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The Power of Dynamic Distance Oracles:
Efficient Dynamic Algorithms for the Steiner Tree

Jakub Łącki∗ Jakub Oćwieja† Marcin Pilipczuk‡ Piotr Sankowski§

Anna Zych¶

Abstract

In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider
the model where we are given an n-vertex graph G = (V,E,w) with positive real edge weights,
and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree
spanning a terminal set S ⊆ V , which changes over time. The changes applied to the terminal set
are either terminal additions (incremental scenario), terminal removals (decremental scenario),
or both (fully dynamic scenario). Our task here is twofold. We want to support updates in
sublinear o(n) time, and keep the approximation factor of the algorithm as small as possible.

We show that we can maintain a (6 + ε)-approximate Steiner tree of a general graph in
Õ(
√
n logD) time per terminal addition or removal. Here, D denotes the stretch of the metric

induced by G. For planar graphs we achieve the same running time and the approximation
ratio of (2+ε). Moreover, we show faster algorithms for incremental and decremental scenarios.
Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are
possible. In particular we show a polylogarithmic time (4+ε)-approximate algorithm for planar
graphs.

One of the main building blocks of our algorithms are dynamic distance oracles for vertex-
labeled graphs, which are of independent interest. We also improve and use the online algorithms
for the Steiner tree problem.
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1 Introduction

Imagine a network and a set of users that want to maintain a cheap multicast tree in this network
during a conference call [17]. The users can join and leave, but in the considered time scale the
network remains static. In other words we are considering the following problem. We are given a
graph G = (V,E,w) with positive edge weights w : E → R+. The goal is to maintain information
about approximate Steiner tree in G for a dynamically changing set S ⊆ V of terminals.

This problem was first introduced in the pioneering paper by Imase and Waxman [28] and its
study was later continued in [30, 20, 21]. However, all these papers focus on minimizing the number
of changes to the tree that are necessary to maintain a good approximation, and ignore the problem
of efficiently finding these changes. The problem of maintaining a Steiner tree is also one of the
important open problems in the network community [14], and while it has been studied for many
years, the research resulted only in several heuristic approaches [6, 2, 27, 33] none of which has
been formally proved to be efficient. In this paper we show the first sublinear time algorithm which
maintains an approximate Steiner tree under terminal additions and deletions.

Our paper deals with two variants of the problem of maintaining the Steiner tree. Throughout
this paper, we assume that in the online Steiner tree problem (we also say online setting) the goal
is to maintain a Steiner tree making few changes to the tree after each terminal addition or removal.
On the other hand, in the dynamic Steiner tree problem (dynamic setting), the requirement is that
each update is processed faster than by recomputing the tree from scratch. This aligns with the
usual definition of a dynamic algorithm used in the algorithmic community (see e.g. [18]). In this
paper we study both settings and use the techniques for the online setting to show new results in
the dynamic setting.

As our point of reference we observe that it is possible to construct Õ(n) time dynamic algorithm
for Steiner tree using the dynamic polylogarithmic time minimum spanning forest (dynamic MSF)
algorithm [26]. This solution is obtained by first computing the metric closure G of the graph G,
and then maintaining the minimum spanning tree (MST) over the set of terminals S in G[S]. It
is a well-known fact that this yields a 2-approximate Steiner tree. In order to update G[S] we
need to insert and remove terminals together with their incident edges, which requires Θ(n) calls
to the dynamic MSF structure. However, such a linear bound is far from being satisfactory as
does not lead to any improvement in the running time for sparse networks where m = O(n).1

In such networks after each update we can actually compute the 2-approximate Steiner tree in
O(n log n) time from scratch [31]. Hence, the main challenge is to break the linear time barrier for
maintaining constant approximate tree. Only algorithms with such sublinear complexity could be
of some practical importance and could potentially be used to reduce the communication cost of
dynamic multicast trees. Our paper aims to be a theoretical proof of concept that from algorithmic
complexity perspective this is indeed possible.

As observed by [11] and [12], the dynamic problems with vertex updates are much more chal-
lenging, but are actually closer to real-world network models than problems with edge updates.
In computer networks, vertex updates happen more often, as they correspond to software events
(server reboot, misconfiguration, or simply activation of a user), whereas edge updates are much
less likely, as they correspond to physical events (cable cut/repair).

Finally, we note that the Steiner tree problem is one of the most fundamental problems in
combinatorial optimization. It has been studied in many different settings, starting from classical

1It is widely observed that most real-world networks are sparse [15].
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Setting apx. update time preprocessing time

general, fully dynamic 6 + ε Õ(
√
n logD) Õ(

√
n(m+ n logD))

general, incremental 6 + ε Õ(
√
n) Õ(m

√
n)

general, decremental 6 + ε Õ(
√
n) Õ(m

√
n)

planar, fully dynamic 2 + ε Õ(
√
n logD) Õ(n logD)

planar, incremental 2 + ε Õ(log3 n logD) Õ(n logD)

Table 1: Summary of our algorithms for maintaining Steiner tree in general and planar graphs. For
an input graph G, n = |V (G)|, m = |E(G)|, and D is the stretch of the metric induced by G. The
dependence of the running times on ε−1 is polynomial. The update times are amortized, some of
them are also in expectation (see the corresponding theorem statements).

approximation algorithms [7, 32, 5, 34, 9, 10], through online [28, 30, 20, 21] and stochastic mod-
els [22, 19], ending with game theoretic approaches [4, 8]. Taking into account the significance and
the wide interest in this problem, it is somewhat surprising that no efficient dynamic algorithms
for this problem have been developed so far. It might be related to the fact that this would re-
quire combining ideas from the area of approximation algorithms with the tools specific to dynamic
algorithms. This is the first paper that manages to do so.

In this extended abstract we only present the main ideas, skipping the proofs and the formal
analysis, which will be presented in the full version of this paper.

1.1 Our results

The main result of this paper are sublinear time algorithms for maintaining an approximate Steiner
tree. We provide different algorithms for incremental, decremental and fully dynamic scenarios. An
incremental algorithm allows only to add terminals, a decremental algorithm supports removing
terminals, whereas a final fully dynamic algorithm supports both these operations. Our results are
summarized in Table 1. The overall approximation ratio of the algorithms we obtain is (6 + ε)
for general graphs and (2 + ε) for planar graphs. In particular, we can maintain a fully dynamic
(6+ε)-approximate tree in Õ(

√
n logD) amortized time per update in an arbitrary weighted graph,

where D is the stretch of the metric induced by the graph. This extended abstract aims to present
a brief overview of this result. The result is a composition and a consequence of many ideas that are
of independent interest. We believe that the strength of this paper lies not only in the algorithms
we propose, but also in the byproducts of our construction. We outline these additional results
below.

Dynamic vertex-color distance oracles The algorithms for online Steiner tree assume that the
entire metric (i.e., the distances between any pair of vertices) is given explicitly. This assumption
is not feasible in case of a metric induced by a graph. Hence, to obtain the necessary distances
efficiently, we develop a data structure called dynamic vertex-color distance oracle. This oracle is
given a weighted undirected graph and maintains an assignment of colors to vertices. While the
graph remains fixed, the colors may change. The oracle can answer, among other queries, what is
the nearest vertex of color c to a vertex v. We develop two variants of approximate vertex-color
distance oracles: incremental and fully dynamic. In the first variant, each vertex is initially given
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a distinct color and the color sets (i.e., two sets representing vertices of the same color) can be
merged. The fully dynamic oracles additionally support (restricted) operations of splitting color
sets.2 Note that these update operations are much more general than the operation of changing
the color of a single vertex, which was considered in earlier works [25, 13].

For planar graphs we propose two (1+ε)-approximate oracles. The incremental oracle supports
all operations in O(ε−1 log2 n logD) amortized time (in expectation), whereas the fully dynamic or-
acle supports operations in worst case time O(ε−1

√
n log2 n logD). For general graphs we introduce

a 3-approximate fully dynamic oracle that works in O(
√
n log n) expected time. Our construction

of oracles is generic, that is we show how to extend oracles that may answer vertex-to-vertex queries
and satisfy certain conditions into dynamic vertex-color oracles. For that we introduce the concept
of a generic distance oracle, which captures the common properties of many distance oracles and
allows us to use a uniform approach for different oracles for planar and general graphs.

Online Steiner tree We show an online algorithm that decrementally maintains (2+ε)-approximate
Steiner tree, applying after each terminal deletion O(ε−1) changes to the tree (in amortized sense).
This improves over the previous 4-approximate algorithm. In addition to that, we show a fully
dynamic (2 + ε)-approximate online algorithm, which makes O(ε−1 logD) changes to the tree (in
amortized sense) after each operation. One of the new techniques used to obtain these results
is the lazy handling of high degree Steiner nodes for arbitrary degree threshold. This improves
over an algorithm by Imase and Waxman [28], which makes O(t3/2) changes to process t addition
or removal operations, and maintains a 4-approximate tree. An algorithm performing a smaller
number of changes was given in [21], but, as we discuss in the next section, it departs slightly from
the classical Imase-Waxman model.

Query Steiner tree In the query model, as defined in [16], for a fixed graph G, we are asked
queries to compute an approximate Steiner tree for a set S ⊆ V as fast as possible. This models a sit-
uation when many sets of users want to setup a new multicast tree. We obtain an algorithm, which
after preprocessing in O(

√
n(m+ n log n)) expected time uses O(n

√
n log n) space and computes a

6-approximate Steiner tree in O(|S|
√
n log n) expected time. In the planar case, we can compute

(2 + ε)-approximate tree in O(|S|ε−1 log2 n logD) expected time, using O(ε−1n log2 n logD) pre-
processing time and space. In other words, we show a more efficient solution for computing many
multicast trees in one fixed graph than computing each tree separately. This preprocessing problem
is related to the study initiated in [1] where compact multicast routing schemes were shown. In
comparison with [1], our schemes are not only compact but efficient as well.

Nonrearrangeable incremental Steiner tree In the nonrearrangeable incremental Steiner
tree problem one has to connect arriving terminals to the previously constructed tree without
modifying it. We show how to implement the O(log n)-approximate online algorithm for this
problem given by Imase and Waxman [28] so that it runs in O(r

√
n log n) expected time for non-

planar graphs and O(r log2 n logD) expected time for planar graphs. Here r denotes the final
number of terminals. This gives an improvement over the naive execution of this algorithm that
requires O(r2) time and resolves one of the open problems in [14].

2Because of these two operations we believe that it is more natural to change slightly the previously used vocabulary
and assign colors instead of labels to vertices.
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Bipartite emulators As an interesting side result, we also show a different, simple approach to
dynamic Steiner tree, which exposes a trade-off between the approximation ratio and the running
time. It is based on bipartite emulators: low-degree bipartite graphs that approximate distances
in the original graph. We run the dynamic MSF algorithm on top of a bipartite emulator to
obtain sublinear time dynamic algorithms. In particular, we obtain a 12-approximate algorithm
for general graphs that processes each update in Õ(

√
n) expected amortized time and a (4 + ε)-

approximate algorithm for planar graphs processing updates in Õ(ε−1 log6 n) amortized time. While
our emulators are constructed using previously known distance oracles [37, 36], our contribution
lies in introducing the concept of bipartite emulators, whose properties make it possible to solve
the Steiner tree problem with a modification of the dynamic MSF algorithm [26].

We want to stress that the construction of our algorithms for the Steiner tree, in particular the
approach that combines online Steiner tree algorithm with a distance oracle, is highly modular.
Not only any improvement in the construction of the vertex-color distance oracles will result in
better Steiner tree algorithms, but the vertex-color distance oracles themselves are constructed in
a generic way out of distance oracles in [36, 37]. The approximation factor of (6 + ε) for Steiner
tree in general graphs comes from using 3-approximate oracles combined with a 2-approximation
of the Steiner tree given by the MST in the metric closure and (1 + ε)-approximate online MST
algorithm. In other words we hit two challenging bounds: in order to improve our approximation
factors, one would need either to improve the approximation ratio of the oracles which are believed
to be optimal, or devise a framework not based on computing the MST. The second challenge
would require to construct simple and fast (e.g., near-linear time) approximation algorithms for
Steiner tree that would beat the MST approximation ratio of 2. Constructing such algorithms is a
challenging open problem.

1.2 Related results

The problems we deal with in this paper and related have received a lot of attention in the literature.
We present a brief summary in this section.

Vertex-color distance oracles Our vertex-color distance oracles fall into the model studied
in the literature under the name of vertex-label distance oracles. Dynamic vertex-color oracles
for general graphs have been introduced by Hermelin et. al [25] and improved by Chechik [13].
These oracles allow only to change a color (label) of a single vertex, as opposed to our split and
merge operations. The oracle by Chechik [13] has expected size Õ(n1+1/k), and reports (4k −
5)-approximate distances in O(k) time. This oracle can support changes of vertices’ colors in
O(n1/k log n) time. Our results have much better approximation guarantee and more powerful
update operations, at the cost of higher query time. A vertex-color oracle for planar graphs has
been shown by Li, Ma and Ning [29], but it does not support updating colors. The incremental
variant of our oracle allows merging colors, and has only slightly higher running time.

Online Steiner tree There has been an increasing interest in the online Steiner tree and the
related online MST problem in recent years, which started with a paper by Megow et al. [30]. They
showed that in the incremental case one can maintain an approximate online MST in G[S] (and
consequently an approximate Steiner tree) with only a constant number of changes to the tree per
terminal insertion (in amortized sense), which resolved a long standing open problem posed in [28].
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The result of [30] was improved to worst-case constant by Gu, Gupta and Kumar [20]. Then,
Gupta and Kumar [21] have shown that constant worst-case number of changes is sufficient in the
decremental case. Their paper also shows a fully dynamic algorithm that performs constant number
of changes in amortized sense, but in a slightly different model. In [21], a newly added terminal
is treated as a new vertex in the graph, with new distances given only to all currently active (not
yet deleted) terminals; the remaining distances are assumed implicitly by the triangle inequality.
However, in the classical Imase-Waxman model, the entire algorithm runs on a fixed host graph
that is given at the beginning, and terminals are only activated and deactivated. After a terminal
is deleted, it may still be used in the maintained tree as a Steiner node. In particular, in our
algorithms it is crucial that the newly added terminal may be connected directly to a Steiner node.
This is not allowed in [21], so it seems that their analysis cannot be used in the Imase-Waxman
model that is studied here.

While the online algorithms for Steiner tree have been studied extensively, our paper is the
first one to show that they can be turned into algorithms with low running time. Moreover, in the
decremental case and fully dynamic case we are the fist to show (2 + ε)-approximate algorithms.

1.3 Organization of the paper

The remainder of the paper is organized as follows. Section 2 introduces the notation and recalls
some results used further in the paper. In Section 3 we describe a shortened version of our results,
which is supposed to sketch the ideas without diving into technicalities and proofs of correctness.
Section 4 presents online algorithms for Steiner tree. It covers our improvements in this area and
analyses the algorithms in the setting where we only have access to approximate distances in the
graph. Section 5 introduces dynamic approximate vertex-color distance oracles, starting with a
generic oracle, through various constructions of particular oracles, ending with the summary of
our results in this area. In Section 6 we show how to combine the online algorithms with distance
oracles to obtain efficient algorithms for dynamic Steiner tree. In Section 7 we show alternative
algorithms for dynamic Steiner tree problem based on bipartite emulators. These algorithms are
slightly faster compared to the previously presented, but the approximation ratio doubles. Finally,
Section 8 concludes the paper and suggests directions for future research.

2 Preliminaries

Let G = (V,E, dG) be a graph. Throughout the paper, we assume that each graph is undirected and
has positive edge weights. By V (G) and E(G) we denote the vertex and edge sets of G, respectively.
For u, v ∈ V , we write δG(u, v) to denote the distance between u and v in G. The graph we refer
to may be omitted if it is clear from the context. For v ∈ V , ΓG(v) = {u ∈ V : uv ∈ E} is the set
of neighbors of v in G.

Whenever we give some statement with accuracy parameter ε > 0, we implicitly assume that ε
is a small fixed constant. In particular, we assume ε < 1.

We define G = (V,
(
V
2

)
, dG) to be the metric closure of G, i.e., for u, v ∈ V , dG(u, v) = δG(u, v).

The stretch of the metric induced by G is the ratio between the longest and the shortest edge of
G. Moreover, let G[X] denote the subgraph of G induced by X ⊆ V and let MST (G) stand for the
minimum spanning tree in G. For a given graph G and a terminal set S we define ST (G,S) to be
an optimum Steiner tree in G that spans S. Our algorithms are based on the following well-known
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fact.

Lemma 2.1. Let G = (V,E, dG) be a graph and S ⊆ V . Then dG(ST (G,S)) ≤ dG(MST (G[S])) ≤
2dG(ST (G,S)).

In each of our algorithms the ultimate goal is to maintain a good approximation of MST (G[S]).
Note that, as we focus on MST (G[S]), our algorithms can also maintain a solution to Subset TSP
on the same (dynamic) terminal set with the same approximation guarantee. Since we work with
a metric closure of G, the solution that we maintain is actually a collection of (approximately)
shortest paths in G. As we precompute these paths during initialization, our algorithms can be
extended to report each such path in time that is linear in its length.

We distinguish three dynamic scenarios: incremental, decremental and fully dynamic. All three
scenarios assume that the input graph remains the same, while the set S of terminals changes over
time. In the incremental scenario we consider how to efficiently update the tree after a vertex is
added to S (it is announced to be a terminal), in the decremental scenario the update operation is
removing a vertex from S, and the fully dynamic scenario allows both these operations intermixed
with each other. As discussed already in the introduction, we are interested in performing one
update operation in sublinear (amortized) time, as a near-linear time algorithm follows easily from
the works on dynamic minimum spanning forest [26].

Dynamic MSF algorithm. In a number of our algorithms we use an algorithm that may dy-
namically maintain a minimum spanning forest of a graph, subject to edge insertions and removals.
In the following, we call it a dynamic MSF algorithm.

Theorem 2.2 ([26]). There exists a fully dynamic MSF algorithm, that for a graph on n vertices
supports m edge additions and removals in O(m log4 n) total time.

Whenever we use the algorithm of Theorem 2.2 on some graph, we implicitly make sure that
all the edges have pairwise distinct weights. We ensure this by breaking ties between weights using
the timestamp of the addition, and some arbitrary total ordering of edges present at initialization.
In particular, if we compare two edges of the same weight, we prefer to use the older one (i.e., we
treat it as slightly cheaper). If, after an edge e is added to the graph, the maintained forest is
altered, then the new forest includes e, and either the cost of the forest strictly decreased in this
operation or the insertion of e connected two connected components of the graph.

3 Overview of our algorithms

In this section we present a high-level overview of our algorithm for dynamic Steiner tree. This is
done in three steps. First, we describe the online algorithms that we use (section 3.1). Then, we
introduce dynamic vertex-color distance oracles (section 3.2), and finally (section 3.3) we show how
to combine both these tools to obtain efficient algorithms.

3.1 Online algorithms

We start with presenting online algorithms for Steiner tree. In the online setting the goal is
to maintain an approximate Steiner tree and make small number of changes to the tree after a
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terminal is added or deleted. We later use these algorithms to obtain efficient algorithms with low
approximation factors.

By Lemma 2.1, in order to maintain an approximate Steiner tree, we may maintain a tree T
that spans the current set of terminals S in the metric closure of the graph. Although in this
section we assume that we work with a complete graph, it should not be thought of as a metric
closure of G, but instead as its approximation. In later sections, this approximation will be given
by a distance oracle. A µ-approximate oracle for a graph G = (V,E, dG) yields a complete graph
GD = (V,

(
V
2

)
, dGD), such that δG(u, v) ≤ dGD(u, v) ≤ µδG(u, v). We view GD as a complete

graph, but it should be noted that it is not metric, since it does not satisfy triangle inequality.
Therefore, we call GD a µ-near metric space.

We essentially follow the core ideas of Imase and Waxman [28], with more modern improvements
of [30, 20, 21]: to maintain good approximation ratio, it suffices to (a) as long as we can replace an
edge e′ in the tree with a another one e of significantly lower cost, proceed with the replacements;
(b) defer deletions of large-degree nonterminal vertices from the tree. However, we need some
technical work to formally state these properties, especially in the context of near metric spaces.
Furthermore, in [28] it is only argued that deferral of deletion of non-terminal vertices of degree at
least three does not influence the approximation factor much; we generalize this result to arbitrary
threshold, in particular showing that larger thresholds give better approximation guarantee.

Following [28], when a terminal t is added to S, we can update the current tree by connecting
t with T using the cheapest connecting edge. This alone does not lead to a good approximation
of MST (GD[S ∪ {t}]) because some other edges incident to t could possibly be used to replace
expensive edges in T . In our algorithms, we repeatedly replace tree edges with non-tree edges
(assuring that after the replacement, we obtain a tree spanning S) until we reach a point at which
we can be sure that the current tree is a good approximation of MST (GD[S]). We now formalize
the notion of replacement.

