remain filled with persistent data. Worse

still, this can lead to memory leaks which do not manifest as problems until much later in the code, as

was the case with ion. In this specific case of ion, the above has been replaced by:

if(allocated(QLnm_to_index)) then

 deallocate(QLnm_to_index, stat=ierr)

end if

allocate(QLnm_to_index(0:2*lmax,max_ps_projectors, &

max_ps_projectors,current_cell%num_species),stat=ierr)

although a more general approach may be to ensure modules such as ion have explicit de-allocate

methods, which would allow data to persist if not explicitly de-allocated. The fact that ion is the only

module that needed to be (re)initialised and didn’t have a de-allocate method indicates that this may

be the better, more general, approach for future modules and modifications.

3) Initialise and finalise

Certain modules, such as ion, have a initialise method but not a finalise method. This has resulted in

the initialise method also serving as a re-initialise method for this project, requiring additional checks

to be included to check for arrays being allocated arrays. To remain consistent with the style of other

modules, ion could have a finalise method that explicitly dealt with the de-allocation of persistent

data, rather than relying on the implicit clean-up that the initialise method conducts.

4) Re-initalise

12

If a module relies heavily on persistent data, the module could be given a re-initialise method. This

method would fall short of a full de-allocate and only de-allocate and re-allocate data that is no longer

needed. The reset method added in ewald is an example of such a method.

6.2 A Python wrapping of CASTEP
The Python wrapper created for the serial re-entrant example is very close to a complete wrapping of

CASTEP. Even if additional changes to CATSEP or f90wrap are needed these are unlikely to be

major changes and can be implemented quickly. A complete Python wrapper would open up a new

potential user base for CASTEP and provide an opportunity to write unit tests for low level CASTEP

routines in Python, using the wrapper generated by f90wrap. It would also enable new science by

rapid Python development of high level functionality.

13

7 Bibliography

[1] The Materials Project, “Materials Project,” 20 Feb 2015. [Online]. Available:

https://www.materialsproject.org/. [Accessed 20 02 2015].

[2] UCL, “Ab Initio Random Structure Searching,” UCL, 19 11 2012. [Online]. Available:

http://www.cmmp.ucl.ac.uk/~ajm/airss/airss.html. [Accessed 20 02 2015].

[3] Danmarks Tekniske Universitet, “Atmoic Simulation Environment,” Danmarks Tekniske

Universitet, 20 02 2015. [Online]. Available: https://wiki.fysik.dtu.dk/ase/. [Accessed 20 02

2015].

[4] Mantid, “Mantid,” Mantid, 09 02 2015. [Online]. Available:

http://www.mantidproject.org/Main_Page. [Accessed 20 02 2015].

[5] DAWN Science, “DAWN,” DAWN Science, 13 02 2015. [Online]. Available:

http://www.dawnsci.org/. [Accessed 20 02 2015].

[6] Software Carpentry, “Software Carpentry,” Software Carpentry, 19 02 2015. [Online]. Available:

http://software-carpentry.org/. [Accessed 20 02 2015].

[7] LAPACK, “LAPACK — Linear Algebra PACKage,” netlib, 19 11 2013. [Online]. Available:

http://www.netlib.org/lapack/. [Accessed 04 02 2015].

[8] N. H. F. Beebe, “Using C and C++ with Fortran,” Department of Mathematics - University of

Utah, 16 11 2001. [Online]. Available: http://www.math.utah.edu/software/c-with-fortran.html.

[Accessed 04 02 2015].

[9] M. F. Sanner, “PYTHON: A PROGRAMMING LANGUAGE FOR SOFTWARE INTEGRATION AND

DEVELOPMENT,” J Mol Graph Model , vol. 17, no. 1, pp. 57-61, 1999.

[10] P. Peterson, “F2PY: a tool for connecting Fortran and Python programs.,” International Journal

of Computational Science and Engineering, vol. 4, no. 4, pp. 296-305, 2009.

[11] P. Peterson, “F2PY Users Guide and Reference Manual,” SciPy.org, 02 04 2005. [Online].

Available: http://docs.scipy.org/doc/numpy-dev/f2py/. [Accessed 08 10 2014].

