References: |
[1] M. Akian and S. Gaubert. Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. 52(2) (2003), 637–679. [2] T. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics (Springer-Verlag, 1976). [3] H. Bauer and H. S. Bear. The part metric in convex sets. Pacific J. Math. 30(1) (1969), 15–33. [4] F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat. Synchronization and Linearity: An Algebra for Discrete Event Systems (Wiley, 1992). [5] A. Blokhuis and H. A. Wilbrink. Alternative proof of Sine's theorem on the size of a regular polygon in $\mathbb{R}^k$ with the U2113U221E-metric. Discrete Comput. Geom. 7(4) (1992), 433–434. [6] B. Bollobás. Combinatorics (Cambridge University Press, 1989). [7] A. D. Burbanks, R. D. Nussbaum and C. T. Sparrow. Extensions of order-preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A 133(1) (2003), 35–59. [8] P. Bushell. Hilbert's metric and positive contraction mappings in a Banach space. Arch. Rat. Mech. Anal. 52 (1973), 330–338. [9] M. G. Crandall and L. Tartar. Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78(3) (1980), 385–390. [10] H. Freudenthal and W. Hurewicz. Dehnungen, Verkürzungen und Isometrien. Fundamenta Math. 26 (1936), 120–122. [11] S. Gaubert and J. Gunawardena. The Perron–Frobenius theory for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356(12) (2004), 4931–4950. [12] J. Gunawardena (ed.). Idempotency. Publ. Newton Inst., 11 (Cambridge University Press, 1998). [13] J. Gunawardena. From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293(1) (2003), 141–167. [14] J. Gunawardena and M. S. Keane. On the existence of cycle times for some nonexpansive maps. Technical Report HPL-BRIMS-95-003, Hewlett-Packard Labs (1995). [15] M. W. Hirsch. Positive equilibria and convergence in subhomogeneous monotone dynamics. In Comparison Methods and Stability Theory (X. Liu and D. Siegel ed.), pp. 169–188, Lecture Notes in Pure and Appl. Math. 162 (Dekker, 1994). [16] J. F. Jiang. Sublinear discrete-time order-preserving dynamical systems. Math. Proc. Camb. Phil. Soc. 119(3) (1996), 561–574. [17] V. N. Kolokoltsov and V. P. Maslov. Idempotent Analysis and Applications (Kluwer Academic Press, 1997). [18] U. Krause and R. D. Nussbaum. A limit set trichotomy for self-mappings of normal cones in Banach spaces. Nonlinear Anal. 20(7) (1993), 855–870. [19] U. Krause and P. Ranft. A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. 19(4) (1992), 375–392. [20] B. Lemmens and M. Scheutzow. On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25 (3) (2005), 861–871. [21] R. Lyons and R. D. Nussbaum. On transitive and commutative finite groups of isometries. In Fixed Point Theory and Applications (K.-K. Tan ed.), pp. 189–228 (World Scientific, 1992). [22] P. Martus. Asymptotic properties of nonstationary operator sequences in the nonlinear case. PhD Thesis (Friedrich-Alexander Univ., Germany, 1989). [23] V. P. Maslov and S. N. SamborskiU0131 (ed.). Idempotent Analysis. Advances in Soviet Mathematics, 13 (American Mathematical Society, 1992). [24] A. Neyman and S. Sorin (ed.). Stochastic Games and Applications. Proceedings of the Nato Advanced Study Institute held in Stony Brook, NY, July 7–17, 1999. NATO Science Series C: Mathematical and Physical Sciences, 570 (Kluwer Academic Publishers, 2003). [25] R. D. Nussbaum. Hilbert's projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 75(391) (1988), 1–137. [26] R. D. Nussbaum. Iterated nonlinear maps and Hilbert's projective metric II. Mem. Amer. Math. Soc. 79(401) (1989), 1–118. [27] R. D. Nussbaum. Omega limit sets of nonexpansive maps: finiteness and cardinality estimates. Differential Integral Equations 3(3) (1990), 523–540. [28] R. D. Nussbaum. Convergence of iterates of a nonlinear operator arising in statistical mechanics. Nonlinearity 4(4) (1991), 1223–1240. [29] D. Rosenberg and S. Sorin. An operator approach to zero-sum repeated games. Israel J. Math. 121 (2001), 221–246. [30] A. Schrijver. Theory of Linear and Integer Programming (John Wiley, 1986). [31] R. Sine. A nonlinear Perron–Frobenius theorem. Proc. Amer. Math. Soc. 109(2) (1990), 331–336. [32] P. Taká\c. Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology. Nonlinear Anal. 14(1) (1990), 35–42. [33] P. Taká\c. Convergence in the part metric for discrete dynamical systems in ordered topological cones. Nonlinear Anal. 26(11) (1996), 1753–1777. [34] A. C. Thompson. On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963), 438–443. [35] D. Weller. Hilbert's metric, part metric and self mappings of a cone. PhD Thesis (Universität Bremen, Germany, 1987). |