Let T be a tree in GD. For any edge e with both endpoints in V (T ), we say that an edge
eT ∈ E(T ) is a friend of e (with respect to T ) if eT lies on the unique path between the endpoints
of e. For a friend eT of e with regards to T , T ′ := (T \ {eT }) ∪ {e} is a tree that spans V (T ) as
well, with cost dGD(T ) − (dGD(eT ) − dGD(e)). We say that T ′ is created from T by replacing the
edge eT with e, and (e, eT ) is a replacement pair in T .

Definition 3.1 (heavy, efficient and good replacement). Let c > ε ≥ 0 be constants and let T , e
and eT be defined as above. We say that the (e, eT ) pair is a

1. ε-heavy replacement if dGD(eT ) > εdGD(T )/|V |;

2. ε-efficient replacement if (1 + ε)dGD(e) < dGD(eT );

3. (ε, c)-good replacement if it is both ε-efficient and (ε/c)-heavy.

Standard arguments show that if no (ε, c)-good replacement is present in the tree, then it is
close to a minimum spanning tree of its vertex set.

Lemma 3.2. Let c > ε ≥ 0 be constants and let T be a tree in a complete graph GD. If T does
not admit any (ε, c)-good replacement, then it is a c(1 + ε)/(c − ε)-approximation of minimum
spanning tree of V (T ). In particular, if T does not admit any ε-efficient replacement, then it is a
(1 + ε)-approximation of minimum spanning tree on V (T ).
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e
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Figure 1: In panel (a), all dashed edges of the tree, in particular eT , are friends of the blue thick
edge e. Panel (b) illustrates a tree with some nonterminal vertices that are of large degree.

In the next lemma we observe that having nonterminals of high degree does not influence the
approximation ratio significantly.

Lemma 3.3. Let ε ≥ 0 be a constant, η ≥ 2, G = (V,
(
V
2

)
, dG) be a complete weighted graph and

S ⊆ V . Let TMST = MST
(
G[S]

)
be a MST of S and let T be a tree in G that spans S ∪ N and

does not admit (1 + ε)-efficient replacements. Furthermore, assume that each vertex of V (T ) ∩N
is of degree larger than η in T . Then dG(T ) ≤ (1 + ε) η

η−1dG(TMST ).

The special case η = 2 of Lemma 3.3 has been proven by Imase and Waxman [28]; we provide
a different, simpler proof of this result that additionally extends to arbitrary η ≥ 2.

3.1.1 Decremental online algorithm

In this section we describe the decremental scheme, i.e., how to handle the case when the terminals
are removed from the terminal set. In the decremental scheme, the main idea is to maintain the
minimum spanning tree on the terminal set, but to postpone the deletion of terminals that are of
degree above some fixed threshold η ≥ 2 in this spanning tree.

When a vertex v of degree s ≤ η is deleted from the tree T , the tree breaks into s components
T v = {T1, T2, . . . , Ts} that need to be reconnected. The natural idea is to use for this task a set of
edges of GD of minimum possible total weight. That is, we first for each 1 ≤ i < j ≤ s identify an
edge eij of minimum possible cost in GD among edges between Ti and Tj . Then, we construct an
auxiliary complete graph with vertex set T v and edge cost d(TiTj) := dGD(eij), find a minimum
spanning tree T ◦ of this graph, and use edges of this tree to reconnect T .

Take η = 1 + dε−1e. Lemma 3.3 implies that the decremental scheme maintains a 2(1 + ε)µ-
approximation of minimum Steiner tree of G. In the course of the first r deletions, it removes a
vertex from the tree at most r times and each removed vertex has degree at most η = O(ε−1) in
the currently maintained tree.

3.1.2 Incremental online algorithm

We now consider the case when new terminals are added to the terminal set and we are to update the
currently maintained tree. Following Imase and Waxman [28] and Megow et al [30], we first connect
the new terminal to the tree we already have, and then try to apply all occurring (ε/2, 1 + ε)-good
replacement pairs, for some ε > 0.

10
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Figure 2: Panel (a) illustrates the addition step: when a new terminal ti is added, it is first
connected to the closest terminal with an edge e0, and then a replacement (e, e′) is applied. Panel
(b) illustrates the deletion step: when a vertex v is deleted, the tree splits into subtrees Ti, and
between every pair of subtrees the shortest reconnecting edge ei,j is found (depicted as blue thick
edge). Then, we find the set of reconnecting edges by computing a minimum spanning tree of the
auxiliary graph Gc with vertex set {T1, T2, . . . , Ts} and edges ei,j connecting Ti and Tj .

At one step, given a tree T and a new terminal vertex v ∈ V \ V (T ), we:

1. add an edge to T connecting v with V (T ) of cost minu∈V (T ) dGD(uv);

2. apply a sequence of ε-efficient replacement pairs (e, e′) that satisfy the following additional
property: e′ is a friend of e in the currently maintained tree of maximum possible cost;

3. after all the replacements, we require that there does not exist a (ε/2, 1+ε)-good replacement
pair (e, e′) with e incident to v.

We emphasize here the the incremental algorithm requires only to care about replacement
edges incident to the newly added vertex; we show that no other efficient replacement pair can be
introduced in the above procedure.

Lemma 3.2 implies that the incremental algorithm for some ε > 0 maintains 2(1 + ε)µ approxi-
mation of the Steiner tree. With the help of the recent analysis of [20], we show that, in the course
of the first r additions, it performs O(rε−1(1 + log µ)) replacements.

3.1.3 Fully dynamic online algorithm

In order to obtain a scheme for a fully dynamic algorithm, we merge the ideas of two previous
sections. We fix an accuracy parameter ε > 0. We aim at maintaining a (1 + ε)2-approximation
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of MST (GD[S]) where S is the current set of terminals. As in the decremental step, we define
η = 1 + dε−1e = O(ε−1), that is, η is the minimum positive integer with η

η−1 ≤ 1 + ε.
In a deletion step, we behave in exactly the same manner as in the decremental scheme. If we

want to delete v from the terminal set, we mark it as non-terminal and, if its degree is at most η,
it is removed from the tree.

In an addition step, we perform similarly as in the incremental scheme, but there are two
significant differences. First, we do not have the guarantee that the cost of the tree will not
decrease much in the future, so we cannot stop replacing edges at some cost threshold: although
the low cost edges may contribute only a little to the weight of the tree, this may change after
many terminals are removed and the weight of the tree drops.

Second, we need to watch out for non-terminal vertices whose degree may drop to the threshold
η as a consequence of a replacement. Formally, to add a vertex v to the terminal set S we perform
the following operations on the currently maintained tree T .

1. If v ∈ V (T ), mark v as a terminal and finish.

2. Otherwise, connect v to any vertex of T using the cheapest connection in GD.

3. Apply a sequence of ε-efficient replacement pairs, where for each such pair (e, e′) we require
that e′ has the maximum possible cost among the friends of e.

4. Once all replacement pairs are applied, we require that there exists no ε-efficient replacement
pair (e, e′) with e incident to v;

5. At the end remove all non-terminal vertices whose degree dropped to at most η due to
replacements.

Observe that, again as in the incremental scheme, we show that it suffices to care only about
replacement pairs (e, e′) with e incident to the newly added vertex v.

Lemmas 3.2 and 3.3 imply that the scheme maintains a 2(1 +ε)2µ approximation of the Steiner
tree. In the course of the first r operations, where r+ of this operations are additions and r− = r−r+
are deletions, the algorithm performs O(ε−1(r+ logD + r−(1 + logµ))) replacements and removes
at most r− vertices, each of which has degree at most η = O(ε−1) in the currently maintained tree.

Although our problem is similar to the one considered in [21], it does not seem clear if the
analysis of incremental algorithm ([20], Theorem 4.5) is applicable to our fully dynamic scheme.
The usage of this analysis in [21] strongly relies on the assumption that newly added terminals are
new vertices in the graph, and their distance to previously deleted terminals is inferred from the
triangle inequality. However, in our model of a fixed host graph G this assumption is no longer
valid, hence we need to fall back to a different analysis here.

3.2 Dynamic vertex-color distance oracles

In this section we introduce dynamic vertex-color distance oracles that we later use to implement
the online algorithms. The oracles’ interface is tailored to the construction of the algorithms. In
fact, the algorithms will access the graphs only by the oracles that we describe. We consider two
variants of the oracle: an incremental and a more general fully dynamic. The former will be used
for incremental algorithms, whereas the latter for decremental and fully dynamic ones.
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Si with tree Ti

Sj with tree Tj

Sl = Si ∪ Sj with tree Tl = Ti ∪ Tj ∪ {uv}

merge

split

Figure 3: merge and split operations in the fully dynamic oracle.

3.2.1 Oracle interface

Let G = (V,E) be a graph. Each oracle maintains a partition of V into sets C1, . . . , Ck, i.e.,⋃k
i=1Ci = V and Ci ∩ Cj = ∅ for all i 6= j, 1 ≤ i, j ≤ k. In other words we assign colors to the

vertices of G. At any given point each color might be active or not. We say that a vertex is active
if the associated color is active. The oracle allows us to find the distance from a given vertex to
the nearest vertex of a given color or to the nearest active vertex. The updates supported by the
oracle alter only the sets Ci, while the underlying graph G is never changed.

In the incremental variant of the oracle, the only operation that allows us to change colors
is merging two colors. To be more precise, the incremental oracle supports the following set of
operations:

• distance(v, i) – compute the approximate distance from v to the nearest vertex of color i,

• nearest(v, k) – compute the approximate distance from v to the k-th nearest active color
(for a constant k),

• activate(i) – activate set (color) Ci,

• merge(i, j) – merge two different active sets Ci and Cj into one active set Cl, where l ∈ {i, j}.

The fully dynamic variant also supports splitting sets Ci, but only in a restricted way. The
oracle associates with every set Ci a tree Ti that spans Ci. Trees Ti may be arbitrary trees
spanning vertices of Ci, and their edges are not necessarily present in G. Splitting a set is achieved
by specifying an edge e in Ti. The edge e is removed from Ti and the two connected components
that are created specify how the set should be split (see also Figure 3). Formally speaking, the
fully dynamic oracle supports the following operations:

• distance(v, i) – compute the approximate distance from v to the nearest vertex or color i,
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• nearest(v, k) – compute the approximate distance from v to the k-th nearest active color
(for a constant k),

• activate(i) – activate set (color) Ci,

• deactivate(i) – deactivate set (color) Ci,

• merge(i, j, u, v) – merge active sets Ci and Cj associated with trees Ti and Tj into an active
color set Cl, l ∈ {i, j}, and associate it with Tl := Ti ∪ Tj ∪ {uv},

• split(l, u, v) – if uv is an edge of a spanning tree Tl of an active color set Cl, split Cl into
active color sets Ci and Cj associated with the two connected components of Tl \ {uv}.

We would like to remark here that in our construction of the oracles, the nearest(v, k) query
returns the distance to the k-th nearest color, but we use the distances measured by the distance

query. That is, it returns the k-th smallest value of distance(v, i) over all active colors i.

3.2.2 Generic distance oracles

Our oracles are based on static distance oracles that may answer vertex-to-vertex distance queries.
In addition to supporting the scheme listed above, our oracles have some structural properties
important for our algorithms. These properties are summarized in the following definition and we
explain why we need them right below. The definition is illustrated in Fig. 4.

Definition 3.4. Let G = (V,E, dG) be a weighted graph and α ≥ 1. An α-approximate generic
oracle for G associates with every v ∈ V :

• a set of portals, denoted by portals(v), which is a subset of V ,

• and a family of pieces, denoted by pieces(v), were each element (referred to as piece) is a
weighted planar3 graph on a subset of V .

We say that a vertex w is piece-visible from v if there is a piece r ∈ pieces(v) such that w ∈ V (r).
The piece distance from v to w is defined as Rv,w = minr∈pieces(v) δr(v, w), and Rv,w = +∞ if w
is not piece-visible from v. The oracle additionally stores, for each v ∈ V and p ∈ portals(v), an
approximate distance Dp,v ≥ δG(p, v)4. For every pair v, w ∈ V we require that Rv,w = Rw,v, and
either Rv,w = δG(v, w) or there is a portal p ∈ portals(v) ∩ portals(w), such that there is a walk
from v to w of length at most α · δG(v, w) that goes through p, and Dv,p +Dw,p ≤ αδG(v, w). The
portal distance between v and w is minp∈portals(v)∩portals(w)Dv,p +Dw,p.

Let us now introduce the notation related to oracles. We denote the set of all portals as
P =

⋃
v∈V portals(v), and refer to its elements as portals. We denote the family of pieces as

R =
⋃
v∈V pieces(v). The pieces in pieces(v) are supposed to represent distances from v to some

vertices visible from it. For every vertex w, either one of piece of v contains a path to w of length
δG(v, w), or there is a walk from v to w through a portal of both v and w, whose length gives
an approximation of δG(v, w). Consider a complete graph GD = (V,

(
V
2

)
, dGD), where dGD(v, w)

3The requirement that pieces are planar is not essential for the definition, but we have it here for convenience. In
our oracles, pieces are either planar graphs or simply trees.
4Ideally, we would like Dp,v to be equal to δG(p, v) and Rv,w equal to δG(v, w). However, in some cases Dp,v and

Rv,w might be greater.
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(a)
(b)

Figure 4: A generic distance oracle. Panel (a) contains an unweighted graph with two distinguished
portals (marked with squares). We have that portals(v) = {b, j} for all vertices v. In panel (b)
there are two pieces. In this example we assume that a piece ri ∈ pieces(v) if v ∈ V (ri). For every
u, v ∈ V , the minimum of piece and portal distances between u and v is at most 2δ(u, v). For
example, the piece distance between e and g is infinite, but the portal distance is 4, which is twice
as much as the exact distance.

is defined as the minimum over the piece distance and the portal distance between v and w. By
Definition 3.4 it is a well defined simple graph with finite weights. This is the graph of distances
seen by the oracle. Even though oracle’s answers are approximate with respect to G, they are
exact with respect to GD, i.e., the oracle always returns the cheapest edge in GD between a vertex
and a set of vertices of interest. We need this property for our algorithms to work. In particular,
distance(v, i) returns the cheapest edge in GD between v and Ci, and nearest(v, k) returns the
cheapest edge in GD between v and an active vertex of V \(Ci1∪· · ·∪Cik−1

), where Ci1∪· · ·∪Cik−1

are the k − 1 active colors that are closest to v (w.r.t. GD).
We define a cluster of a portal p ∈ P to be set of all vertices, for which it is a portal, i.e.,

cluster(p) = {v ∈ V : p ∈ portals(v)}. If p is not a portal, cluster(p) = ∅. One can view the
connections between vertices V (G) and portals P as a bipartite graph on V (G)]P, where there is
an edge between p ∈ P and v ∈ V (G) iff p ∈ portals(v) or equivalently v ∈ cluster(p). The number
of edges in this graph is denoted as ptot =

∑
p |cluster(p)| =

∑
v |portals(v)|.

3.2.3 From a generic oracle to a dynamic vertex-color distance oracle

We show that given a generic oracle, we may obtain both an incremental and fully dynamic vertex-
color distance oracles. Their efficiency is expressed in terms of oracle parameters, such as the total
size of all pieces of each vertex or the total number of portals of all vertices.

We first show an incremental construction. For every portal p we maintain the distance to the
nearest vertex of every color in cluster(p). This requires only as much space as the oracle itself.
When two colors i and j are merged, we find the color assigned to a smaller number of vertices.
Assume it is color i. Then, we change colors of all vertices of color i to j. This way, a vertex
changes colors only O(log n) times and each time this happens, it only needs to update information
in all its portals. To find the nearest vertex of color i from a vertex v, we first check distances to
all vertices of color i that are piece-visible from v and then examine paths going through portals
of v. For a given portal, we find the distance to the nearest vertex of color i, which immediately
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yields a candidate path from v to a vertex of color i going through a portal. The minimum of all
candidate lengths gives the desired approximate distance.

A fully dynamic construction is more involved. We describe a simplified version here. The
ultimate goal is also to maintain, for every portal, the distance to the nearest vertex of every color.
Recall that a fully dynamic oracle associates with every color Ci ⊆ V a tree Ti spanning Ci. For
every portal p we maintain a dynamic tree ET pi , which has the same topology as Ti and associates
with every vertex v ∈ V (Ti) ⊆ V a key equal to δG(p, v). The dynamic trees support link and cut
operations and finding minimum of all keys in a tree. To handle an update, we iterate through all
portals and link/cut the corresponding tree ET pi . This allows us to maintain, for every portal, the
nearest vertex of every color. Answering queries can then be done as in the incremental oracle.

Next, we adapt some existing distance oracles for general and planar graphs in order to obtain
generic oracles. Basing on an oracle by Thorup and Zwick [37], we construct a generic oracle of
stretch 3. This requires enforcing some additional properties, that may be of independent interest.
From the generic oracle, by applying our generic construction, we immediately obtain a fully dy-
namic 3-approximate vertex-color distance oracle that handles operations in Õ(

√
n) expected time.

In case of planar graphs, we adapt the construction by Thorup [36], and in the end obtain an incre-
mental (1 + ε)-approximate vertex-color distance oracle handling operations in O(ε−1 log2 n logD)
expected amortized time, where D is the stretch of the metric induced by the input graph. We also
get a fully dynamic (1 + ε)-approximate vertex-color distance oracle for planar graphs that handles
operations in Õ(ε−1

√
n logD) time.

3.3 Implementing the online algorithms efficiently

We show how to use the vertex-color distance oracles to implement the online algorithms. A µ-
approximate nearest neighbor oracle for a graph G = (V,E, dG) yields a µ-near metric space, which
approximates G. In other words, it works as if it was an exact oracle, but the distances between
vertices were given by the edge lengths in GD. However, note that the edge lengths in GD may
not satisfy triangle inequality.

3.3.1 Efficient decremental algorithm

In the decremental scenario we maintain an approximate Steiner tree as terminals are deleted. The
algorithm is based on vertex-color distance oracles, but it uses not only the operations provided by
the oracle, but also the sets of portals and pieces of each vertex. In particular, the algorithm uses
the concepts of portal and piece distances.

For a fixed ε > 0 we plan to maintain a (1 + ε)-approximation of MST (GD[S]). Following
the decremental scheme, we set η = 1 + dε−1e = O(ε−1). We start with the tree T being equal
to the MST on the terminals. When a vertex v of degree more than η is removed, we mark it
as a nonterminal vertex, but do nothing more. Otherwise, we need to remove v and reconnect
the connected components that emerge into a new tree. The main challenge lies in finding the
reconnecting edges efficiently.

In order to do that, we use the dynamic MSF algorithm (see Theorem 2.2) on a graph H that
we maintain. Since our goal is to maintain a tree T which is an MST of the set of terminal and
some nonterminal vertices, we assure that H is a subgraph of GD that contains this MST (for
simplicity, we assume here that the MST is unique). Moreover, the only nonempty (i.e., containing
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edges) connected component of H is composed exactly of terminals and nonterminal vertices which
used to be terminals. As a result, the dynamic MSF algorithm will find the tree T .

The simplest approach to maintaining H would be to add, for every two u,w ∈ S, an edge uw
of length dGD(u,w). This, however, would obviously be inefficient, i.e., work in linear time. Instead
of that, we use the structure of the vertex-color distance oracle. For every two u,w ∈ V (T ) which
are mutually piece-visible we add to H an edge uw of length being equal to the piece distance.
Moreover, we will be adding some edges corresponding to portal distances, but they will be chosen
in a careful way to ensure that the number of such edges is low.

We initialize the edge set of H to be the set of all edges of the initial T and all edges between
mutually piece-visible terminals. Our algorithm uses a single instance D of the fully dynamic
vertex-color distance oracle. We update the vertex-color distance oracle D, so that it has a single
active color associated with a tree equal to T . All other vertices have distinct, inactive colors. Any
change in the spanning forest of H results in a constant number of modifications to D.

The main challenge is what happens if a vertex of degree s ≤ η is removed. Then the tree T
decomposes into trees T1, . . . , Ts that we need to reconnect with a set of edges of minimum total
cost. We rely on the dynamic MSF algorithm here and make sure that H contains a superset of the
desired edges. First of all, H surely contains all edges corresponding to piece distances, as this is
maintained as an invariant of our algorithm. Thus, we only need to assure that H also contains the
necessary edges corresponding to portal distances. It is easy to observe that it suffices to add to H
the MST of edges corresponding to portal distances between trees Ti. More formally, we consider a
complete graph Gc over trees Ti, in which the edge length between two trees is the portal distance
between the nearest vertices in these trees. We add to H only edges corresponding to MST (Gc).