[12] NumPy, “NumPy,” NumPy, 23 10 October. [Online]. Available: http://www.numpy.org/.

[Accessed 04 04 2015].

[13] J. Kermode, “f90wrap,” GitHub, 28 08 2014. [Online]. Available:

https://github.com/jameskermode/f90wrap. [Accessed 09 10 2014].

[14] D. Grote, “Forthon,” Berkeley Lab, 31 05 2014. [Online]. Available:

http://hifweb.lbl.gov/Forthon/. [Accessed 04 04 2015].

14

[15] P. F. Dubois, “Pyfort -- The Python-Fortran connection tool,” sourceforge, 12 10 2012. [Online].

Available: http://pyfortran.sourceforge.net/. [Accessed 08 10 2014].

[16] K. Smith, “Fortran for Speed, Python for Comfort — fwrap v0.1.0,” sourceforge, 2010. [Online].

Available: http://fwrap.sourceforge.net/. [Accessed 13 10 2014].

[17] D. S. Seljebotn, “Fast numerical computations with Cython,” in Proceedings of the 8th Python in

Science Conference (Vol. 37), 2009.

[18] Cython, “Cython: C-Extensions for Python,” Cython, 12 02 2015. [Online]. Available:

http://cython.org/. [Accessed 20 02 2015].

[19] M. Bertini, “F2py,” SciPy.org, 27 01 2011. [Online]. Available: http://wiki.scipy.org/F2py.

[Accessed 08 10 2014].

[20] P. Virtanen, “numpy/FAQ.txt,” GitHub, 02 01 2014. [Online]. Available:

https://github.com/numpy/numpy/blob/master/doc/f2py/FAQ.txt. [Accessed 08 10 2014].

[21] P. Peterson, “README.txt,” GitHub, 02 01 2014. [Online]. Available:

https://github.com/numpy/numpy/blob/master/doc/f2py/README.txt. [Accessed 09 10 2014].

[22] J. Kermode, “useage.rst,” GitHub, 17 08 2014. [Online]. Available:

https://github.com/jameskermode/f90wrap/blob/master/docs/usage.rst. [Accessed 10 10

2014].

[23] IBM, “IBM Knowledge Center,” IBM, 01 01 2013. [Online]. Available: http://www-

01.ibm.com/support/knowledgecenter/SSB23S_1.1.0.9/com.ibm.ztpf-

ztpfdf.doc_put.09/gtpa2/pgrentt.html. [Accessed 04 04 2015].

[24] RogueWave, “TotalView,” RogueWave, [Online]. Available:

http://www.roguewave.com/products-services/totalview. [Accessed 04 02 2015].

[25] N. Drakos, “Implementation,” hector.ac.uk, 27 10 2014. [Online]. Available:

http://www.hector.ac.uk/cse/distributedcse/reports/castep04/castep04/node8.html.

[Accessed 03 02 2015].

[26] M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, K. Refson and M. Payne, “Module

Specification for New Plane Wave Code,” 2003.

[27] S. Clark, “Intro to Castep.ppt,” 20 08 2009. [Online]. Available:

http://www.tcm.phy.cam.ac.uk/castep/oxford/castep.pdf. [Accessed 03 02 2015].

[28] B. Jesson, “CASTEP: Quantum Mechanical Atomistic Simulation Code,” 20 07 2004. [Online].

Available: http://www.csar.cfs.ac.uk/about/csarfocus/focus5/castep.pdf. [Accessed 11 02

2015].

15

8 Appendices

A. Applying Patches
 To run the serial re-entrant CASTEP example, apply the serial_re_entrancy patch to

Mercurial changeset 478e6b98142b.

 To generate the partial Python wrapper using f90wrap and run the Python example, apply the

PyCASTEP patch to Mercurial changeset 8c3fd681241a.

 To run the serially re-entrant Python example, both patches must be applied.

B. trace.f90
CASTEP contains a trace module which provides, amongst other functionality, timing data via the

trace_entry() and trace_exit() subroutines. There is a call to trace_entry() at the start of

most CASTEP subroutines, and a corresponding call to trace_exit() at each exit point. Internally

the trace module times how long CASTEP spent between the entry and exit point, and associates

that time with the subroutine. The trace module also supports the association of a subroutine with a

class of operation, allowing the large amount of timing data to be reported per class of operation

rather than per individual subroutine [25].

