References: |
1. J. F. Adams, Lectures on exceptional Lie groups (ed. Z. Mahmud and M. Mimura), Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1996). 2. J. C. Baez, ‘The octonions’, Bull. Amer. Math. Soc. (N.S.) 39 (2002) 145–205 (electronic), arXiv:math.RA/0105155. 3. C. H. Barton and A. Sudbery, ‘Magic squares and matrix models of Lie algebras’, Adv. Math. 180 (2003) 596–647. 4. G. Benkart, ‘On inner ideals and ad-nilpotent elements of Lie algebras’, Trans. Amer. Math. Soc. 232 (1977) 61–81. 5. A. M. Cohen, A. Steinbach, R. Ushirobira and D. Wales, ‘Lie algebras generated by extremal elements’, J. Algebra 236 (2001) 122–154. 6. E. Cremmer, B. Julia, H. Lu and C. N. Pope, ‘Higher-dimensional origin of d = 3 coset symmetries’, Preprint, 1999, arXiv:hep-th/9909099. 7. P. Cvitanovi´c, Group theory, http://www.nbi.dk/GroupTheory/. 8. P. Deligne, ‘La s´erie exceptionnelle de groupes de Lie’, C. R. Acad. Sci. Paris, S´er. I Math. 322 (1996) 321–326. 9. P. Deligne and B. H. Gross, ‘On the exceptional series, and its descendants’, C. R. Acad. Sci. Paris, S´er I Math. 335 (2002) 877–881. 10. A. Elduque, ‘Quaternions, octonions and the forms of the exceptional simple classical Lie superalgebras’, Comment. Math. Helv. 79 (2004) 208–228. 11. N. Jacobson, ‘Structure of alternative and Jordan bimodules’, Osaka Math. J. 6 (1954) 1–71. 12. R. H. Jeurissen, ‘The automorphism groups of octave algebras’, Doctoral dissertation, Rijksuniversiteit te Utrecht, 1970. 13. V. G. Kac, Infinite-dimensional Lie algebras, 2nd edn (Cambridge University Press, Cambridge, 1985). 14. N. Kamiya and S. Okubo, ‘Construction of Lie superalgebras D(2, 1; α), G(3) and F(4) from some triple systems’, Proc. Edinb. Math. Soc. (2) 46 (2003) 87–98. 15. E. Kleinfeld, ‘On extensions of quaternions’, Indian J. Math. 9 (1968) 443–446. 16. B. Kostant, ‘A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups’, Duke Math. J. 100 (1999) 447–501. 17. J. M. Landsberg and L. Manivel, ‘Triality, exceptional Lie algebras and Deligne dimension formulas’, Adv. Math. 171 (2002) 59–85. 18. J. M. Landsberg and L. Manivel, ‘The sextonions and E712 ’, Adv. Math., to appear. 19. M. Maliakas, ‘On odd symplectic Schur functions’, J. Algebra 211 (1999) 640–646. 20. R. A. Proctor, ‘Odd symplectic groups’, Invent. Math. 92 (1988) 307–332. 21. R. A. Proctor, ‘A generalized Berele–Schensted algorithm and conjectured Young tableaux for intermediate symplectic groups’, Trans. Amer. Math. Soc. 324 (1991) 655–692. 22. M. L. Racine, ‘On maximal subalgebras’, J. Algebra 30 (1974) 155–180. 23. H. Rubenthaler, ‘Les paires duales dans les alg`ebres de Lie r´eductives’, Ast´erisque 219 (1994). 24. K. E. Rumelhart, ‘Minimal representations of exceptional p-adic groups’, Represent. Theory 1 (1997) 133–181 (electronic). 25. V. V. Shtepin, ‘Intermediate Lie algebras and their finite-dimensional representations,’ Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993) 176–198. 26. A. Sudbery, ‘Octonionic description of exceptional Lie superalgebras’, J. Math. Phys. 24 (1983) 1986–1988. 27. `E. B. Vinberg (ed.), Lie groups and Lie algebras, III. Structure of Lie groups and Lie algebras, Encyclopaedia of Mathematical Sciences 41 (Springer, Berlin, 1994). A translation of Current problems in mathematics. Fundamental directions 41 (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990), translation by V. Minachin, ed. A. L. Onishchik and `E. B. Vinberg. |