This MST can be simply computed by generating the graph Gc explicitly. We go through all
portals and for each portal we generate edges corresponding to all portal distances that use this
portal. Note that we use the assumption that η and the total number of portals are relatively small.

The main factors that influence the running time are: the number of pairs of mutually piece-
visible terminals (all such edges are initially added to H), the time for computing the reconnecting
edges corresponding to portal distances, and the time for updating the oracle, when a vertex of
degree at most η is removed. Note that r delete operations may cause at most r vertices to be
removed.

In practice, the update time is dominated by the time needed by the oracles for executing
η = O(ε−1) merge and split operations caused by a vertex removal. In general graphs we obtain
a (6+ε)-approximate algorithm handling updates in O(ε−1

√
n log n) expected amortized time. For

planar graphs, the approximation ratio is 2 + ε, whereas the amortized running time of a single
update amounts to Õ(ε−1.5

√
n logD).

3.3.2 Efficient incremental algorithm

In the incremental scenario, the goal is to approximate the Steiner tree, as the terminals are added.
Denote the terminals that are added by t1, t2, t3, . . .. Let Si = {t1, . . . , ti} and let Ti denote the
tree maintained by the algorithm after adding i terminals. We maintain an approximate minimum
spanning tree of Si in graph GD.

Fix a constant ε > 0. We assume that the edge lengths in GD are powers of 1 + ε. This can be
achieved by rounding up edge lengths. Assume that all edge lengths of GD belong to the interval
[1, D]. We define the level of an edge uv, as lvl(uv) := log1+ε dGD(uv). The algorithm represents
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Figure 5: Trees maintained by the oracles Dj corresponding to layers Lj of the tree Ti. The small
numbers above edges denote their levels.

the current tree Ti by maintaining h = blog1+εDc layers L1, . . . , Lh. Layer Lj contains edges of
the current tree Ti whose level is at most j. In particular, layer Lh contains all edges of Ti.

For each layer Lj , we maintain an incremental vertex-color distance oracle Dj on the graph G
(see Figure 5). The partition of V into colors corresponds to the connected components of a graph
(V,Lj). A color is active if and only if its elements belong to Si.

The process of adding a terminal ti consists of two steps. First, we find the shortest edge in
GD connecting ti to any of t1, . . . , ti−1 and add this edge to Ti−1 to obtain tree Ti. Then, we apply
a sequence of ε-efficient replacements (e, e′) to Ti in order to decrease its weight. Recall that we
may only consider replacements in which e is incident to the newly added terminal ti.

In order to find the replacements, we use the vertex-color distance oracles. Fix a layer number
j and assume that the colors of the oracle Dj reflect the layer structure, including the newly added
terminal ti. We want to find a replacement pair (e, e′) such that the lvl(e′) > j and lvl(e) ≤ j.
Denote by C the connected component of the graph (V,Lj) that contains ti (or a color of ti in Dj).
By definition of C, it consists of edges of level at most j and the path in Ti from ti to every t 6∈ C
contains an edge of level > j. We find the vertex t 6∈ C which is the nearest to ti by querying
Dj . Since ti has color C, we issue a nearest(ti, 2) query to find the second nearest color from ti.
Assume that we find a vertex t′. If lvl(tit′) ≤ j, we have found a replacement pair. Let e′ be the
heaviest edge on the path from ti to t′ in Ti and e = tit

′. Clearly, (e, e′) is a replacement pair, and
since the weight of e is lower than the weight of e′ and the weights can differ at least by a factor of
1 + ε, this replacement is ε-efficient.

The running time of the algorithm described above depends on logD. In order to circumvent
this dependency, we observe that we do not need to replace edges whose length is at most ε/(2n)
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fraction of the weight of the current tree, as their total weight is negligible. This allows us to limit
the number of levels that we consider to roughly O(log n).

One of the factors influencing the running time is the number of replacements, but it depends
only on ε and µ. For each replacement, we issue a constant number of oracle operations on each
level, so the running time is, roughly speaking, a product of the number of replacements, the
number of layers (roughly O(log n)) and the running time of a single oracle operation. In the
end, we obtain (6 + ε)-approximate algorithm for general graphs handling insertions in Õ(ε−1

√
n)

expected amortized time and a (2 + ε)-approximate algorithm for planar graphs, which processes
updates in O(ε−2 log2 n log(n/ε) logD) expected amortized time.

3.3.3 Efficient fully dynamic algorithm

The fully dynamic algorithm is obtained by appropriately merging the ideas of the decremental and
incremental algorithms. In fact we maintain both the invariants of the incremental and decremental
algorithms.

Fix ε > 0 and set η = 1 + dε−1e. We assume that all edges’ lengths in GD are powers of 1 + ε,
which may be assured by rounding their lengths up. We maintain a tree T that spans the set of
terminals and nonterminals of degree more than η. The tree T is maintained by using dynamic
MSF algorithm on a graph H that we update. It is an MST of the set of terminals and high-degree
nonterminal vertices, and, since the length of every edge is a power of 1 + ε, this is equivalent to
the fact that it does not admit any ε-efficient replacements.

Assume that the edge lengths in GD belong to [1, D]. Let h = blog1+εDc. We maintain a
collection of fully dynamic nearest neighbor oracles D1, . . . ,Dh. Recall that the level of an edge uv
is lvl(uv) := log1+ε dGD(uv). The oracle Dh contains a single active color associated with a tree
equal to T . All other colors are inactive and assigned to isolated vertices. In general, oracle Di
reflects the forest consisting of edges of T of level at most i. Each active color of Di corresponds
to one tree of this forest. In particular the trees assigned to colors are the same as the trees in
the forest. The oracles Di are counterparts of the oracles from the incremental algorithm. Since
Dh contains all edges of the current tree, it may be used as the oracle D used in the decremental
algorithm.

When a terminal v is deleted, we use exactly the same procedure as in the decremental algorithm.
The only difference is that we need to update all oracles Di, so that they reflect the changes made
to the tree.

On the other hand, if a vertex v is added, we use a procedure similar to the incremental
algorithm. Namely, we connect v to T using the shortest edge in GD and then apply all occurring
ε-replacements. In order to find all replacements, we need to consider replacements at all possible
O(logD) levels. When a replacement (e, e′) is detected, we add edge e toH. Since every replacement
that we find is ε-efficient, the dynamic MSF algorithm will surely update the maintained tree
accordingly. Note that e′ may be left in H. The vertex-color distance oracles are updated to reflect
the changes done by the algorithm.

After all replacements are made, the tree T is a MST of the set of terminals and nonterminal
vertices of degree more than η. The last step is to add to H all edges vx for all vertices x which
are piece-visible from v, as this is an invariant of the decremental algorithm.

Regarding efficiency, not that every edge that is added may be replaced by an edge that is
shorter by a factor of (1 + ε). In general, an edge insertion may trigger O(log1+εD) replacements,
in amortized sense. Each replacement requires us to update oracles on each of O(log1+εD) levels.
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Thus, for each added edge, we perform O(ε−2 log2D) merge and split operations. Moreover, since
for every vertex we need to maintain edges to all vertices piece-visible by it, we have to add or
remove all such edges when a vertex is added to or removed from the tree.

For general graphs, we are able to maintain (6 + ε)-approximation of the Steiner tree, handling
each update in Õ(ε−2

√
n log2D) expected amortized time. In case of planar graphs, the approxi-

mation ratio is (2 +ε), whereas the amortized expected running time of a single operation amounts
to O(ε−2

√
n log2.5D). To deal with the big dependency on logD, we show a general technique for

decreasing the dependency on logD from logcD to logD, at the cost of adding some additional
ε−1 and log n factors.

4 Online algorithms

In this section we describe our online algorithms for Steiner tree: we show how to maintain a low-
weight tree spanning the terminals, using small number of changes to the tree. In other words, this
section provides all details of the results mentioned in Section 3.1. For completeness, some parts
of Section 3.1 are repeated here.

Let us now give a short overview of this section. First, we observe that the distance oracles, used
with conjunction with our the online algorithms, give only approximate distances and, consequently,
the distances seen by the online algorithm may satisfy the triangle inequality with some slackness.
To cope with that, in Section 4.1 we introduce the notion of µ-near metric space and prove its few
properties that allow us to handle them almost as typical metric spaces.

Then, in Section 4.2 we identify which properties of the maintained tree are needed to guarantee
low weight. Here we essentially follow the core ideas of Imase and Waxman [28], with a more modern
improvements of [30, 20, 21]: to maintain good approximation ratio, it suffices to (a) as long as
we can replace an edge e′ in the tree with a new one e of significantly lower cost, proceed with
the replacement; (b) defer deletion of large-degree nonterminal vertices from the tree. However,
we need some technical work to formally state these properties, especially in the context of near
metric spaces. We also improve the approximation ratio in comparison to previous works.

We proceed with the actual online algorithms in subsequent sections: the decremental scheme
is treated in Section 4.3, the incremental in Section 4.4, and we merge the ideas of these two
algorithms to obtain a fully dynamic one in Section 4.5.

Finally, in Section 4.5.1 we discuss how to bootstrap our algorithm to avoid superfluous depen-
dency on the stretch of the metric in the fully dynamic setting.

In the previous works [28, 30, 20, 21] the main goal was to optimize the number of changes
to the tree, regardless of the actual time needed to identify them. Here we take a different view:
as our ultimate goal is to minimize the total running time of each operation, in amortized sense,
we prefer simple and non obtrusive requirements for the online algorithms, at the cost of (slight)
increase in the actual number of changes. Moreover, we put more stress on optimizing the final
approximation ratio of the algorithm, and identify some tradeoffs that can be made.

Consequently, in all presented online algorithms we allow some additional slackness, comparing
to the algorithms of [28, 30, 20, 21]. For example, the newly added terminal is not necessarily
connected to the closest present terminal, but approximately closest ; a similar slackness is allowed
when performing edge replacements. This relaxation, although increases the number of possible
steps of the algorithm by a constant factor, allows application of approximate distance oracles, and,
consequently, yields fast implementations of the considered dynamic algorithms. Together with the
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presence of near metric spaces, the introduced relaxations add some technical difficulties to our
proofs.

We would like also to remark that, although the recent analysis of the incremental algorithm
of Imase and Waxman [28] due to Gu, Gupta and Kumar [20] perfectly fits into our incremental
scheme, we were not able to apply the same ideas to our fully dynamic scheme, as it is done
in [21]. The reason is that our fully dynamic model differs in a few significant aspects from the one
of [21]. In [21], a newly added terminal is treated as a new vertex in the graph, with new distances
given only to all currently active (not yet deleted) terminals; the remaining distances are assumed
implicitly by the triangle inequality. In this manner, the analysis of [20] is directly applicable, as
the terminal closest to the newly added terminal is always an active one. However, in our case
such an interpretation does not make sense, as we assume the entire algorithm runs on a fixed host
graph, given at the beginning. It does not seem clear whether the analysis of [20] is applicable to
our model at all.

4.1 µ-near metric spaces

As already discussed, in our dynamic algorithms we do not access the underlying graph directly,
but instead use approximate distance oracles that can answer distance queries. The oracles we use
provide us with an approximation of the metric closure of the input graph, that itself may not be
metric, but it is always close to being metric. In the following definition we formalize this notion
of closeness.

Definition 4.1 (µ-near metric space). We say that a complete graph GD = (V,
(
V
2

)
, dGD) is an

µ-near metric space if there exists a metric space G = (V,
(
V
2

)
, dG) on V such that for any u, v ∈ V

we have
dG(uv) ≤ dGD(uv) ≤ µdG(uv).

We additionally say that G is approximated by GD.

Intuitively, a µ-near metric space behaves almost like a metric space, but a factor of µ pops up
if we use the triangle inequality.

Lemma 4.2. Let GD = (V,
(
V
2

)
, dGD) be a µ-near metric space. For any k ≥ 1 and any sequence

v0, v1, v2, . . . , vk ∈ V it holds that

dGD(v0vk) ≤ µ
k∑
i=1

dGD(vi−1vi).

Proof. Assume GD approximates metric space G = (V,
(
V
2

)
, dG). Then

dGD(v0vk) ≤ µdG(v0vk) ≤ µ
k∑
i=1

dG(vi−1vi) ≤ µ
k∑
i=1

dGD(vi−1vi).

The analysis of the approximation factors we obtain relies on Lemma 2.1. So the ultimate goal
is to maintain a good approximation of MST

(
G[S]

)
.
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However, as the algorithm is given access only to a graph GD, which is an approximation of G,
in subsequent sections we instead present how to maintain a good approximation of MST (GD[S])
by maintaining some tree T spanning S in GD. Note that, as T is allowed to use some non-terminal
vertices, it may happen that actually dGD(T ) < dGD(MST (GD[S])). In what follows, we say that
T is a α-approximation of MST (GD[S]) if dGD(T ) ≤ αdGD(MST (GD[S])).

Let us now formally show that approximating MST (GD[S]) is sufficient for our needs.

Lemma 4.3. Assume GD = (V,
(
V
2

)
, dGD) is a µ-near metric space approximating a metric space

G = (V,
(
V
2

)
, dG). Let S ⊆ V be a terminal set, and let T be a tree spanning S and being a α-

approximation of the minimum spanning tree of GD[S] in the complete graph GD (i.e., with regards
to weights dGD). Then T is a 2αµ-approximation of a minimum Steiner tree connecting S in G
(i.e., with regards to weights dG).

Proof. Let TMST be a minimum spanning tree of G[S] and let T be a minimum Steiner tree
connecting S in G (i.e., both TMST and T are minimum with regards to weights dG). As G is a
metric, by Lemma 2.1, we have dG(TMST ) ≤ 2dG(T ). Let TMST be a minimum spanning tree of
GD[S] (i.e., with regards to weights dGD). Using the definition of a µ-near metric space we obtain:

dG(T ) ≤ dGD(T ) ≤ αdGD(TMST ) ≤ αdGD(TMST ) ≤ αµdG(TMST ) ≤ 2αµdG(T ).

Lemma 4.3 allows us to henceforth focus on a weighted complete graph GD and approximate
MST (GD[S]), in most cases forgetting about the underlying approximated metric space G.

4.1.1 Analysis of the greedy approach in near metric spaces

As discussed at the beginning of this section, we would like to apply the recent analysis of [20] of the
greedy approach for incremental algorithm to our case. However, the analysis of [20] is performed
in the presence of a metric space, and our algorithm perceives the input graph via distance oracles,
and hence operates on a near metric space. In this short section, we adapt the results of [20] to
near metric spaces.

In the metric case, the following is proven in [20].

Theorem 4.4 ([20]). Consider a set of terminals S = {t1, t2, . . . , tn} in a metric space G =
(V,
(
V
2

)
, dG). For any 2 ≤ k ≤ n, let gk be the minimum-cost (w.r.t. dG) edge connecting tk with

{t1, t2, . . . , tk−1}. Then
n∏
k=2

dG(gk) ≤ 4n−1
∏

e∈E(MST(G[S]))

dG(e).

As shown below, in the near-metric setting, the constant 4 increases to 4µ.

Theorem 4.5. Consider a set of terminals S = {t1, t2, . . . , tn} in a µ-near metric space GD =
(V,
(
V
2

)
, dGD). For any 2 ≤ k ≤ n, let fk be the minimum-cost (w.r.t. dGD) edge connecting tk with

{t1, t2, . . . , tk−1}. Then

n∏
k=2

dGD(fk) ≤ (4µ)n−1
∏

e∈E(MST (GD[S]))

dGD(e).

22



Proof. Assume GD approximates metric space G = (V,
(
V
2

)
, dG). For any 2 ≤ k ≤ n, let gk be

defined as in Theorem 4.4, that is, gk is the edge connecting tk with {t1, t2, . . . , tk−1} of minimum
possible cost in the metric dG. By the definition of a µ-near metric space and the choice of fk we
have

dGD(fk) ≤ dGD(gk) ≤ µdG(gk). (1)

Moreover, again by the definition of a µ-near metric space we obtain:∏
e∈E(MST (GD[S]))

dGD(e) ≥
∏

e∈E(MST (GD[S]))

dG(e) ≥
∏

e∈E(MST(G[S]))

dG(e). (2)

The theorem follows by combining (1) and (2) with Theorem 4.4.

4.2 Properties guaranteeing good approximation factors

Our goal is to maintain a tree T that spans the current set of terminals S in the near-metric space
GD. In this section we identify the properties of the tree T that guarantee good approximation
factor.

Following [28], when a terminal t is added to S, we can update the current tree by connect-
ing t with T using the cheapest connecting edge. This does not lead to a good approximation
of MST (GD[S ∪ {t}]) because some other edges incident to t could possibly be used to replace
expensive edges in T . In our algorithms, we repeatedly replace tree edges with non-tree edges
(assuring that after the replacement, we obtain a tree spanning S) until we reach a point at which
we can be sure that the current tree is a good approximation of MST (GD[S]). We now formalize
the notion of replacement.

Let T be a tree in GD. For any edge e with both endpoints in V (T ), we say that an edge
eT ∈ E(T ) is a friend of e (with respect to T ) if eT lies on the unique path in T between the
endpoints of e. For a friend eT of e with regards to T , T ′ := (T \ {eT }) ∪ {e} is a tree that spans
V (T ) as well, with cost dGD(T )−(dGD(eT )−dGD(e)). We say that T ′ is created from T by replacing
the edge eT with e, and (e, eT ) is a replacement pair in T .

Definition 4.6 (heavy, efficient and good replacement). Let c > τ ≥ 0 be constants and let T , e
and eT be defined as above. We say that the (e, eT ) pair is a

1. τ -heavy replacement if dGD(eT ) > τdGD(T )/|V |;

2. τ -efficient replacement if (1 + τ)dGD(e) < dGD(eT );

3. (τ, c)-good replacement if it is both τ -efficient and (τ/c)-heavy.

Lemmas 4.8 and 4.9 that follow will later be used to expose the properties of the tree we need
to maintain in order to obtain a constant approximation of Steiner tree. For their proof, we need
the following variant of the classical Hall’s theorem.

Theorem 4.7 (Hall’s theorem). Let H be a bipartite graph with bipartition classes A]B = V (H).
Assume that there exist two positive integers p, q such that for each X ⊆ A it holds that |ΓH(X)| ≥
p
q |X|. Then there exists a function π : A × {1, 2, . . . , p} → B such that (i) aπ(a, i) ∈ E(H) for
every a ∈ A and 1 ≤ i ≤ p, and (ii) |π−1(b)| ≤ q for each b ∈ B.
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Lemma 4.8. Let c > τ ≥ 0 be constants and let T be a tree in a complete graph GD. If T does
not admit any (τ, c)-good replacement, then it is a c(1 + τ)/(c − τ)-approximation of minimum
spanning tree of V (T ). In particular, if T does not admit any τ -efficient replacement, then it is a
(1 + τ)-approximation of minimum spanning tree on V (T ).

Proof. Let TMST be a minimum spanning tree of V (T ). We claim that there exists a bijection
π : E(T )→ E(TMST ) such that e is a friend of π(e) with regards to T , for any e ∈ E(T ). Indeed,
for any X ⊆ E(T ), there are |X| + 1 connected components of T \X and, as T and TMST spans
the same set of vertices, at least |X| edges of TMST connect two distinct connected components of
T \X. As each such edge has a friend in X, the claim follows from Hall’s theorem.

Since T does not admit a (τ, c)-good replacement, for any e ∈ E(T ), either dGD(e) ≤ τdGD(T )/(c|V |)
or dGD(e) ≤ (1+τ)dGD(π(e)). The cost of the edges of the first type sum up to at most τdGD(T )/c,
whereas the cost of the edges of the second type sum up to at most (1 + τ)dGD(TMST ). We infer

dGD(T ) ≤ τ

c
dGD(T ) + (1 + τ)dGD(TMST )

and the lemma follows.

We now move to the core arguments needed for a deletion step. Imase and Waxman [28] proved
that deferring the deletion of non-terminal vertices from the tree T as long as they have degree at
least three incurs only an additional factor of two in the approximation guarantee. We present here
a new, simplified proof of a generalization of this fact to arbitrary degree threshold.

Lemma 4.9. Let η ≥ 2 be an integer and let T be a tree spanning N ∪S where degT (v) > η for any
v ∈ N . Let TS be any tree spanning S. Then there exists a function π : E(T )× {1, 2, . . . , η− 1} →
E(TS) such that

1. e is a friend of π(e, i) with respect to T , for any e ∈ E(T ) and 1 ≤ i ≤ η − 1; and

2. |π−1(e′)| ≤ η for any edge e′ of TS.