Because this trace module was not being reset between the runs, it was in an unknown sate for the

start of the second run. Using comparative debugging, two variables were identified to be maintaining

some state after the first run.

The first of the two variables, child_index, was corrected by adding a trace_finalise() and a

second trace_init() was added.

This alone was insufficient to fix the maintained state problem as a second variable,

current_index, was set at definition time and was not being re-initialised in trace_init(). This

was due to the variable being initialised and instantiated in one line, meaning it inherited the save
attribute. A line of code was added to trace_init() to re-initialised current_index and the one

line initialise/instantiate was removed.

Also, trace_finalise() was not de-allocating an array which trace_init() was later

allocating, which cause problems when trace_init() was called a second time. A de-allocation

clause was added to trace_finalise() to de-allocate the array if allocated.

The above changes did not have a noticeable effect on the reliability of timings produced by the
trace module; however this was not tested rigorously.

C. ewald.f90

Subroutine ewald_reset() was added to ewald to allow for explicit setting of first_pass to

true.

first_pass was initialized to true when it was declared, within a function, and so subsequent calls

to ewald functions had a persistent value for first_pass, namely false.

However in some cases we wish the data to persist, to prevent re-calculating a constant term. If the

cell changes, then we need to recalculate and first_pass should be set to true.

16

The first attempted solution was to have all the subroutines in the ewald module sharing a
first_pass variable. But this caused a total failure of the test suite. Presumably because functions

like calculate_energy() would be followed by calculate_forces(), but would need to

behave as if it was a first pass.

As such, a separate first_pass_calculate_energy variable was added. In future, all the routines

that use first_pass variables may need their own private version, however hopefully only one reset

method will be needed.

D. ion.F90

In ewald, old_ion_position could not be deallocated during a second run. This was tracked

down to be a memory leak in ion, in which an array was not being deallocated and reallocated

between the two runs. The cause of this error was

if(.not.allocated(QLnm_to_index)) then

allocate(QLnm_to_index(0:2*lmax,max_ps_projectors, &

max_ps_projectors,current_cell%num_species),stat=ierr)

end if

During the second run, QLnm_to_index was not reallocated because it was already allocated. This

code was changed to:

if(allocated(QLnm_to_index)) then

 deallocate(QLnm_to_index, stat=ierr)

end if

allocate(QLnm_to_index(0:2*lmax,max_ps_projectors, &

max_ps_projectors,current_cell%num_species),stat=ierr)

It has been noted, however, that this is not the optimal, general, solution as there is frequently a need

to preserve data from one call to the next. The current workaround could result in certain cases failing,

where data is meant to be preserved, similar to what was observed with the naïve attempt to reset

first_pass in ewald. Perhaps a method to de-allocate ion is needed, this would allow a

programmer to explicitly tell CASTEP to de-allocate arrays.

There were several more if(.not.allocated…) present in ion, that may cause problems for

future serial re-entrancy.

E. CASTEP code structure
The underlying CASTEP code is split into three trees called “Functional”, “Fundamental” and

“Utility”. The `Functional' modules provide a physical function for the calculation. The `Fundamental'

modules are objects providing fundamental data, data types and operations that may be used in any of

the functional modules. The Utility modules contain low level code for I/O, FFTs, MPI

communication, physical and mathematical constants and numerical algorithms.

The structure is visualised in Appendix F. Module dependencies within each category of module are

shown by solid line (lines are omitted from the highest level modules for clarity). Modules may only

use those below them in this diagram [26].

17

F. CASTEP code structure diagram

Figure 1: The CASTEP code structure diagram [26]

	RAL-TR-2015-004 - cover
	RAL-TR-cover&inner-2015
	RAL-TR-cover&inner-2013
	RAL-TR-cover-inner-2013
	RAL-TR-inner-cover-2013

	RAL-TR-inner-cover-2013

	RAL-TR-inner-cover-2015

	RAL-TR-2015-004 - report

