Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Functional degradable polymers by Xanthate-mediated polymerization

Tools
- Tools
+ Tools

Hedir, Guillaume, Bell, Craig A., Ieong, Nga Sze, Chapman, Emma, Collins, Ian R., O’Reilly, Rachel K. and Dove, Andrew P. (2014) Functional degradable polymers by Xanthate-mediated polymerization. Macromolecules, Volume 47 (Number 9). pp. 2847-2852. doi:10.1021/ma500428e ISSN 0024-9297 .

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1021/ma500428e

Request Changes to record.

Abstract

Herein we report the first example of the controlled synthesis of linear and hyperbranched copolymers of 2-methylene-1,3-dioxepane (MDO) with functional vinyl monomers to deliver a range of functional, degradable polymers by reversible deactivation radical polymerization. The copolymerization was able to be tuned to vary the incorporation of degradable segments to create degradable materials with predictable molar mass, low dispersity values while also featuring side-chain functionality. The formation of nanoparticles by the addition of divinyladipate to form degradable hyperbranched copolymers was proven by DLS and TEM analyses.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Chemistry
Journal or Publication Title: Macromolecules
Publisher: American Chemical Society
ISSN: 0024-9297
Official Date: 13 May 2014
Dates:
DateEvent
13 May 2014Published
23 April 2014Available
26 February 2014Submitted
Volume: Volume 47
Number: Number 9
Page Range: pp. 2847-2852
DOI: 10.1021/ma500428e
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Adapted As:

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us