Proof. We use Hall’s theorem. Let X ⊆ E(T ); we need to prove that there are at least η−1
η |X|

edges of E(TS) that have a friend in X. Let T be the family of connected components of the forest
T \X, and T¬S ⊆ T be the family of these components of T that do not contain any vertex of S.
By the properties of the set N , each component of T¬S is adjacent to at least η + 1 edges of X.
Consequently, since T is a tree, we have

|T¬S | < |T | /η = (|X|+ 1)/η.

Hence, at least η−1
η |X| + 1 components of T contain a vertex of S. To connect these vertices, TS

needs to contain at least η−1
η |X| edges with endpoints in different components of T \X, and each

such edge has at least one friend in X. The lemma follows.

With a similar strategy, we provide a proof Lemma 7.3, used later on in Section 7, but proven
here for convenience.

Proof of Lemma 7.3. Recall that TMST = MST (G̃[S]). Define a tree T̂ as follows: for each edge
uw ∈ E(TMST ), take its corresponding edges ux,wx ∈ E(B), dB(ux) +dB(wx) = δ̃B(uw), and add
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them to T̂ . In this way we obtain a tree T̂ in B of length at most δ̃B(TMST ) that spans a superset
of S. Denote Ŝ = V (T̂ ). It suffices to prove that dB(T ) ≤ 2dB(T̂ ).

Let L
N\Ŝ be the set of leaf vertices of T ′ that are contained in N \ Ŝ, and let T

Ŝ
= T ′ \ L

N\Ŝ .

Clearly, T is a subtree of T
Ŝ

, so it suffices to prove dB(T
Ŝ

) ≤ 2dB(T̂ ).
To this end, we show that there exists a function π : E(T

Ŝ
)→ E(T̂ ) such that

1. e is a friend of π(e) with respect to T
Ŝ

, for any e ∈ E(T
Ŝ

);

2. |π−1(e′)| ≤ 2 for every e′ ∈ E(T̂ ).

Observe that T
Ŝ

is a minimum spanning tree of B[Ŝ], since T ′ is a minimum spanning tree as well.
Hence, for such a function π we would have dG(e) ≤ dB(π(e)) for any e ∈ E(T

Ŝ
) and, consequently,

dB(T
Ŝ

) ≤ 2dB(T̂ ), concluding the proof of the lemma.
By Hall’s theorem, it suffices to prove that for any X ⊆ E(T

Ŝ
), at least |X|/2 edges of E(T̂ ) have

a friend in X (with respect to T
Ŝ

). To this end, consider any X ⊆ E(T
Ŝ

) and let T be the family
of connected components of the forest T

Ŝ
\X, and T¬Ŝ ⊆ T be the family of these components of

T that do not contain any vertex of Ŝ. Observe that each component Q of T¬Ŝ is either adjacent
to at least three edges of X, or consists of a single vertex of N and is adjacent in T to exactly two
vertices of S ⊆ Ŝ. In the latter case, we contract Q together with its two neighboring components,
decreasing |T | by 2 and |T¬Ŝ | by one. After k contractions, we have as in Lemma 4.9

|T¬Ŝ | − k < (|T | − 2k)/2.

Consequently, |T¬Ŝ | < |T |/2 = (|X|+ 1)/2. Thus, at least |X|/2 edges of T̂ are needed to connect
the components of T \ T¬Ŝ , and all such edges have some friend in X. This finishes the proof of an
existence of the function π, and concludes the proof of the lemma.

Lemma 4.10 that follows summarizes the properties we need to maintain a good tree. With
respect to terminal addition, it says that it suffices to perform good replacements. With respect to
terminal removal, it allows us to postpone the deletion of a terminal from the approximate Steiner
tree as long as it has degree larger that some fixed integer threshold η.

Lemma 4.10. Let τ ≥ 0 be a constant, η ≥ 2 be an integer, GD = (V,
(
V
2

)
, dGD) be a complete

weighted graph and S ⊆ V . Let TMST = MST (GD[S]) be a minimum spanning tree of S and let T
be a tree spanning S ∪N such that for any v ∈ N we have degT (v) > η. Then the following hold.

1. If N = ∅ and T does not admit a (τ/2, 1 + τ)-good replacement, then dGD(T ) ≤ (1 +
τ)dGD(TMST ).

2. If T is a minimum spanning tree of S ∪N , then dGD(T ) ≤ η
η−1dGD(TMST ).

3. If T does not admit a τ -efficient replacement then dGD(T ) ≤ η
η−1(1 + τ)dGD(TMST ).

Proof. Point 1 follows from Lemma 4.8. To prove the remaining points, invoke Lemma 4.9 on trees
T and TMST with threshold η to obtain a mapping π : E(T )× {1, 2, . . . , η − 1} → E(TMST ). If T
is a minimum spanning tree of S ∪N , dGD(e) ≤ dGD(π(e, i)) for any e ∈ E(T ) and 1 ≤ i ≤ η − 1;
Point 2 follows by summation over the entire domain of π. If T does not admit an τ -efficient
replacement, dGD(e) ≤ (1 + τ)dGD(π(e, i)) for any e ∈ E(T ) and 1 ≤ i ≤ η − 1 and Point 3 follows
similarly.
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Knowing which properties we need our tree to satisfy, we may now investigate how to maintain
these properties when confronted with addition and deletion of a terminal to and from the terminal
set. In the next subsections we show how to modify the tree to preserve the desired properties.

4.3 Decremental online algorithm

In the decremental scheme, we study the case when terminals are removed from the terminal set.
The main idea is to use Lemma 4.9 and to maintain the minimum spanning tree on the terminal
set, but to postpone the deletion of terminals that are of degree above some fixed threshold η ≥ 2
in this spanning tree.

When a vertex v of degree s ≤ η is deleted from the tree T , the tree breaks into s components
T v = {T1, T2, . . . , Ts} that need to be reconnected. The natural idea is use for this task a set of
edges of GD of minimum possible total weight. That is, we first for each 1 ≤ i < j ≤ s identify
an edge eij of minimum possible cost in GD among edges between Ti and Tj . Then, we construct
an auxiliary complete graph Hv with vertex set T v and edge cost d(TiTj) := dGD(eij) and find a
minimum spanning tree MST (Hv) of this graph. We define F v := {eij : TiTj ∈ E(MST (Hv))} to
be the set of reconnecting edges and T ′ := (T \ {v}) ∪ F v to be the reconnected tree T . We now
proceed with a formal argumentation that this natural idea indeed works as expected.

Lemma 4.11. Let T be a tree in a complete graph GD = (V,
(
V
2

)
, dGD), let T be a family of pairwise

vertex-disjoint subtrees of T such that there exists a subtree T c of T with |V (T c) ∩ V (T̂ )| = 1 for
any T̂ ∈ T , and let F be a set of edges of GD such that (a) each edge of F connects two different
trees of T , and (b) T ′ := F ∪

⋃
T is a tree. Let (e, e′) be a replacement pair in T ′. Then one of

the following holds:

1. (e, e′) is a replacement pair in T as well;

2. e′ ∈ F ; or

3. there exists f ∈ F such that (e, f) is a replacement pair in T ′ and (f, e′) is a replacement pair
in T .

Proof. Let P be the unique path between the endpoints of e in the tree T ′. By the construction of
T ′, P consists of subpaths P1, P2, . . . , Ps, where Pi is a path in Ti ∈ T , and edges e2, e3, . . . , es ∈ F ,
where each ei connects the endpoint of Pi−1 with the starting point of Pi.

If s = 1 then P = P1 and hence (e, e′) is a replacement pair in T as well. If e′ = ei for some
2 ≤ i ≤ s then e′ ∈ F and the lemma is proven. Otherwise, as e′ lies on P , e′ ∈ E(Pj) for some
1 ≤ j ≤ s. Observe that for any 2 ≤ i ≤ s, the pair (e, ei) is a replacement pair in T ′. To finish
the proof of the lemma it suffices to show that either (e, e′) or (ei, e

′) for some 2 ≤ i ≤ s is a
replacement pair in T .

Let x be the first vertex of Pj , y be the last vertex of Pj , and let z be the unique vertex of
V (T c)∩ V (Tj). Since e′ ∈ E(Pj), the edge e′ lies either on the unique path between x and z in Tj ,
or on the unique path between y and z. In the first case, observe that (ej , e

′) is a replacement pair
in T if j > 1, and (e, e′) is a replacement pair in T if j = 1. In the second case, symmetrically,
observe that (ej+1, e

′) is a replacement pair in T if j < s and (e, e′) is a replacement pair in T if
j = s.
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Lemma 4.12. Let T be a tree in a complete graph GD = (V,
(
V
2

)
, dGD) that does not admit a

τ -efficient replacement and let v ∈ V (T ). Let T be the family of connected components of T \ {v}
and define the reconnecting edges F v and the reconnected tree T ′ = (T \{v})∪F v as at the beginning
of this section. Then T ′ does not admit a τ -efficient replacement as well.

Proof. Let (e, e′) be a replacement pair in T ′; our goal is to prove that it is not τ -efficient. Apply
Lemma 4.11 to the pair (e, e′), the family T , tree T c = T [{v} ∪ ΓT (v)] and set F v, and consider
the three possible outcomes.

If (e, e′) is a replacement pair in T as well, then clearly it is not τ -efficient. Otherwise, observe
first that for every g ∈ F v such that (e, g) is a replacement pair in T ′, it follows from the choice of
F v that dGD(e) ≥ dGD(g). Hence, if e′ ∈ F v then dGD(e) ≥ dGD(e′) and (e, e′) is not τ -efficient.

Consider now an edge f ∈ F v promised in the remaining case of Lemma 4.11. As (e, f) is a
replacement pair in T ′, we have from the previous reasoning that dGD(e) ≥ dGD(f). As (f, e′) is a
replacement pair in T , it is not τ -efficient. Therefore, (e, e′) is also not τ -efficient and the lemma
is proven.

We are ready to describe our dynamic algorithm. Fix an accuracy parameter ε > 0 and denote
η := 1 + dε−1e, that is, η is the smallest positive integer for which η

η−1 ≤ 1 + ε. Thus, by Lemma
4.10, Point 2, to obtain a (1 + ε)-approximation of MST (GD[S]) where S is the set of currently
active terminals, it is sufficient to maintain a tree T such that

1. S ⊆ V (T );

2. T is a minimum spanning tree of V (T ) (i.e., T does not admit any 0-efficient replacement);

3. any non-terminal vertex of T is of degree larger than η in T .

To achieve this goal, we describe a procedure removeη(v) that checks if a vertex v should be
removed from the currently maintained tree T and, if this is the case, performs the removal.

1. If v is a terminal, v /∈ V (T ) or degT (v) > η, do nothing.

2. Otherwise, delete v and its incident edges from T , and compute the reconnecting edges F v

and the reconnected tree T ′ = (T \ {v}) ∪ F v as described in the beginning of this section.
Replace T with T ′. Then, recursively invoke removeη on all ex-neighbors of v in T .

If we delete v from the terminal set, we first mark v as non-terminal and then call removeη(v).
Lemma 4.12 for τ = 0 ensures that, if we initialize T as the minimum spanning tree on the
terminal set, then T satisfies all aforementioned three properties and is a (1 + ε)-approximation of
MST (GD[S]), where S is the current set of terminals. By Lemma 4.3, we obtain in this manner
a 2(1 + ε)µ-approximation of minimum Steiner tree on S in the metric G that is approximated by
GD.

Lemma 4.13. Assume that an algorithm implements the decremental scheme. Then, it maintains
a 2(1+ε)µ-approximation of minimum Steiner tree of S in G. In the course of the first r deletions,
the algorithm performs at most r calls to the procedure removeη that result in a modification of
the maintained tree. Moreover, each vertex removed by the procedure removeη is of degree at most
η = O(ε−1) in the currently maintained tree.
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Proof. The approximation ratio follows from the discussion above. The claim about efficiency
follows from an observation that removeη modifies the maintained tree only when called upon an
non-terminal vertex in the tree of degree at most η, and each deletion operation introduces only
one non-terminal vertex.

4.4 Incremental online algorithm

We consider here the case when new terminals are added to the terminal set and we are to update
the currently maintained tree. Following Imase and Waxman [28] and Megow et al [30], we would
like to first connect the new terminal to tree we already have, and then try to apply all occurring
(τ/2, 1+τ)-good replacement pairs, for some τ > 0. The main technical contribution of this section
is a proof that it is sufficient to look only at replacement pairs (e, e′) where e is incident to the
newly added vertex.

However, as we would like to use our scheme in conjunction with approximate distance oracles,
we need to introduce some additional relaxation in terms of efficiency of conducted replacements.
We would like to require that the algorithm does not leave any (τ/2, 1 + τ)-good replacement pair,
but any replacement made by the algorithm is only ς-efficient for some 0 < ς ≤ τ/2. The first
requirement yields the approximation guarantee, while the latter controls the number of performed
replacements.

We now proceed with formal description of the incremental scheme. Assume the algorithm
operates on a µ-near metric space GD = (V,

(
V
2

)
, dGD) and we are additionally equipped with

parameters τ ≥ 2ς > 0. Define c = 2µ(1 + τ)2.
At one step, given a tree T and a new terminal vertex v ∈ V \ V (T ), we:

1. add an edge to T connecting v with V (T ) of cost minu∈V (T ) dGD(uv);

2. apply a sequence of ς-efficient replacement pairs (e, e′) that satisfy the following additional
property: e′ is a friend of e in the currently maintained tree of maximum possible cost;

3. after all the replacements, we require that there does not exist a (τ/2, c)-good replacement
pair (e, e′) with e incident to v.

To argue about the efficiency of incremental scheme we need to use the fact that graph GD we
work on is an µ-near metric space. The next lemma shows that the cost of the optimal tree cannot
decrease much during the course of the algorithm.

Lemma 4.14. Let T, T ′ be two trees in a µ-near metric space GD = (V,
(
V
2

)
, dGD), such that

V (T ) ⊆ V (T ′) and T is a α-approximation of a minimum spanning tree on V (T ), for some α ≥ 1.
Then dGD(T ′) ≥ dGD(T )/(2αµ).

Proof. Let G = (V,
(
V
2

)
, dG) be a metric space approximated by GD. Let TMST = MST

(
G[V (T )]

)
be the minimum spanning tree of V (T ) in G (i.e., with regards to weights dG) and let TS be the
minimum Steiner tree on the terminal set S = V (T ) in G. Let TMST = MST (GD[V (T )]) be the
minimum spanning tree of V (T ) in GD. Note that TMST is a 2-approximation of the minimum
Steiner tree on V (T ), whereas T ′ is a (not necessarily optimal) Steiner tree of V (T ). Hence

dGD(T ′) ≥ dG(T ′) ≥ dG(TS) ≥ dG(TMST )/2 ≥ dGD(TMST )/(2µ)

≥ dGD(TMST )/(2µ) ≥ dGD(T )/(2αµ).
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In what follows we prove that it is sufficient to find replacement edges adjacent to the new
terminal.

Lemma 4.15. If an incremental algorithm satisfies the scheme above in an µ-near metric space GD
then after each step tree T does not admit a (τ/2, 1 + τ)-good replacement pair and, consequently,
is a (1 + τ)-approximation of MST (GD[S]) and a 2(1 + τ)µ-approximation of minimum Steiner
tree spanning S in G.

Proof. Let t1, t2, t3, . . . be a sequence of terminals added to the terminal set, Sk = {t1, t2, . . . , tk}
and Tk be the tree maintained by the algorithm after k-th terminal addition, i.e., V (Tk) = Sk. We
inductively prove that Tk does not admit a (τ/2, 1 + τ)-good replacement pair; the second part
of the lemma follows directly from Lemmas 4.10 and 4.3. The claim for k ≤ 1 is obvious; let us
assume that k ≥ 2 and that the statement is true for the trees T1, T2, . . . , Tk−1.

First, note that by Lemma 4.8, any tree Ti for i < k is a (1 + τ)-approximation of a minimum
spanning tree of GD[Si]. By Lemma 4.14, dGD(Tk) ≥ dGD(Ti)/(2µ(1 + τ)) for any i < k.

Assume that there exists a (τ/2)-efficient replacement pair (e, e′) in Tk. Assume e = titj where
1 ≤ i < j ≤ k. Let ej be an edge of maximum cost on the unique path between ti and tj in Tj . We
now prove the following.

Claim 4.16. For any j ≤ j′ ≤ k, the unique path between ti and tj in Tj′ does not contain edges
of cost greater or equal to dGD(ej).

Proof. We use induction on j′. In the base case j′ = j the claim follows from the choice of ej . In
the inductive step, consider a single replacement pair (f, f ′) applied by the algorithm. Denote by
T 1 (resp. T 2) the maintained tree before (resp. after) the replacement pair was applied, and by P1

(resp. P2) the unique path connecting ti and tj in T 1 (resp. T 2). Assume that no edge on P1 is
of cost greater on equal to dGD(ej); we would like to prove the same statement for P2. If P1 = P2

there is nothing to prove so assume otherwise. We have f ∈ E(P2) \ E(P1), f ′ ∈ E(P1) \ E(P2)
and, by the efficiency of (f, f ′), we have dGD(f) ≤ dGD(f ′) ≤ dGD(ej). Moreover, observe that
each edge f ′′ ∈ E(P2) \ ({f} ∪ E(P1)) is a friend of f in the tree T 1. By the choice of f ′, we have
dGD(f ′′) ≤ dGD(f ′) ≤ dGD(ej) and the claim follows. y

By Claim 4.16, we infer that dGD(e′) ≤ dGD(ej), as e′ lies on the unique path between ti and
tj in Tk. Hence, (e, ej) is a (τ/2)-efficient replacement pair in Tj and, moreover, e is incident with
tj . By the requirements we impose on the algorithm, (e, ej) is not (τ/(2c))-heavy in Tj , that is:

dGD(ej) ≤
τ/2

c
· dGD(Tj)

|V |
≤ τ/2

2µ(1 + τ)2
· 2µ(1 + τ)dGD(Tk)

|V |
=

τ/2

1 + τ
· dGD(Tk)

|V |
.

As dGD(e′) ≤ dGD(ej), we infer that (e, e′) is not (τ/2, 1 + τ)-good in Tk, and the lemma is
proven.

We now apply the analysis of [20], i.e. Theorem 4.5, to obtain a bound on the number of
replacements performed by the incremental scheme.

Lemma 4.17. Assume that an algorithm implements the incremental scheme for some choice of
parameters τ ≥ 2ς > 0 with ς = O(1). Then, in the course of the first r additions, the algorithm
performs O(rς−1(1 + log µ)) replacements.
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Proof. Let t1, t2, t3, . . . , tr be a sequence of terminals added to the terminal set, Sk = {t1, t2, . . . , tk}
and Tk be the tree maintained by the algorithm after k-th terminal addition, i.e., V (Tk) = Sk. The
set of replacement pairs applied by the algorithm can be arranged into a set of r − 1 sequences of
the form (e2k, e

1
k), (e3k, e

2
k), . . . , (e

s(k)
k , e

s(k)−1
k ), 2 ≤ k ≤ r, where es(k)k ∈ E(Tr) and e1k is the edge

added to connect tk to Tk−1 at the beginning of the k-th addition step. As each replacement is
ς-efficient, we have

s(k)− 1 ≤ log1+ς

(
dGD(e1k)/dGD(e

s(k)
k )

)
. (3)

Consider now MST (GD[Sr]) and let e2, e3, . . . , er be such a permutation of E(MST (GD[Sr]))

such that ek is a friend of es(k)k w.r.t. MST (GD[Sr]), for every 2 ≤ k ≤ r. By the properties of a
minimum spanning tree,

dGD(e
s(k)
k ) ≥ dGD(ek). (4)

Altogether, we can bound the number of replacements, equal to
∑r

k=2 s(k)− 1, as follows.

r∑
k=2

s(k)− 1 ≤
r∑

k=2

log1+ς
dGD(e1k)

dGD(e
s(k)
k )

by (3)

≤
r∑

k=2

log1+ς
dGD(e1k)

dGD(ek)
by (4)

≤ O(ς−1)

(
r + log

∏r
k=2 dGD(e1k)∏r
k=2 dGD(ek)

)
as ς = O(1)

≤ O(ς−1)
(
r + log

(
(4µ)r−1

))
by Theorem 4.5

≤ O(rς−1(1 + log µ)).

4.5 Fully dynamic online algorithm

We now merge the ideas of two previous sections to obtain a scheme for a fully dynamic algorithm.
We fix three accuracy parameters τ, ς, ε > 0, where τ controls the efficiency of replacement pairs
that are allowed to remain in the tree, ς ≤ τ controls the efficiency of the replacement pairs actually
made, and hence the total number of replacements made by the algorithm, whereas ε controls the
loss caused by postponing the deletion of high-degree non-terminal vertices from the tree, and
hence the degree threshold at which we delete non-terminal vertices from the tree. We aim at
(1 + τ)(1 + ε)-approximation of MST (GD[S]) for S being the current set of terminals. As in the
decremental step, we define η = 1+dε−1e = O(ε−1), that is, η is the minimum positive integer with
η
η−1 ≤ 1 + ε. In the algorithm, we maintain a tree T spanning a set of terminals and nonterminals.
The degree of every nonterminal is greater than η and the tree does not admit any τ -efficient
replacements.

