Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Iron promotes the toxicity of amyloid β peptide by impeding its ordered aggregation

Tools
- Tools
+ Tools

Liu, B., Moloney, A., Meehan, S., Morris, Kyle L., Thomas, S. E., Serpell, Louise C., Hider, R., Marciniak, Stefan J., Lomas, D. A. and Crowther, D. C. (2011) Iron promotes the toxicity of amyloid β peptide by impeding its ordered aggregation. Journal of Biological Chemistry, 286 (6). pp. 4248-4256. doi:10.1074/jbc.M110.158980 ISSN 0021-9258.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1074/jbc.M110.158980

Request Changes to record.

Abstract

We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- )
Journal or Publication Title: Journal of Biological Chemistry
Publisher: American Society for Biochemistry and Molecular Biology
ISSN: 0021-9258
Official Date: 11 February 2011
Dates:
DateEvent
11 February 2011Published
8 December 2010Available
Volume: 286
Number: 6
Number of Pages: 9
Page Range: pp. 4248-4256
DOI: 10.1074/jbc.M110.158980
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access (Creative Commons)

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us