In a deletion step, we behave in exactly the same manner as in the decremental scheme in
Section 4.3. If we want to delete v from the terminal set, we mark it as non-terminal and call the
procedure removeη(v) that tries to remove vertex v from the tree T if v is not a terminal and its
degree is at most η.

In an addition step, we perform similarly as in the incremental scheme, but there are two
significant differences. First, we do not have the guarantee that the cost of the tree will not

30



decrease much in the future (as in Lemma 4.14), so we cannot stop replacing edges at some cost
threshold. Second, we need to watch out for non-terminal vertices whose degree may drop to the
threshold η as a consequence of a replacement. Formally, to add a vertex v to the terminal set S
we perform the following operations on the currently maintained tree T .

1. If v ∈ V (T ), mark v as a terminal and finish.

2. Otherwise, connect v to any vertex of T , initialize an auxiliary set R as R = ∅; and

3. apply a sequence of ς-efficient replacement pairs, where for each such pair (e, e′) we require
that e′ has the maximum possible cost among the friends of e; moreover, for each such pair
we insert both endpoints of e′ into the set R;

4. once all replacement pairs are applied, we require that there exists no τ -efficient replacement
pair (e, e′) with e incident to v;

5. at the end, invoke removeη on all vertices in R in an arbitrary order.

We claim the following.

Lemma 4.18. If a fully dynamic algorithm satisfies the scheme above, after each step the tree
T does not admit a τ -efficient replacement pair and each non-terminal vertex of T has degree
larger than η in T . Consequently, T is a (1 + τ)(1 + ε)-approximation of MST (GD[S]) and a
2(1 + τ)(1 + ε)µ-approximation of minimum Steiner tree spanning S in G, where S is the current
set of terminals.

Proof. The second claim of the lemma follows directly from the first claim and lemmas 4.10 and 4.3.
The claim that each non-terminal vertex of T has degree larger than η in T is obvious, as we invoke
the procedure removeη on a vertex whenever its degree drops in T .

Consider now a step of adding a vertex v to the terminal set. Let T be the tree before this
step, and T ′ be the tree obtained after connecting v to the T and performing all replacements, but
before the first call to the procedure removeη on an element of R. We claim that if T does not
admit a τ -efficient replacement pair, neither does T ′.

Assume the contrary. By the definition of T ′, if T ′ admits a τ -efficient replacement pair (e, e′),
then e is not incident with v (such a pair is henceforth called forbidden replacement pair). Let T 0

be the tree T with v connected to T , and T 1, T 2, . . . , T s = T ′ be the sequence of trees computed
by the algorithm; T j is constructed from T j−1 by applying a ς-efficient replacement pair (ej , e

′
j).

Note that degT 0(v) = 1 and it follows from Lemma 4.12 for the vertex v that T 0 does not admit
a forbidden replacement pair. By our assumption, T s = T ′ contains a forbidden replacement pair;
let i be the smallest integer for which T i contains a forbidden replacement pair, and let (e, e′) be
any one of them. Note that i > 0.

We apply Lemma 4.11 to the tree T i−1, the family T being the two trees of T i−1 \{e′i}, the tree
T c consisting of a single edge e′i, and set F = {ei}. By the choice of i, (e, e′) is not a replacement
pair in T i−1, as no forbidden replacement pair exists in T i−1.

Consider now the case e′ ∈ F , that is, e′ = ei. As (e, e′) is τ -efficient and (ei, e
′
i) is ς-efficient,

we have that (1 + τ)dGD(e) < dGD(e′i) and, in particular, e 6= e′i. As e connects the two connected
components of T i−1 \ {e′i}, (e, e′i) is a τ -efficient replacement pair in T i−1. Since e is not incident
to v, (e, e′i) is a forbidden replacement pair in T i−1, a contradiction to the choice of i.
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In the remaining case, (ei, e
′) is a replacement pair in T i−1. As we require e′i to be an edge of

maximum cost among the friends of ei in T i−1, we infer that dGD(e′i) ≥ dGD(e′) > dGD(e)/(1 + τ),
where the last inequality follows from the τ -efficiency of (e, e′). In particular, e 6= e′i, and (e, e′i) is a
τ -efficient replacement pair in T i−1. Since e is not incident to v, (e, e′i) is a forbidden replacement
pair, a contradiction to the choice of i.

To finish the proof of the lemma, observe that Lemma 4.12 ensures that a call to the procedure
removeη cannot introduce a τ -efficient replacement pair, if it was not present prior to the call.

We conclude this section with a note on the efficiency of our fully dynamic scheme.

Lemma 4.19. Assume that an algorithm implements the fully dynamic scheme for some choice
of parameters τ, ς, ε > 0 with ς ≤ τ and ς = O(1), and is run on an µ-near metric space GD =
(V,
(
V
2

)
, dGD) with stretch D, and a sequence of r operations, where r+ of this operations are addi-

tions and r− = r− r+ are deletions. Then the algorithm performs O(ς−1(r+ logD+ r−(1 + logµ)))
replacements, and at most r− calls to removeη procedure that result in a modification of the
maintained tree. Moreover, each vertex removed by the procedure removeη is of degree at most
η = O(ε−1) in the currently maintained tree.

Proof. The second and third bounds follow directly from the fact that removeη modifies the tree
only if it is called upon a non-terminal vertex of degree at most η in the tree, and each deletion
operation introduces only one non-terminal vertex. For the first claim, let dmin be the minimum
cost of an edge in GD, and consider a potential Φ(T ) =

∑
e∈E(T ) log1+ς(dGD(e)/dmin). Clearly,

this potential is zero at the beginning and never becomes negative. Moreover, each ς-efficient
replacement drops the potential by at least one.

If we introduce a new edge, we increase the potential by at most dlog1+ς De = O(ς−1 logD).
Consider now a call to the procedure removeη that replaces a vertex v of degree s ≤ η in T with a
set F v of s−1 edges, obtaining the reconnected tree T ′. Let T v = {T1, T2, . . . , Ts} be the connected
components of T \{v} and for every 1 ≤ i ≤ s, let ei be the unique edge connecting V (Ti) with v in
the tree T , and let ui be the endpoint of ei that belongs to V (Ti). Without loss of generality assume
dGD(e1) ≥ dGD(e2) ≥ . . . ≥ dGD(es). Observe that, by Lemma 4.2, for every 1 ≤ i < s we have
dGD(uiui+1) ≤ µ(dGD(ei) + dGD(ei+1)) ≤ 2µdGD(ei). Moreover, the set F ′ := {uiui+1 : 1 ≤ i < s}
is a valid candidate for the set F v and hence there exists a bijective mapping π : F v → F ′ such
that dGD(π(e)) ≥ dGD(e) for any e ∈ F v. We infer that

Φ(T ′)− Φ(T ) ≤
s−1∑
i=1

log1+ς (dGD(uiui+1)/dGD(ei)) ≤ log1+ς(2µ) = O(ς−1(1 + log µ)).

The lemma follows.

As discussed at the beginning of this section, it does not seem clear if the analysis of incremental
algorithm of [20] (i.e., Theorem 4.5) is applicable to our fully dynamic scheme. The usage of this
analysis in [21] strongly relies on the assumption that newly added terminals are new vertices
in the graph, with distances to terminals already deleted being implicitly defined by the triangle
inequality. However, in our model of a fixed host graph G this assumption is no longer valid, hence
we need to fall back to the more straightforward analysis of Lemma 4.19.
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4.5.1 Decreasing the dependence on the stretch of the metric

The fully dynamic scheme presented above yields algorithms depending on the stretch of the metric.
The dependence in Lemma 4.19 is proportional to logD. However, in some implementations the
dependence on logD may be bigger. In this section we present a generic method of avoiding such
a dependency, at the cost of additional polylogarithmic factors in n = |V |.

The main idea is similar as in the incremental algorithm: the edges of cost εdGD(T )/n are almost
for free, and, consequently, the window of interesting edge costs is of stretch O(n/ε). However, in
the fully dynamic algorithm we cannot simply ignore what happens to the tree on low-cost edges, as
they may become important in the future, when the cost of the tree decreases significantly. Thus,
we adapt a different strategy: for each possible window, we maintain a solution that considers only
edges of levels from this window (and assumes the cheaper ones are for free). Formally, we prove
the following.

Theorem 4.20. Let G be a minor-closed graph class and α, ε > 0 be constants. Assume we are
given a fully dynamic algorithm that, given a graph G ∈ G with nonnegative edge weights, n vertices
and metric stretch D, initializes in fini(n, logD) time, handles updates (terminal additions and
deletions) in fupd(n, logD) time, handles queries on the cost of minimum Steiner tree in fq(n, logD)
time with approximation guarantee α, and uses fmem(n, logD) memory. Assume additionally that
all fini, fupd, fq are non-decreasing with respect to their parameters and that fini and fmem are
convex and at least linear in n.

Then there for some ∆ = O(ε−1 log(ε−1n)) there exists a fully dynamic algorithm that initializes
in O(fini(n,∆)ε−1 logD) time, handles updates in O(fupd(n,∆)ε−1 logD) time, handles queries
in fq(n,∆) + O(1) time with approximation guarantee (α + ε) and uses O(fmem(n,∆)ε−1 logD)
memory.

Before we dive into the depths of the proof of Theorem 4.20, we would like to clarify that this
theorem operates on the actual graph G and the metric space G being the closure of the edge weights
of G. In other words, all distance oracles and subsequent µ-near metric spaces approximating G
are hidden inside the assumed fully dynamic algorithm.

Proof. Let G = (V,
(
V
2

)
, dG) be the metric closure of G, recall that n = |V |. Let us introduce levels

of edge weights in G as follows. Let β = β(ε) = 1 + ε and for any u, v ∈ V , we define the level
of uv, lvl(uv), as blogβ d(uv)c, i.e., βlvl(uv) ≤ dG(uv) < βlvl(uv)+1. Let a be the smallest integer
such that if for any two edges e, e′ we have lvl(e′)− lvl(e) ≥ a then dG(e) < dG(e′)/n. Similarly
we define b to be the minimum difference in levels that guarantee a ratio of costs of at least ε/n.
Note that a = O(ε−1 log n) and b = O(ε−1 log(ε−1n)). We fix ∆ = a + b.

For an integer i, we define a binary relation Ri on V as follows: (u, v) ∈ Ri iff there exists a
path between u and v in G whose each edge is of level at most i. Note that, equivalently, we may
require that this path resides in G, as the weights of edges in G are nonnegative. It is easy to see
that Ri is an equivalence relation; let V i be the set of its equivalence classes and, for any v ∈ V ,
vi(v) is the equivalence class of v in Ri.

For a fixed level i, let Gi be a graph constructed from G as follows: we contract all edges of G
of level at most i − b, and we delete all edges uv, where (u, v) /∈ Ri+a. Note that V (Gi) = V i−b
and each connected component of Gi corresponds to one equivalence class of Ri+a. Moreover, Gi

is a minor of G and can be constructed in linear time.
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Let di be the metric on V (Gi) = V i−b induced by the weights of the edges of Gi. Let v and
v′ be two distinct vertices of the same connected component of Gi. As v and v′ can be connected
with a path with edges of level at most i + a, we have di(vv′) < (n − 1)βi+1+a and therefore
lvl(vv′) ≤ i + O(ε−1 log n) in the metric di. As we contracted all edges of level at most i − b in
the process of obtaining the graph Gi, we have lvl(vv′) > i − b. Since b = O(ε−1 log(ε−1n)), we
infer that the logarithm of the stretch of the metric di is at most ∆ = O(ε−1 log(ε−1n)).

Intuitively, the graph Gi contains all the information we need to construct the approximate
Steiner tree for a given set of terminals, if the most expensive edge of such a tree would have level
roughly i.

We run several copies of the assumed fully dynamic algorithm: for each level i out of log1+εD =
O(ε−1 logD) levels and for each c ∈ V i+a we create a copy of the fully dynamic algorithm Aic
created on the connected component c of the graph Gi. At any time, if S is the current set of
terminals in G, a vertex v ∈ V (Gi) is a terminal in Aic where v ⊆ c if v ∩ S 6= ∅. Denote
Si = {v ∈ V (Gi) : S ∩ v 6= ∅}. Note that the memory usage of the structures is as promised due
to convexity of fmem.

At initialization, note that the construction of the graph Gi takes time linear in |V (G)|+|E(G)|,
and, therefore is subsumed by the time taken to initialize the fully dynamic algorithms. The
initialization time follows from the assumptions on the convexity of fini.

To handle updates (additions and deletions from the terminal set), for each level i and for each
v ∈ V (Gi) = V i−b we keep a counter how many terminals of S are contained in v. An addition
or deletion of a vertex v from the terminal set results in a change of the counter at each of the
O(ε−1 logD) levels; if at any level the counter changes from 0 to 1 or from 1 to 0, an operation
(addition or deletion) is performed on Aic, where v ⊆ c ∈ V i+a. The promised update time follows.

To handle queries, first, for each level i, we define Fi to be an (arbitrarily chosen) spanning
forest of the subgraph of G that contains exactly those edges that have level at most i. Note that
Fi can be constructed in linear time for each i at the time of initialization. Let us define i(S) to
be the minimum level where all terminals are contained in the same equivalence class c(S) ∈ V i(S).
Assume c(S) ⊆ c′(S) ∈ V i(S)+a, that is, let c′(S) be the equivalence class of Ri(S)+a that contains
S. Let T be the tree maintained by Ai(S)c′(S) and let H be the edge-induced subgraph of G that
contains all edges of T as well as Fi−b. Clearly, H contains a connected component that spans
S in G. We claim that the total cost of all edges of H is a good approximation of the cost of
the minimum spanning tree of S in G and, consequently, a good approximation of the cost of the
minimum Steiner tree of S in G. Let TOPT be any such minimum Steiner tree of S in G.

By the definition of i(S), any tree spanning S in G needs to contain at least one edge of
level at least i. Hence, dG(TOPT ) ≥ βi. On the other hand, by the definition of b, dG(Fi−b) ≤
(n− 1) · εβi/n < εβi ≤ εdG(TOPT ).

As S ⊆ c(S) ∈ V i(S), Fi contains a connected component that spans S and, consequently,
dG(TOPT ) ≤ dG(Fi) < (n − 1)βi+1. By the definition of a, dG(TOPT ) < βi+a, so TOPT does not
contain any edge of level i + a or higher. We infer that V (TOPT ) ⊆ c′(S) and, by construction
of Gi, the cost of a minimum Steiner tree of Si in Gi is at most dG(TOPT ). Therefore, the tree
maintained by Ai(S)c′(S) has cost at most αdG(TOPT ). We infer that dG(H) ≤ (α+ ε)dG(TOPT ).

We note that the value of i(S) can be updated after each addition or deletion operation by
counting the number of terminals in each connected component of each graph Gi. Thus, to handle
a query we need to query one algorithm Ai(S)c′(S) and to look up the precomputed cost of the forest
Fi(S)−b. The query time follows.
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5 Dynamic vertex-color distance oracles

In this section we construct dynamic vertex-color distance oracles that we later use to implement
algorithms from Section 4. Their interface, as well as some basic definitions have been introduced
in Section 3.2. This section covers the construction that allows us to extend any generic oracle to a
vertex-color distance oracle. Moreover, we show how to build generic oracles for general and planar
graphs. In the end, we obtain an incremental vertex-color distance oracle for planar graphs, and
fully dynamic oracles, both for planar and general graphs.

5.1 Generic construction

In the Section 3.2 we defined a list of queries and update operations that our oracles should support.
In this section we present generic implementations of the two schemes introduced in the previous
section. The constructions presented here are generic in a sense that no specific choice of portals
or pieces is imposed. Instead, the running times and space requirements are measured in terms of
a few general parameters:

• ptot =
∑

v∈V |portals(v)| is the (expected) total number of vertex-portal connections,

• pnum = |P| is the (expected) total number of portals,

• pmax = maxv∈V |portals(v)| is an upped bound on the (expected) number of portals assigned
to a vertex,

• rtot =
∑

r∈R |r| is the (expected) total size of all pieces,

• rnum = |R| is the (expected) total number of different pieces,

• r#max = maxr∈R |r| is an upper bound on the (expected) size of a piece,

• rmax = maxv∈v |pieces(v)| is an upper bound on the (expected) number of pieces assigned to
a vertex,

• atot =
∑

v∈A |portals(v)|, where A is a set of vertices activated by the oracle, is the (expected)
total number of vertex-portal connections over vertices that were activated by the oracle.

Note that some of our constructions are randomized, and then we measure the quality of the oracle
in expectation. We also assume that all these values are bounded polynomially in n, and hence the
logarithm of any of it can be bounded by O(log n).

The problem one deals with in our oracles is finding the vertex-set portal distances. The piece
distances are easy to find: upon a query it suffices to run single source shortest paths [24] algorithm
from v in every piece of pieces(v) and compare the distances. This section is mostly devoted to
designing a data structure able to find portal distances. To that end, for a portal p and color i
we define Np

i to be the distance between p and the nearest vertex in cluster(p) that has color i.
Every portal p holds a heap Hp, where it stores the values Np

i that correspond to active colors in
cluster(p). The main goal of this section is to describe how to update the values Np

i and heaps Hp

as colors of vertices are modified.
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Lemma 5.1. Assume we are given an α-approximate generic distance oracle for G. One can main-
tain expected constant-time access to the values Np

i and deterministic constant-time access to heaps
Hp in O(atot log n) total expected time under an arbitrary sequence of activate(i) and merge(i, j)
operations. The data structure requires O(ptot) space and can be initialized in O(ptot log n) time.

The data structure can be derandomized, at the cost of increase to total O(atot log n log log n)
running time, and O(log log n) time to access a single value of Np

i .

Proof. Every update operation affects vertices of some color and all their portals. Thus, for every
color i we define a set of pairs L(i) = {(v, p)|v ∈ Ci, p ∈ portals(v)} and maintain it as a list. Note
that the total size of all those lists is exactly ptot and at the beginning all the colors are inactive.
Recall that colors have to be activated first in order to be merged. The total size of the lists of
colors that will be activated during the runtime of the oracle is atot. On the remaining lists no
operations will ever be executed.

As mentioned before, each portal p ∈ P holds a heap Hp storing distances Np
i to all active colors

i in cluster(p). Together with Np
i we store on Hp the vertex that provides Np

i , i.e., the vertex v in
cluster(p) of color i whose distance from p is Np

i . We define N
p
i = (Np

i , v) to be such a pair. We
store pairs N

p
i in a heap, sorted according to the first coordinate only.

At the beginning, all colors are inactive. Every portal p initializes Hp to be an empty heap.
In addition to Hp, every portal maintains two dictionaries, where one can add/remove (key,value)
pairs and look up keys in time O(tdict) per operation; we address the choice of the dictionary, and
henceforth determine the value of tdict, at the end of the proof. A dictionary of inactive distances,
Ip, stores pairs (i,N

p
i ) for every inactive color i which has a nonempty intersection with cluster(p).

Initially, every portal iterates over its cluster and computes pairs (i,N
p
i ) based on stored distances

Dp,v. Every portal also holds a dictionary of active colors Ap, which stores pairs (i, q) for every
active color i in cluster(p), where q is a pointer to a position on Hp where N

p
i is stored. Initially

Ap is empty.
To perform activate(i) it suffices to update all relevant heaps Hp with information about color

i. We iterate over elements of L(i) and for each pair (v, p) we remove (i,N
p
i ) from Ip (if it is there)

and add N
p
i to Hp and (i, q) to Ap, where q is a pointer to N

p
i on Hp. This is done at most once

for each of the O(atot) pairs, so the total time of this operation is O(atot(log n+ tdict)).
Now, consider a merge(i, j) operation, and keep in mind that both i and j are active. Without

loss of generality, we may assume that |L(i)| ≤ |L(j)|. We change the color of all vertices in Ci to
j. To be more precise, we iterate over L(i) and for each pair (v, p) we:

remove i, j from Ap, set N
p
j = min(N

p
i , N

p
j ) and insert N

p
j to Hp and Ap if i, j ∈ Ap

we remove (i, q) from Ap and add (j, q) to Ap, if i ∈ Ap, j /∈ Ap
do nothing if i /∈ Ap

Finally, we append list L(i) to L(j) in O(|L(i)|) time.
Note that for each appended pair, the length of the list it belongs to doubles. Since the active

list length is bounded by atot, each of atot pairs will change its list at most O(log atot) = O(log n)
times. Each such list change of a pair may trigger a dictionary update and a heap update. The
total time for list merging, iterating and dictionary modifications is therefore O(atottdict log n). We
will bound the number of operations on heaps separately. Note that only when i, j ∈ Ap the merge
is effective in cluster(p) and O(log n) operation on a heap is triggered. Otherwise, if j /∈ Ap, only
Ap is modified and not Hp. For every portal p we effectively merge colors in its cluster at most
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|cluster(p)∩A|−1 times, where A is the set of activated vertices. So the number of times we modify
a heap is

∑
v∈A |portals(v)| = O(atot). This gives the total running time of O(atottdict log n).

Observe that each heap Hp can be accessed in constant time, and each value Np
i in O(tdict)

time.
Finally, we address the choice of the dictionaries. If use hash maps to implement dictionaries,

then we obtain tdict = O(1) in expectation. As an alternative, observe that every used dictionary
uses color numbers as keys. Hence, one might use Y-fast-tries [38] yielding a slightly worse but
deterministic tdict = O(log log n) worst case time.

Lemma 5.2. Assume we are given an α-approximate generic distance oracle for a weighted graph
G = (V,E, d). Let n = |V |. One can maintain constant-time access to the values Np

i and heaps
Hp, under a sequence of activate(i), deactivate(i), merge(i, j) or split(l, i, j) operations. Each
operation requires O(pnum log n) worst case time. The data structure uses O(ptot log n) space and
can be initialized in O(ptot log n) time with arbitrary forest T1, . . . , Tk spanning V (G) corresponding
to colors C1, . . . , Ck.

Proof. In the proof we use Euler tour trees introduced in [35], called further the ET-trees. An
ET-tree represents an Euler tour of an arbitrary unrooted tree T , i.e., a tour that traverses each
edge of the tree twice, once in each direction. More formally, each edge of T is replaced with two
oppositely directed edges and a directed self loop is added in every vertex. We represent the Euler
tour of the resulting graph as a balanced binary tree that allows join and split operations. The tree
has a single node for every edge of the tour, and the nodes are arranged in the same order as the
tour.

The trees represented in this way can be linked by adding an edge or split by removing some edge
(i.e., they support link and cut operations), and the corresponding ET-trees may be updated by
joining and splitting the representing binary trees. Each of these operations can be implemented
in O(log n) time. ET-trees can also support typical extensions of binary search trees, including
associating keys with vertices and finding the minimum over all the keys in the tree. Note that the
keys of vertices of T are associated with the self loops in the Euler tour representation. Thus, for
every node of T , the ET-tree has a single node holding its key. On the other hand, some nodes of
the ET-tree may not correspond to any node of T .

In our data structure, for each color Ci we maintain the corresponding tree Ti as an ET-tree
ETi. We associate a key of size O(pnum) with every node of ETi. Hence, each operation on ETi
requires O(pnum log n) time.

Let us now describe the keys in detail. Consider a color i, a node x of ETi and a portal p. The
subtree of ETi rooted at x corresponds naturally to some set of vertices of color i. Denote this
set by Ci(x). In particular, the entire ETi corresponds to Ci. We define Np

i (x) to be the distance
between p and the nearest vertex that belongs both to Ci(x) and cluster(p).

A key associated with x is a list L(x) of pairs (p,Np
i (x)). The list is sorted according to some

(arbitrary) linear ordering of portals. This allows us to compute the key of any node in ETi in
O(pnum) time, using the keys stored in the child nodes.

In order to save space, if a subtree of ETi rooted at a node x does not contain any nodes
from cluster(p), we do not store the list element for portal p in the list L(x). Let us bound the
total length of all lists L(x) in all ET-trees. Consider a vertex v. It belongs to exactly one node
x of some ET-tree and may cause that O(|portals(v)|) elements appear in every list on the path
from x to the root of the corresponding ET-tree. Since the depth of each tree representing an
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ET-tree is O(log n), the total length of all lists L(x), as well as the space usage of all ET-trees is
O(
∑

v∈V |portals(v)| log n) = O(ptot log n). They can also be initialized, given any forest T1 . . . Tk
spanning V (G) and representing colors C1 . . . Ck, in O(ptot log n) time.

Clearly, each valueNp
i can be extracted from the root of the tree ETi. In order to enable constant

lookup of values Np
i , useful for efficient distance queries, for each color i we store a deterministic

dictionary of Hagerup et al. [23]. A dictionary with k entries can be initialized in O(k log k), and
allows constant time access. It uses O(k) space. Since every operation affects at most two colors,
we can afford to rebuild the affected dictionaries after every operation in O(pnum log n) time.

A merge(i, j) or split(l, i, j) operation can be handled with a single operation on one of the
ET-trees. Each such operation may affect at most two elements of each heap Hp. Thus, updating
both the ET-trees and the heaps Hp requires O(pnum log n) time.

The activate(i) and deactivate(i) operations do not affect the values Np
i , but they may affect

the heaps Hp. Again, it takes O(pnum log n) time to update them.
We remark here that, contrary to the previous lemma, we have O(pnum log n) deterministic

worst case time for each operation, as we can afford to use always Y-fast-tries to maintain pointers
to all colors present in a heap Hp.

In our data structures we also need to find vertices of a given color in a particular piece. Using
the data structures from the above lemma, for a given vertex, we may determine its color in O(log n)
time. This can be achieved by simply maintaining a pointer from each vertex to the corresponding
node in an ET-tree. Once we find this node, we need to find the root of its ET-tree which requires
O(log n) time. However, if the total number of distinct pieces is small, we may use a slightly faster
approach.

Lemma 5.3. Assume we are given an α-approximate generic distance oracle for a graph G =
(V,E, d). Let n = |V |. There exists a data structure that allows to list all vertices of a given color
in a given piece, and list all active vertices in a given piece. Both lists are computed in time that
is linear in their size.

The data structure can be initialized in O(rtot log n) time and updated after every activate(i),
deactivate(i), merge(i, j) or split(l, i, j) operation in O(rnum log n) worst case time. It requires
O(rtot log n) space.

Proof. For each color i we maintain yet another ET-tree ẼT i corresponding to tree Ti associated
with Ci. Consider a piece r ∈ R and a node x of ẼT i. We define x to be r-heavy if either x
corresponds to a vertex v ∈ r, x is a root of ẼT i, or x has r-heavy nodes in both subtrees.

For a node y of ẼT i (not necessarily an r-heavy one) we extend the key associated with y with
a list L(y) of triples (r, leftr(y), rightr(y)), where r is a piece. Let z and z′ be the highest r-heavy
vertices in left and right subtree of y respectively. Then, leftr(y) and rightr(y) are pointers to the
position of r in L(z) and L(z′) respectively. We do not store such a triple in L(y) if none of the
subtrees contains an r-heavy node. The list L(y) is sorted according to some arbitrary linear order
on pieces.

Note that we are able to calculate values of leftr(y) and rightr(y) using the keys stored in the
sons of y. This allows us to compute the key of a node of ẼT i in O(rnum) time, so each ET-tree
operation requires additional O(rnum log n) time.

Consider r-heavy vertices of ẼT i. Together with leftr and rightr pointers they form a binary
tree, whose leaves correspond to vertices of piece r. Since the size of a binary tree is linear in the
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number of its leaves, the pointers allow us to iterate over all vertices of color i in a piece r in linear
time.

We store information about an arbitrary vertex v of a color i in a piece r only on a path between
a corresponding vertex x of ẼT i and a root of ẼT i using O(log n) space. Summing over all vertices
of all pieces, we get a space usage bounded by O(rtot log n).

To allow listing all active vertices in a piece for each piece r we maintain a set (represented as
a balanced tree) containing all active colors of vertices in piece r. After each update operation we
update all sets in O(rnum log n) time. To list all active vertices in r we iterate over active colors in
r and list all their vertices in r.

Lastly, we note that we need to access elements of lists L(y) in the roots of all ET-trees in
constant time. In order to achieve that, after some ET-tree is updated, we build a deterministic
dictionary [23] in O(rnum log rnum) = O(rnum log n) time.

In the next two lemmas we show that our template for distance oracles is sufficient to implement
the schemes of Section 4.

Lemma 5.4. Assume we are given an α-approximate generic distance oracle for a weighted graph
G = (V,E, d). Let n = |V |. One can implement the incremental scheme in O(pmax log n) expected
amortized time per update and O(rmaxr

#
max + pmax) expected time per query operation. The data

structure requires O(ptot) space and can be initialized in O(ptot log n) time.
The algorithm can be derandomized at the cost of increase to O(pmax log n log log n) amortized

time per update and O(rmaxr
#
max + pmax log logn) worst case time per query operation.

Proof. According to Lemma 5.1, there is a data structure that can maintain heaps Hp with distances
Np
i for every portal p ∈ P in total expected time O(atot log n) (or O(atot log n log logn) deterministic

time), using O(ptot) space and O(ptot log n) time for initialization. The incremental oracle starts
with all vertices assigned to distinct inactive colors. Hence, the number of update operations is at
least |A|, where A is the set of vertices active at the end. Clearly, atot log n = O(|A|pmax log n) and
hence the amortized time per update is O(pmax log n).

Now we move on to handling distance queries. Note that in the proof of Lemma 5.1 we iterated
through all vertices that changed color upon every merge operation. So it is possible to maintain
a flag in each vertex which allows checking the color of a vertex in constant time.

Consider distance(v, i) query. In order to find a piece distance from v to the closest vertex
of color i, we run the linear time single source shortest paths algorithm for planar graphs [24] in
every piece in pieces(v) with a source at v. We then check the colors of all the vertices visible from
v and choose a minimum distance among the vertices of color i. In order to find a portal distance
we iterate through portals(v) and compute minp∈portals(v)(Dp,v + Np

i ). Recall that the dynamic
dictionary we use allows portals to access values Np

i in expected constant time (or O(log log n)

deterministic). Therefore answering distance(v, i) query takes expected O(rmaxr
#
max + pmax) time

(or O(rmaxr
#
max + pmax log logn) deterministic time).

Consider now nearest(v, k) query. In order to find the shortest piece distance from v to
some active color, we again iterate through all vertices that are piece-visible from v, and among
these choose the closest to v active vertex. To find the shortest portal distance, we compute
minp∈portals(v)(Dp,v + top(Hp)), where top(Hp) is the minimum distance stored on Hp. We take
the minimum over piece and portal distance, and based on the vertex associated with this distance
(recall that on heaps Hp we store pairs (Np

i , v)) we decide which active color is the closest to v.
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This takes O(rmaxr
#
max + pmax) time. Next, we repeat this procedure k − 1 times, and in l’th

iteration we ignore the distances to l − 1 closest colors we found already. So if at l’th iteration
i1, . . . , il−1 are the first l− 1 closest colors, then we look in this iteration for an active vertex in set⋃
iCi \ (Ci1 ∪ · · ·∪Cil−1

). To that end, we iterate through vertices that are piece-visible from v and
find the closest to v vertex of a color we are interested in. Then we iterate through portals and for
every p ∈ portals(v) we find l smallest elements in a heap Hp. Since l ≤ k = O(1), this can be done
in constant time. From these l elements, we select the minimum element that does not correspond
to one of i1, . . . , il−1. The procedure is repeated k times and, if k = O(1), every step takes as
much time as finding the nearest active vertex. Hence the total time to answer nearest(v, k) is
O(rmaxr

#
max + pmax) if k is constant.

Lemma 5.5. Assume we are given an α-approximate generic distance oracle for G = (V,E, d) and
let n = |V |. One can implement the fully dynamic scheme in O((pnum + rnum) log n) worst case
time per update and O(rmaxr

#
max + pmax) worst case time per query operation. The data structure

requires O((ptot + rtot) log n) space and can be initialized in O((ptot + rtot) log n) time.

Proof. Here we employ the data structure of Lemma 5.2 to maintain heaps Hp and for a constant
time access to Np

i for each portal p ∈ P. Recall, that this data structure requires O(ptot log n)
space and the same initialization time. It allows updates in O(pnum log n) worst case time.

Hence, the only thing left to do is to handle distance queries. This is done in the same manner
as in the proof of Lemma 5.4 with one difference. The update operations do not iterate through
all vertices that change color, so we cannot maintain a color flag in each vertex so that it knows
what color it is. We could access the color of a vertex via ET-tree ETi containing it, but that
takes O(log n) time per vertex. Lemma 5.3 comes in useful here. We maintain a structure which
requires O(rtot log n) space and the same initialization time, and can be updated in O(rnum log n)
worst case time. This structure allows us to list all vertices active colors within a given piece.
Recall that in order to answer distance queries we first find the related piece distance and compare
it with a portal distance. In order to find the piece distance, for each piece r ∈ pieces(v) we list
all active vertices in this piece and mark their colors in some global array. We run the linear time
single source shortest paths algorithm [24] on r with the source at v in order to find the distances
from v to vertices in r. Then we iterate through vertices w ∈ r, and knowing their color from the
global array, we choose the closest vertex we are interested in. This takes linear time per piece by
Lemma 5.3. Finding the portal distances is essentially the same as in the proof of Lemma 5.4, with
one small difference: the heaps Hp can be easily modified to store triples (Np

i , w, i), where w is the
vertex corresponding to distance Np

i and i is its color, so that when we know the colors of vertices
in the heaps Hp. The Query time of O(rmaxr

#
max + pmax) follows.

Corollary 5.6. Assume we are given an α-approximate generic distance oracle for G = (V,E, d)
and let n = |V |. One can implement the fully dynamic scheme in O(pnum log n) worst case time
per update and O(rmaxr

#
max log n + pmax) worst case time per query operation. The data structure

requires O(ptot log n) space and can be initialized in O(ptot log n) time.

Proof. Instead of using structure of Lemma 5.3, we pay an additional logarithmic factor per distance
query, as while iterating through a vertex seen by the queried vertex v, we additionally check its
color using the ET-trees.
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Initialization Query Update

Incremental O(ptot log n)
O(rmaxr

#
max + pmax) exp.

O(rmaxr
#
max + pmax log logn) det.

O(pmax log n)

Fully dynamic 1 linear O(rmaxr
#
max + pmax) O((pnum + rnum) log n)

Fully dynamic 2 linear O(rmaxr
#
max log n+ pmax) O(pnum log n)

Table 2: Summary of our generic constructions of vertex-color oracles.

5.2 3-approximate oracles for general graphs

In the previous section we showed how to efficiently implement the incremental and fully dynamic
vertex-color distance oracle scheme. These constructions were based on generic oracles, which
provide an choice and assignment of portals and pieces to vertices in the graph and store partial
information about the distances in the graph. In other words, we showed how to implement both
schemes given portals and pieces.

Here we show how to choose portals and pieces, i.e., how to construct generic oracles. In
principle we want to keep the right balance between the parameters introduced in the previous
section in order to obtain the best running times.

The first generic oracle we present here is a 3-approximate generic oracle for general weighted
graphs. It is based on ideas by Thorup and Zwick [37]. In their construction, however, the
procedure that measures distance between u and v may give different results when the two vertices
are swapped. This does not comply with Definition 3.4, which requires symmetry in answering
queries, that is, if the portal distance between two vertices u and w is finite, it has to be the same
in pieces(u) and pieces(w). Also, our data structures measure distance between some vertex and
the nearest vertex of some given color. We extend the construction, so that the oracle works on
portal and piece distances, which are invariant under swapping vertices. Some additional properties
that we obtain are summarized in Section 5.4.

Lemma 5.7. Let G = (V,E, d) be a weighted graph, n = |V | and m = |E|. In O(
√
n(m+n log n))

expected time we can build a 3-approximate generic distance oracle for G that uses expected O(n
√
n)

space. The set of portals P ⊆ V of size O(
√
n) is the same for every vertex, i.e., portals(v) = P

for every v ∈ V . Moreover, for each v ∈ V , pieces(v) contains a single graph that is a star on
O(
√
n) vertices (in expectation), whose center is v. The parameters of the oracle are as in Table 3.

Proof. We choose P ⊆ V uniformly at random with probability 1/
√
n, so in expectation it is a subset

of V of size
√
n. For each v ∈ V we set portals(v) = P, so the number of portals is pnum = O(

√
n)

in expectation and the expected number of portals assigned to a vertex is pmax = O(
√
n). Also,

the sum of sizes of all clusters is ptot = O(n
√
n) in expectation. For each w ∈ V we define pw to

be the portal which is closest to w, i.e. δ(w, pw) = minp∈P δ(w, p). By Bw we denote the set of
vertices that are closer to w than any portal, i.e. Bw = {v ∈ V : δ(w, v) < δ(w, pw)}. In principle
our goal is to create a single piece per vertex (i.e., rmax = 1). A star w × (Bw \ {w}) satisfies all
the requirements but the symmetry, that is the piece distance between u and w may be different
when measured in pieces(u) from the one given by pieces(w). In order to ensure the symmetry,
we reduce Bw to Bredw ⊆ Bw. The reduction, for every vertex w, removes from Bw vertices u ∈ Bw
such that w /∈ Bu. For every w ∈ V we declare pieces(w) to contain a single graph r with the
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parameter ptot rmax r#max pnum pmax
value O(n

√
n) 1 O(

√
n) O(

√
n) O(

√
n)

Table 3: Summary of parameters: all parameters but rmax are in expectation.

vertex set V (r) = Bredw , the edge set E(r) = {uw : u ∈ Bredw \ {w}} and the weights on the edges
dr(w, u) = δG(w, u) for every u ∈ Bredw \ {w}. As shown in [37], the expected size of each Bw, and
consequently of each piece r#max = O(

√
n).

To build the oracle we pick P, compute shortest path distances from every vertex of P using
Dijkstra’s algorithm, and store the distances. To obtain distances from w to vertices of Bredw , we also
run a modified version of Dijkstra’s algorithm starting from each w ∈ V to find shortest distances
inside Bw. We break the execution of the algorithm as soon as we visit a vertex from P,5 and store
this vertex as pw.

The total time of running shortest paths algorithms from all portals is |P| · O(m + n log n) =
O(
√
n(m + n log n)). Computing the distances for sets Bw requires n · O(m/

√
n + n log n/

√
n) =

O(
√
n(m + n log n)) expected time. To store resulting distances and graphs we require O(n

√
n)

expected space.
Let us now prove that we obtain a generic oracle. Consider two vertices u and w. If u ∈ Bredw ,

then, by the construction, w ∈ Bredu and the shortest distance between them can be measured
exactly both by inspecting pieces(u) and pieces(w). Now, assume u /∈ Bredw . This means that
u /∈ Bw or w /∈ Bu. Without loss of generality, assume u /∈ Bw. This implies δ(u,w) ≥ δ(w, pw).
Then, δ(w, pw)+δ(pw, u) ≤ δ(w, pw)+(δ(pw, w)+δ(w, u)) ≤ 3δ(u,w). Obviously pw ∈ portals(v)∩
portals(w).

We now turn the oracle of Lemma 5.7 into a vertex-color distance oracle.

Theorem 5.8. Let G = (V,E) be a graph, n = |V |. There exists a 3-approximate vertex-color
distance oracle for G, which:

• may answer distance(v, i) and nearest(v, k) queries in O(
√
n log n) expected time, provided

that k is a constant,

• handles merge(i, j, u, v), split(l, u, v), activate(i) and deactivate(i) operations in O(
√
n log n)

expected time,

• can be constructed in O(
√
n(m+ n log n)) expected time,

• uses expected O(n
√
n log n) space.

Proof. We use Lemma 5.7 to construct a generic 3-approximate oracle in O(
√
n(m + n log n))

expected time using expected O(n
√
n) space. The parameters of this oracle are shown in Table 3.

We plug this parameters into Corollary 5.6 and obtain what is claimed.

We also observe that, using the ideas of [37], we can improve the running time at the cost of
worse — but still constant — approximation ratio.

5This modification is described in detail in [37].

42



Theorem 5.9. Let G = (V,E) be a graph, n = |V | and l be a parameter. There exists a (2l − 1)-
approximate vertex-color distance oracle for G, which:

• answers distance(v, i) and nearest(v, k) queries in O(ln1/l) expected time, provided that k
is a constant,

• handles merge(i, j) and activate(i) operations in O(ln1/l log n) amortized expected time,

• can be constructed in O(lmn1/l + ln1+1/l log n) expected time,

• uses expected O(ln1+1/l) space.

Proof. We again follow the ideas of [37]. In particular the construction is the same as in Lemma 7.5.
In O(lmn1/l) we compute for each v ∈ V a set B(v) called a bunch. The expected size of each
bunch is O(ln1/l). From the query algorithm in [37] it follows that for any two u, v ∈ V there exists
w ∈ B(u)∩B(v) such that δ(u,w)+δ(w, v) ≤ (2l−1)δ(u, v). For every vertex v, we set portals(v) =
B(v) and pieces(v) = ∅. We obtain the expected total number of portals ptot = O(kn1+1/l) and the
expected number of portals per vertex pmax = O(ln1/l). The number of pieces assigned to a vertex
is rmax = 0. By Lemma 5.4 (see Table 2), we obtain an incremental oracle using total O(ln1+1/l)
expected space, which is initialized in O(lmn1/l + ln1+1/l log n) expected time, handles updates in
O(ln1/l log n) amortized expected time and handles queries in O(ln1/l) expected time.

5.3 (1 + ε)-approximate oracles for planar graphs

In this section we show how to employ generic oracle constructions from Section 5.1 in order to
obtain dynamic (1 + ε)-approximate vertex-color distance oracles for planar graphs. We are able
to obtain a better approximation and, for the incremental variant, better running times, due to
planar separators. The separators are used to construct small sets of portals. We follow here the
construction of Thorup [36], extending it slightly in order to support vertex colors.

The base building block of the construction is the following:

Lemma 5.10. Let G = (V,E) be a planar graph, Q be a shortest path in G of length at most α,
n = |V | and ε > 0. There exists a set P ⊆ V of size O(ε−1) such that the following holds. Let
u, v ∈ V . Assume that the shortest path between u and v crosses Q and δG(u, v) ∈ [α2 , α]. Then,
there exists p ∈ P such that δG(u, v) ≤ δG(u, p) + δG(p, v) ≤ (1 + ε)δG(u, v). The set P can be
computed in O(n) time.

Proof. The set P is constructed by putting portals on the path Q. We let the first portal be the
first vertex of Q, and then put portals one by one, each at a distance ε

4d(Q) from the previous one.
If this would require us to put a portal on an edge e of Q, we put two portals in the two endpoints
of e. Clearly, |P | = O(ε−1).

It remains to show that the oracle correctly approximates distance between u and v. Let Xv,u

be the shortest path connecting u to v. Assume that it crosses Q in vertex q ∈ G. Let pq ∈ P be
the portal closest to q, that is, δ(q, pq) ≤ ε

4d(Q). Then

δ(u, v) ≤ δ(v, pq) + δ(pq, u) ≤ d(Xv,u) +
ε

2
d(Q) ≤ d(Xv,u) +

ε

2
α ≤ (1 + ε)d(Xv,u),

as requested.
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We now show how to use the above Lemma to construct an oracle that may answer queries
about any two vertices in the graph. This construction was done by Thorup [36], but we need to
extend it slightly in order to support vertex colors.

First, we fix α and show how to build a generic oracle that finds all distances in range [α2 , α].
The construction begins by replacing G with a set of graphs Gα1 . . . G

α
k of diameter O(α), which

carry all necessary distance information, and then building a recursive subdivision for each Gαi .
The division is obtained by using paths of length ≤ α as separators. Consider a recursive call for a
subgraph G′ and one of the separator paths Q. We run the construction of Lemma 5.10 on G′ and
Q and then add all vertices of P to the portal sets of all vertices of G′.

Finally, we repeat the construction for logD different values of α, so that the intervals [α2 , α]
altogether cover the entire range of possible distances.

Lemma 5.11 ([36]). Given a planar G and a scale α we can construct a series of graphs Gα1 , . . . , G
α
k

satisfying the following properties:

• the total number of vertices and edges in all Gαi is linear in the size of G,

• Gαi is a minor of G (in particular, every Gαi is planar),

• each Gαi has exactly one vertex obtained by contractions, which we call a supervertex,

• each Gαi has a spanning tree Tαi of depth at most 3α rooted in the supervertex,

• each vertex v has index τ(v) such that a vertex w is at distance d ≤ α from v in G if and
only if d is the shortest distance from v to w in Gατ(v); this also holds after removing the
supervertex,

• each vertex v is in exactly three graphs: Gατ(v)−1, Gατ(v) and Gατ(v)+1

Proof sketch. For the full proof we refer to [36]. We construct a partition of V (G) into layers Li.
Let L<i =

⋃i−1
j=0 Lj . We arbitrarily choose vertex v0 and let L0 = {v0}. Layer Li+1 contains new

vertices reachable from vertices of Li within the distance of α, i.e., all reachable vertices not in
previous layers. To create Gαi we take a subgraph of G induced by L<i+2 and contract vertices of
L<i−1. For a vertex v in G we let τ(v) be the index of its layer. Note that any path starting in v
of length at most α is contained in Gατ(v) and does not cross the contracted supervertex.

As a consequence of the above, each distance query concerning v can be answered by accessing
Gατ(v), provided that the corresponding distance is at most α. In our construction we also use the
following Lemma for finding separators.

Lemma 5.12 (Lemma 2.3 in [36]). In linear time, given an undirected planar graph G with a
rooted spanning tree T and nonnegative vertex weights, we can find three vertices u, v and w such
that each component of G \ (V (T (u) ∪ T (v) ∪ T (w)) has at most half the weight of G, where T (x)
denotes the path from x to the root in T .

We are now ready to show the construction.

Lemma 5.13. Let G be a planar graph, n = |V |, ε > 0 and D be the stretch of the metric induced
by G. A (1 + ε)-approximate generic distance oracle for G can be built in O(ε−1n log n logD) time.
For every v ∈ V , |portals(v)| = O(ε−1 log n logD) and pieces(v) = ∅.
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Proof. Initially, we set portals(v) = ∅ for every v ∈ V . During the construction, the algorithm
adds new portals.

We first show the construction for a fixed value of α. It starts with computing the sequence
Gα1 , . . . , G

α
k by applying Lemma 5.11. Then, we recursively decompose each Gαi .

We use Lemma 5.12 on Gαi and Tαi setting the weight of the supervertex to 0 and the weights
of other vertices to 1. Lemma 5.12 guarantees that Gαi has a separator Q composed of three paths
of Tαi . The first step is to represent all distances that correspond to paths crossing Q in a graph
obtained from Gαi by removing the supervertex. Denote this graph by G̃αi . Observe that although
Gαi is a minor of G, G̃αi is a subgraph of G, as we have removed the only vertex obtained by
contractions.

We remove the supervertex from Q and obtain a separator Q̃ of G̃αi . Note that the three paths
that form Q start in the supervertex, so Q̃ also consists of three paths. Since these paths have
length ≤ 3α, we may split each of them into three paths of length ≤ α, thus decomposing Q̃ into
nine paths Q1, . . . , Q9, each of length ≤ α.

To represent all distances in G̃αi crossing Q̃, we use the construction of Lemma 5.10 for each
of the nine paths Qj , j ∈ {1 . . . 9}. In this way for a path Qj we obtain a set of vertices Pj . We
add those vertices to the set portals(v) for every vertex of G̃αi . For every new portal, we compute
(and store) distances to every vertex of G̃αi using linear time algorithm for shortest paths in planar
graphs [24].

Next in Gαi we contract separator Q and obtain a planar graph G′. Since the separator Q
contains the supervertex of Gαi , the contracted Q in G′ becomes a supervertex r′, and tree Tαi
becomes a tree T ′ rooted at r′. We note that T ′ is a tree spanning G′ rooted in r′ and its depth
is at most 3α. Moreover, removing r′ splits G′ into at least two components (cut out in Gαi by
the separator Q), each containing at most half vertices of V (G′). Each of these components has a
spanning tree which is a subtree of T ′ rooted at the supervertex r′. Hence, we can recurse on each
of these components (each component is taken together with r′).

The construction allows us to approximate distances in range [α2 , α], so we repeat it logD times
for different values of α, where D is the stretch of the metric induced by G.

We now show that we obtain a (1 + ε)-approximate generic oracle. Consider two vertices
u and v. Let α be the scale such that δG(u, v) ∈ [α2 , α] . There exists a graph Gαi such that
δGαi (u, v) = δG(u, v). Consider the shortest path Xu,v in Gαi between u and v. In some recursive call
of the decomposition algorithm, the path crosses the separator Q. It is easy to see that in that step,
we add both to portals(u) and portals(v) a vertex p such that δG(u, p) + δG(p, v) ≤ (1 + ε)δG(u, v).
Moreover, if we denote by G′ the subgraph in the recursion in exactly that step, then G′ contains
Q′, so δG′(u, p) = δG(u, p) and δG′(p, v) = δG(p, v).

It remains to bound the running time and the number of portals of each vertex. Consider a
vertex v of G. For each of O(logD) values of α, v belongs to three layers Gαi . Let ni = |V (Gαi )|. In
a recursive subdivision of Gαi , v can appear once on each of the O(log ni) levels. On a single level,
we add O(ε−1) vertices to portals(v). Thus, since log ni ≤ log n, |portals(v)| = O(ε−1 log n logD).
Observe that the distances inside each cluster are computed in linear time, so the initialization
time is equal to the total size of the clusters. The lemma follows.

We combine the incremental oracle construction from Lemma 5.4 (see Table 2) with the above
lemma to obtain the following result.
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Theorem 5.14. Let G = (V,E) be a planar graph, n = |V | and D be the stretch of the metric
induced by G. For every ε > 0 there exists an (1 + ε)-approximate vertex-color distance oracle for
G, which:

• answers distance(v, i) and nearest(v, k) queries in O(ε−1 log n logD) expected time or
O(ε−1 log n log log n logD) deterministic time, provided that k is a constant,

• handles merge(i, j) and activate(i) operations in O(ε−1 log2 n logD) expected amortized time
or O(ε−1 log2 n log log n logD) deterministic amortized time,

• can be constructed in O(ε−1n log2 n logD) time,

• uses O(ε−1n log n logD) space.

Proof. Lemma 5.13 gives a generic oracle with pmax = max |portals(v)| = O(ε−1 log n logD), and
hence the total size of all clusters ptot = O(ε−1 log n logD). In addition to that every vertex is
assigned an empty set of pieces so rmax = 0. We employ Lemma 5.4 (see Table 2) to obtain what
is claimed.

We now describe how to build a fully dynamic vertex-color distance oracle, which also supports
split and deactivate operations. Its running time depends on two main factors. By Lemma 5.2
the running time of an update operation is proportional to the number of portals, whereas the
query time depends on the size of pieces. Thus, in our construction we try to keep both these
values low.

Lemma 5.15. Let G = (V,E) be a planar graph, n = |V | and D be the stretch of the metric
induced by G. For every ρ such that 1 ≤ ρ ≤ n, in O(ε−1n log n logD) time we can build an (1+ε)-
approximate generic distance oracle for G. The total number of portals is O(ε−1 nρ logD), and the
total size of all of clusters is O(ε−1n log n logD). For every v ∈ V , pieces(v) is a set consisting of
O(logD) planar graphs of size O(ρ). There are O(nρ logD) distinct pieces in total. The parameters
are summarized in Table 4.

Proof. For the purpose of this construction a graph is called big if it contains at least ρ
3 vertices

and small otherwise. Moreover, a graph with more than ρ vertices is called too big. We aim to alter
the construction of a generic oracle from Lemma 5.13 in such a way that the recursive division of
graphs Gαi produces subgraphs which are neither small nor too big.

First, we use Lemma 5.11 to obtain a sequence Gαi . As long as the sequence contains two
consecutive small layers Gαi , Gαi+1, we merge them into one layer. Since the layers are minors of G,
we first need to remove the supervertex from both of them. After that, they become subgraphs of
G, so we can merge them in a natural way.

Note that after this process every small layer is a neighbor of a big layer, so the number of
small layers is O(nρ ). Additionally, each too big layer is not a result of merging smaller layers and
satisfies conditions of Lemma 5.12.

We now deal with too big layers Gαi . For each such layer, we perform a recursive subdivision
similar to the one in the proof of Lemma 5.13. However, we introduce two changes. First, we assure
that at each step, the graph is divided into exactly two subgraphs of roughly even size. Recall that
in the construction, we contract the separator in a currently handled graph G′ into a supervertex
r′, and each connected component of G′ \ r′ is of size at most 1

2 of the size of G′. By standard
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ptot pmax pnum rnum rmax r#max rtot

O(ε−1n log n logD) O(ε−1 log n logD) O(ε−1 nρ logD) n
ρ logD O(logD) Θ(ρ) O(n logD)

Table 4: Summary of parameters.

arguments, we can group the components of G′ \ r′ into exactly two groups, each of total size at
most 2

3 of the size of G′. We recurse on the union of the graphs in each group separately.
The second modification to the algorithm from Lemma 5.13 is that we stop the recursion as

soon as we reach a graph which is not too big. As a result, leaves of the recursive subdivision
correspond to big graphs, which are not too big.

Consider a layer Gαi (after the merging step). If Gαi is not too big we add Gαi to pieces(v)
for every v ∈ V (Gαi ) (except for the supervertex). Otherwise, we decompose the graph recursively
and for every separator that we use, we apply Lemma 5.10 and add the obtained set to portals(v).
Moreover, once we reach a graph G′ which is not too big and the recursion stops, we add this graph
to pieces(v) for every v ∈ V (G′).

The entire construction is repeated for O(logD) values of α, so that the intervals [α2 , α] alto-
gether cover all possible distances.

We now show that we obtain a (1 + ε)-approximate generic oracle. Consider two vertices
u and v and the value of α such that δG(u, v) ∈ [α2 , α]. There exists a graph Gαi such that
δGαi (u, v) = δG(u, v). Consider the shortest path Xu,v in Gαi between u and v. If layer Gαi is not too
big then it is added both to pieces(u) and pieces(v) and the property follows trivially. Otherwise,
there are two cases to consider. One possibility is that in some recursive call of the decomposition
algorithm, the path crosses the separator Q. In this case we add both to portals(u) and portals(v)
a vertex p such that δG(u, p) + δG(p, v) ≤ (1 + ε)δG(u, v). Otherwise, we reach a subgraph which
is not too big and contains the entire path Xu,v. This subgraph is then added to pieces(u) and
pieces(v).

It remains to bound the size of the oracle. From the construction it follows that the size of
every piece is Θ(ρ) so the maximal size of a piece is clearly r#max ∈ Θ(ρ). For every α during the
recursive decomposition of Gαi we create pieces that are nonoverlapping subgraphs of Gαi . Thus,
for a fixed α, the sum of sizes of all pieces that we create is O(n). We use O(logD) values of α, so
the total size of all pieces is rtot = O(n logD).

Moreover, for a fixed α, because all but O(nρ ) pieces have size Θ(ρ), there are O(nρ ) pieces in
total. So the total number of pieces is rnum = O(nρ logD) as there are logD values of α. For every
layer Gαi and a fixed vertex v, at most one piece may be added to pieces(v). Each vertex belongs
to O(logD) layers |pieces(v)| = O(logD) for every v ∈ G and hence rmax = O(logD).

Let us now bound the total number of portals. Consider the recursive subdivision algorithm.
We add O(ε−1) new portals every time when we divide a graph into two subgraphs with a separator.
For a fixed α, in the end all layers are divided into O(nρ ) subgraphs (which become pieces). Thus,
the number of division steps is also O(nρ ), and they create O(ε−1 nρ ) new portals. This gives
O(ε−1 nρ logD) portals for all values of α, in other words pnum = O(ε−1 nρ logD).

The total size of clusters is bounded by the total size of all clusters in the construction of
Lemma 5.13, which is ptot = O(ε−1n log n logD). Also after Lemma 5.13, the maximum number of
portals assigned to a vertex is pmax = O(ε−1 log n logD). The lemma follows.
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Theorem 5.16. Let G = (V,E) be a planar graph, n = |V | and let D be the stretch of the metric
induced by G. For every ρ, ε > 0, there exists an (1 + ε)-approximate vertex-color distance oracle
for G, which:

• may answer distance(v, i) and nearest(v, k) queries in O((ε−1 log n + ρ) logD) time, pro-
vided that k is a constant,

• handles merge(i, j, u, v), split(l, u, v), activate(i) and deactivate(i) operations in
O(ε−1 nρ log n logD) time,

• can be constructed in O(ε−1n log2 n logD) time,

• uses O(ε−1n log2 n logD) space.

In addition to that, the oracles admits parameters as in Table 4.

Proof. The theorem follows from combining the oracle of Lemma 5.15 (the parameters are given in
Table 4) with Corollary 5.6 (see Fully Dynamic 1 oracle in Table 2).

5.4 Additional operations and properties

Near-metric spaces The generic oracles we build measure distance between u and v by taking
the minimum of portal and piece distance (see Definition 3.4) between u and v. Let us call this
distance an oracle distance. From the construction of our vertex-color distance oracles it is easy to
observe that they answer distance queries by choosing the minimum oracle distance to the vertex
of respective color. A similar property holds for nearest queries. Roughly speaking, the oracles
behave as if they were exact and the real distance between two vertices was the oracle distance
(though the oracle distance does not satisfy triangle inequality). This property, which is used in
our algorithms, is summarized in the following.

Corollary 5.17. Consider one of nearest neighbor oracles from Section 3.2. Assume it provides
µ-approximate distances between vertices of a graph G = (V,E, dG). Then, the oracle yields a
µ-near metric space GD that approximates G. In particular:

• The answer to a distance(v, i) query is equal to min{dGD(v, w) : w is active and has color i}.

• The answer to a nearest(v, k) query is the k-th smallest value of distance(v, i) over all
active colors i.

Proof. Consider a clique GD = (V,
(
V
2

)
, dGD), where dGD(u, v) is defined as the minimum over the

piece distance and the portal distance between u and v (i.e., the oracle distance). By Definition
3.4 it is a well defined simple graph with finite weights. This graph certifies the claim stated in the
corollary.
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Reconnecting edges. In one of our algorithms, at some point we encounter the following prob-
lem. We are given a set of active colors c1, . . . , ck that we need to connect together in a minimum
spanning tree fashion. That is, we would like to compute the MST of a complete graph Gc over
colors c1, . . . , ck, where the length of an edge connecting two colors is the distance between the
nearest vertices of these colors. Solving this problem efficiently seems hard, even for the case when
k = 2. However, we are able to show a solution for its simpler variant. Namely, we define the length
of the edge in Gc to be the length of the shortest path that connects two vertices of respective colors
and goes through a portal.

Lemma 5.18. Assume we are given a vertex-color distance oracle with pnum portals and a set of
active colors c1, . . . , ck. Consider a complete graph Gc on the set of colors, such that the length of
an edge connecting two colors ci and cj is the length of a shortest path that connects vertices vi and
vj of colors ci and cj and goes through a vertex in portals(vi) ∩ portals(vj). Then, MST (Gc) can
be computed in O(kpnum + k log k) time.

Proof. We first build a graph G′c, and then compute its minimum spanning tree. G′c is a subgraph
of the graph Gc defined above. For efficiency reasons it may not contain some edges of Gc that
surely do not belong to MST (Gc).

We iterate through all portals of the oracle and add edges to G′c. Consider a portal p and
assume that vertices of colors c1, . . . , ck′ are at distances d1 ≤ . . . ≤ ds from p. In particular, c1 is
the color that is nearest from p. The shortest path connecting colors i and j going through p has
length di + dj . Observe that we may add to G′c only edges corresponding to pairs of colors c1, ci
(for i ≥ 2). Indeed, if i, j ≥ 2, then di + dj ≥ d1 + dj and di + dj ≥ di + d1. Thus, any other edge
that we could add would be the heaviest on the cycle formed by colors c1, ci and cj and as such it
is not necessary for computing the MST.

Thus, we end up with a graph with k vertices and O(kpnum) edges. We compute its MST with
Prim’s algorithm in O(kpnum + k log k) time.

Efficient Steiner tree computation. We also observe that a vertex-color distance oracle gives
us an efficient way of computing an approximate Steiner tree for a query consisting of an entire set
S of terminals.

Lemma 5.19. Assume we are given a graph G = (V,E, dG), n = |V | and an instance D of a vertex-
color distance oracle for G, which yields a near-metric space GD. Then, given a set S ⊆ V (G),
one can compute MST (GD[S]) in O(|S|(pmax + rmaxr

#
max) log n) time, where pmax is the maximum

number of portals per vertex, rmax is maximum number of pieces assigned to a vertex and r#max
bounds the size of a piece.

Proof. We compute a minimum spanning tree of S in GD using Prim’s algorithm. We start with T
being an isolated vertex (an arbitrarily chosen element of S) and, at each step, we choose an edge
connecting S \V (T ) and V (T ) in GD of minimum possible weight and add it to T . To choose such
an edge, it suffices to choose the minimum among the portal and piece distance between S \ V (T )
and V (T ).

First, consider piece distances. For each v ∈ S \ V (T ) we maintain the piece distances between
v and the nearest vertex (w.r.t piece distance) of V (T ). All these piece distances are kept in a heap
Hv. In addition to that, we maintain a global heap H with the minimas of the heaps Hv for all
vertices v ∈ S \ V (T ). The minimum piece distance between V (T ) and S \ V (T ) is the minimum
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value on H. If a vertex u is added to V (T ), to update this information it suffices to run Dijkstra’s
shortest-path algorithm from u in each of pieces(u), update information in heaps Hv for all vertices
of S \ V (T ) that were found, each time updating the value on H as well. For all vertices of S this
requires O(|S|rmaxr#max log n) time.

To find the minimum portal distance, for each portal p of a vertex in S we consider cluster(p)
and store the distance dpT to the nearest vertex of V (T ) and a heap of distances to vertices of
S \ V (T ) (both in cluster(p)). The portal distance is the minimum over portals of the sum of
dpT and the minimum on this portals heap. We again maintain a global heap which has access to
minimum portal distance. Thus, for every vertex v ∈ S, we need to add distances to all portals(v)
to a heap in O(|S| · |portals(v)| log n) time, each time updating the global heap as well. Whenever
we connect a vertex u to the tree T , we update the heaps of all its portals and the global heap.
This again takes a total O(|S| · |portals(v)| log n) time. The time for removing the elements is at
most as big as the time for inserting them. The lemma follows.

By Lemma 5.19, we obtain the following two corollaries, depending on which oracle we use.

Corollary 5.20. Assume we are given a graph G = (V,E, dG), n = |V |. After O(
√
n(m +

n log n)) preprocessing, using O(n
√
n log n) space, we can repeatedly compute a 3-approximation of

MST (G[S]), and consequently a 6-approximation of the minimum Steiner tree spanning S in G, in
O(|S|

√
n log n) time for any subset S ⊆ V .

Proof. We employ as D in Lemma 5.19 the fully dynamic oracle of Theorem 5.8. By Theorem 5.8,
D can be constructed in O(

√
n(m+n log n)) expected time and uses expected O(n

√
n log n) space.

By Lemma 5.19, we can query for MST (GD[S]) in O(|S|
√
n log n) time. By Lemma 2.1, it is a

6-approximation of the Steiner tree.

Corollary 5.21. Assume we are given a planar graph G = (V,E, dG), n = |V |. After O(ε−1n log2 n logD)
preprocessing, using O(ε−1n log n logD) space, we can repeatedly compute a (1 + ε)-approximation
of MST (G[S]), and consequently a 2 + ε-approximation of the minimum Steiner tree spanning S in
G, in O(|S|ε−1 log2 n logD) time for any subset S ⊆ V .

Proof. We employ as D in Lemma 5.19 the fully dynamic oracle of Theorem 5.14. By Theorem 5.14,
D can be constructed in O(ε−1n log2 n logD) time and uses O(ε−1n log n logD) space. By Theo-
rem 5.14, D assigns at maximum pmax = max |portals(v)| = O(ε−1 log n logD) portals to a vertex
and the number of pieces assigned to a vertex is rmax = 0. By Lemma 5.19, we can query for
MST (GD[S]) in O(|S|ε−1 log2 n logD) time. By Lemma 2.1, it is 2(1 + ε)-approximation of the
Steiner tree, which can be turned into (2 + ε)-approximation by using ε′ = ε/2 instead of ε.

Faster implementation of the Imase-Waxman incremental algorithm. Imase and Wax-
man [28] proved that the natural online algorithm for Steiner tree — the one that attaches the new
terminal to the closest previous one — achieves O(log n) approximation guarantee. We remark
here that our oracles give a different way to obtain this guarantee; our implementation is faster if
the number of terminals is large in terms of the size of host graph.

Theorem 5.22. Assume we are given a graph G = (V,E, dG), n = |V |. Then there exists an
algorithm that maintains an online Steiner tree upon a sequence of terminal addition (i.e., the
algorithm needs to maintain a Steiner tree upon each addition, and is not allowed to alter the
edges that are already in the tree) with O(log n) approximation guarantee, using expected time
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O(
√
n log n) per terminal addition. The algorithm can be initialized in O(

√
n(m + n log n)) time

and uses O(n
√
n log n) space.

Proof. We use the vertex-color distance oracle of Theorem 5.8. In the oracle the current set of
terminals is a single color, and only this color is active. To add a new terminal, it suffices to issue
one distance and one merge operation. The new terminal is attached to not necessarily the closest
previous terminal, but approximately closest.

6 Sublinear time dynamic algorithms

We propose here dynamic algorithms for each of the dynamic scenarios we considered. The algo-
rithms are obtained by implementing the online algorithms of Section 4 using vertex-color distance
oracles from Section 3.2.

6.1 Decremental algorithm

We now consider the decremental scenario, in which the goal is to maintain an approximate Steiner
tree subject to terminal deletions. The graph we work with is accessed with a fully dynamic vertex-
color distance oracle D (see Section 3.2), which yields a µ-near metric space GD that approximates
G (see Corollary 5.17). However, our algorithm not only uses the operations provided by the oracle,
but also the sets of portals and pieces of each vertex. In particular, the algorithm uses the concepts
of portal and piece distances, which are defined in Section 5.1.

We use the decremental scheme of Section 4.3, so for a fixed ε > 0 we plan to maintain a
(1 + ε)-approximation of MST (GD[S]). Following the decremental scheme, we set η = 1 + dε−1e.

Due to decremental scheme, when a vertex is removed from the terminal set, it is not necessary
to remove it from the maintained tree T unless its degree in T is at most η. Thus an update may
cause T to split into at most η trees. The main challenge of this section is to find in an efficient
way the set of edges of minimum total cost that reconnects them.

In order to maintain the desired tree T we use the dynamic MSF algorithm (see Theorem 2.2).
In what follows we construct a graph H on the vertex set V (the vertex set of both input graph
G and GD) with the property that there is a connected component H0 of H containing all current
terminals. We declare T to be MST (H0) (maintained by the dynamic MSF algorithm). All other
connected components of H will be isolated vertices. Our goal now is to maintain H by adding and
removing edges in such a way that maintaining the MSF of H with the dynamic MSF algorithm
does in fact implement the decremental scheme of Section 4.3 on GD.

The simplest approach would be to add to H, for every two u,w ∈ S, an edge uw of length
dGD(u,w). This approach, however, would obviously be inefficient. Instead of that, we use the
structure of the vertex-color distance oracle. For every two u,w ∈ V (T ) such that u is piece-visible
from w, we add to H an edge uw of length being equal to the piece distance. Moreover, we will be
adding some edges corresponding to portal distances, but they will be chosen in a careful way to
ensure that the number of such edges is low.

Our algorithm uses a single instance D of the fully dynamic vertex-color distance oracle. Initially
all vertices are inactive and have distinct colors. Denote the terminal set by S. Using Lemma 5.19
we compute the initial minimum spanning tree T = MST (GD[S]) and modify D so that D contains
one active color, whose corresponding tree is equal to T . Other vertices remain inactive.
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We initialize the edge set of H to be the set of all edges of the initial T and all edges between
terminals corresponding to mutually piece-visible vertices. Note that we may break ties of weights
in H in such a way that H has a unique minimum spanning forest. Consequently, the forest
computed by the dynamic MSF algorithm contains the tree T .

We update the vertex-color distance oracle D to maintain the following invariant: the colors of
D correspond to the connected components of the graph H, and the only active color is associated
with a tree equal to T . Hence, any change to the spanning forest of H results in a constant number
of modifications to D.

According to the decremental scheme of Section 4.3, when a vertex of degree greater than η is
deleted, we simply mark it as a non-terminal. Otherwise, if the procedure removeη(v) requires us
to delete a vertex of degree at most η from the currently maintained tree, we update H and the
distance oracle D, as follows.

1. Split the active color V (T ) in D into s+ 1 pieces being {v} and the s connected components
of T \ {v}, and then deactivate {v}.

2. Compute the set of reconnecting edges that correspond to portal distances (using Lemma 5.18)
and add these edges to H.

3. Remove all edges incident to v from H.

4. At this point, the dynamic MSF algorithm may update the maintained tree. Update the
vertex-color distance oracle D, so that it reflects these changes of the MSF of H.

We now show that our algorithm indeed implements the decremental scheme of Section 4.3.

Lemma 6.1. After each removal of a vertex from T , T is a minimum spanning tree of GD[V (T )]
and T implements the decremental scheme of Section 4.3.

Proof. Clearly, at the initialization step for a given terminal set S, in H there is a component
H0 containing T = MST (GD[S]) and all vertices of V \ S are isolated. Moreover, the minimum
spanning tree of H0 computed by the dynamic MSF algorithm equals T .

After initialization, for each pair of mutually piece-visible vertices of V (T ), the graph H contains
the corresponding edge, as we added this edge explicitly to H. Clearly, this invariant is satisfied
after every terminal deletion.

Let us now analyze the case when removeη removes a vertex v of degree s ≤ η. Denote by
T1, . . . , Ts the trees which T decomposes into. We use Lemma 5.18 to compute a set of edges
corresponding to portal distances that have minimum weight and connect trees T1, . . . , Ts. These
edges are added to H in Step 2.

Assume that before the operation of removing a vertex v from T , the tree T is a minimum
spanning tree of GD[V (T )]. Then, the addition of the reconnecting edges in Step 2 does not
modify T , as we use a tie breaking strategy for edges’ weights and assume that out of two edges of
the same weight, the lighter is the one that was added earlier (see Section 2). These edges may be
used when the edges incident to v are deleted in Step 3.

We now prove that H contains a set of edges F v of minimum total cost that reconnects trees
T1, . . . , Ts into a tree T ′. If s = 1, the claim follows trivially (the set Fv is empty). Otherwise,
consider an edge e of F v. Removing e from T ′ yields two trees T ′1 and T ′2. We show that H contains
an edge connecting T ′1 with T ′2 of cost equal to e. If dGD(e) is equal to the piece distance between
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the endpoints of e, then the edge e is contained in H. Otherwise, the length of e corresponds to
portal distance. But, since the set computed by Lemma 5.18 is a MST of a graph defined over
portal distances, we have added to H the edge connecting T ′1 with T ′2 of minimum portal distance.
The length of this edge is at most the length of e (in fact the lengths are equal).

The dynamic MSF algorithm guarantees that the new tree T ′ after the operation consists of
the connected components of T \ v connected with a set of edges of minimum possible cost with
respect to the weights in GD. Consequently, T ′ is a MST of GD[V (T ′)].

Lemma 6.2. Let ε > 0. Assume we are given a fully dynamic µ-approximate vertex-color distance
oracle with pnum portals. For every v ∈ V , |portals(v)| ≤ pmax, |pieces(v)| ≤ rmax and an (expected)
size of each piece is bounded by r#max. Then, there exists a dynamic algorithm that maintains a
2(1+ε)µ approximation of a minimum cost Steiner tree under a sequence of terminal deletions. For
every terminal deletion, in amortized sense, the algorithm issues O(ε−1) merge and split operations
and uses O(ε−1 log4 n + ε−1pnum + ε−1 log ε−1) additional (expected) time. Preprocessing requires
O(|S|) merge and split operations, as well as O(|S|(r#maxrmax log4 n + pnum log n)) (expected) time.
The algorithm uses O(|S|(ε−1 + r#maxrmax)) (expected) space.

Proof. We use the decremental algorithm described in this section which, by Lemma 6.1, follows
the decremental scheme. The approximation guarantee follows from Lemma 4.13.

Let us now analyze the efficiency of the algorithm. At the initialization step, we compute
the minimum spanning tree of the terminal set. By Lemma 5.19, this requires O(|S|(pnum +

r#maxrmax) log n) (expected) time. Moreover, we add edges between mutually piece-visible terminals.
For each vertex v we compute shortest paths in each element of pieces(v) and add respective edges
to H. The computation of shortest paths in each piece takes O(|S|r#maxrmax log n) (expected) time.
Thus, during initialization, we add a total of O(|S|r#maxrmax) edges to H (in expectance), which,
by Theorem 2.2, requires O(|S|r#maxrmax log4 n) (expected) time.

When a vertex v is removed from the maintained spanning tree we need to compute the set of
reconnecting edges, using Lemma 5.18 in O(ηpnum+η log η) = O(ε−1pnum+ε−1 log ε−1) (expected)
time. We obtain a set of O(η) = O(ε−1) edges that we add to H in O(ε−1 log4 n) time. Moreover,
with respect to the operations on the oracle D, we merge and activate vertices of S O(η) times per
removal.

For the space bound, we need O(|S|(ε−1+r#maxrmax)) (expected) space to store the graph H and
maintain the decremental MSF algorithm. In addition to that, space is used by the vertex-color
distance oracle.

By using the two oracles developed in Section 3.2, we obtain the following two dynamic algo-
rithms.

Theorem 6.3. Let G = (V,E, dG) be a graph, n = |V |, m = |E| and ε > 0. Let S ⊆ V be a dynamic
set, subject to vertex removals. Then, after preprocessing in O(

√
n(m + n log n) + |S|

√
n log4 n)

expected time, we may maintain a (6 + ε)-approximate Steiner tree that spans S, handling each
removal from S in O(ε−1

√
n log n) expected amortized time. The algorithm uses O(n

√
n log n)

expected space.

Proof. We combine Lemma 6.2 with 3-approximate vertex-color distance oracles of Theorem 5.8
(based on Lemma 5.7). There are rnum = n pieces, each of expected size r#max = O(

√
n). Each

vertex is assigned a single piece (rmax = 1). For every vertex the number of portals is pmax = O(
√
n)
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and so is the total number of portals (pnum = O(
√
n)). Every merge and split operation requires

Tmerge = O(
√
n log n) time. By plugging this parameters to Lemma 6.2 we obtain an algorithm

which processes each removal in time

O(ε−1 log4 n+ ε−1pnum + ε−1 log ε−1 + ε−1Tmerge)

= O(ε−1 log4 n+ ε−1
√
n+ ε−1 log ε−1 + ε−1

√
n log n)

= O(ε−1
√
n log n).

The last equality holds under a natural assumption that log ε−1 = O(
√
n); otherwise a brute-force

approach works in O(ε−1) time.
It takes O(

√
n(m+ n log n)) expected time to initialize the oracle and

O(|S|(Tmerge + r#maxrmax log4 n+ pnum log n))

= O(|S|(
√
n log n+

√
n log4 n+

√
n log n)

= O(|S|
√
n log4 n)

expected time to initialize the algorithm. Altogether, the expected initialization time is O(
√
n(m+

n log n) + |S|
√
n log4 n).

The space usage is O(|S|(ε−1 + r#maxrmax) + n
√
n log n) = O(n

√
n log n) expected space (again,

we assume log ε−1 = O(
√
n)).

We obtain approximation factor of 2(1+ε)3 = 6(1+ε), which can be adjusted to 6+ε by using
ε′ = ε/6 instead of ε.

Theorem 6.4. Let G = (V,E, dG) be a planar graph, n = |V | and ε > 0. Denote by D be the
stretch of the metric induced by G. Let S ⊆ V be a dynamic set, subject to vertex removals.
Then, after preprocessing in O(ε−1n log2 n logD+ |S|ε−0.5

√
n log2.5 n logD) time we may maintain

(2 + ε)-approximate Steiner tree that spans S, handling each removal from S in Õ(ε−1.5
√
n logD)

amortized time.

Proof. We combine Lemma 6.2 with (1 + ε)-approximate vertex-color distance oracles of Theo-
rem 5.16. There are rnum = O(n/ρ logD) pieces, each of size r#max = O(ρ). For every vertex the
number of pieces is rmax = O(logD). The total number of portals is pnum = O(ε−1n/ρ logD),
whereas the number of portals assigned to a vertex is at most pmax = O(ε−1 log n logD). Every
merge and split operation requires Tmerge = O(ε−1n/ρ log n logD) time.

We plug this parameters to Lemma 6.2 and obtain an algorithm which processes each removal
in time

O(ε−1 log4 n+ ε−1pnum + ε−1 log ε−1 + ε−1Tmerge)

= O(ε−1 log4 n+ ε−2n/ρ logD + ε−1 log ε−1 + ε−2n/ρ log n logD)

= O(ε−2n/ρ log n logD).

It takes O(ε−1n log2 n logD) time to initialize the oracle and

O(|S|(Tmerge + r#maxrmax log4 n+ pnum log n))

= O(|S|(ε−1n/ρ log n logD + ρ logD log4 n+ ε−1n/ρ log n logD))

= O(|S|(ε−1n/ρ log n logD + ρ logD log4 n))
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time to initialize the algorithm. We balance the two terms from initialization time and get ρ =√
nε−0.5/ log1.5 n. Thus, the initialization time becomesO(ε−1n log2 n logD+|S|ε−0.5

√
n log2.5 n logD).

The amortized time for removing one terminal isO(ε−2n/ρ log n logD) = O(ε−1.5
√
n log2.5 n logD).

We obtain approximation factor of 2(1 + ε)2, which can be adjusted to 2 + ε by using a value
of ε which is a constant factor smaller.

6.2 Incremental algorithm

The goal is to maintain an approximate Steiner tree on a set of terminals, subject to terminal
additions. Fix a constant τ > 0 and set ς = τ/2. We assume that the input graph G may only be
accessed by incremental vertex-color distance oracles (see Section 3.2). In particular, improving the
oracles would immediately yield a better algorithm for our problem. We denote the approximation
ratio of the oracles by µ and assume µ = O(1). We also assume that all the oracles yield the
same µ-near metric space GD = (V,

(
V
2

)
, dGD) that approximates the metric closure of G (see

Corollary 5.17). In particular, the tree that we maintain has edge lengths corresponding to the
lengths in GD. Moreover, we assume that the distances returned by the oracles are discrete,
meaning that every distance is a power of 1 + ς. If this is not the case, we may round up every
distance returned by the oracle. As a result, the distances will correspond to a µ(1 + ς)-near metric
space. However, for simplicity of presentation, let us assume that we work with a µ-near metric
space. We will include the additional 1 + ς factor in the final analysis.

Our first goal is to maintain a good approximation of the minimum spanning tree of Si in graph
GD. In order to achieve that, we use the incremental online algorithm from Section 4.4. The
parameters τ and ς that we have chosen correspond to the parameters used in the description of
the scheme. We denote the terminals that are added by t1, t2, t3, . . .. Let Si = {t1, . . . , ti} and let
Ti denote the tree maintained by the algorithm after adding i terminals.

Assume that all edge lengths of GD belong to the interval [1, D]. Note that D is at most µ
times greater than the stretch of the metric induced by G. We define the level of an edge uv, as
lvl(uv) := log1+ς dGD(uv). Similarly, the level of a tree T is lvl(T ) := blog1+ς dGD(T )c. Note that
since the distances are powers of 1 + ς, the levels of edges are integers. The algorithm represents
the current tree Ti by maintaining h = blog1+ς Dc layers L1, . . . , Lh. Layer Lj contains edges of
the current tree Ti whose level is at most j. In particular, layer Lh contains all edges of Ti. We
also define lvl⊥(T ) = blog1+τ

τdGD(T )
8µ2(1+τ)3n

c. Intuitively, edges of level at most lvl⊥(T ) are so short
that they may sum up to at most τ/2 fraction of the weight of T .

For each layer Lj , we maintain an incremental vertex-color distance oracle Dj on the graph G.
The partition of V into colors corresponds to the connected components of a graph (V,Lj). A color
is active if and only if its elements belong to Si.

We now describe the process of adding a terminal ti. The pseudocode is given in Algorithm 1.
It consists of two stages. First, we find the shortest edge in GD connecting ti to any of t1, . . . , ti−1
and add this edge to Ti−1 to obtain tree Ti. Then, we apply a sequence of ς-efficient replacements
(e, e′) to Ti in order to decrease its weight. According to the incremental scheme of Section 4.4 we
only need to consider replacements in which e is incident to the newly added terminal ti.

In order to find the replacements, we use the vertex-color distance oracles. Fix a layer number
j and assume that the colors of the oracle Dj reflect the layer structure, including the newly added
terminal ti. We want to find a replacement pair (e, e′) such that the lvl(e′) > j and lvl(e) ≤ j.
Denote by C the connected component of the graph (V,Lj) that contains ti (observe that the vertex
set of C is exactly the set of vertices with the same color as ti in Dj). By definition of C, it consists
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Algorithm 1 Adding a new terminal ti
1: procedure FindReplacements(j)
2: while true do
3: t′ := active vertex in Dj which is second nearest to ti
4: if lvl(tit′) > j then
5: break
6: e′ := the heaviest edge in Ti on the path from ti to t′

7: replace e′ with tit
′ in Ti

8: for k = 1, . . . , h do
9: if lvl(e′) ≤ k then

10: replace e′ with tit
′ in Lk

11: else if lvl(tit′) ≤ k then
12: add tit

′ to layer Lk
13: merge colors of ti and t′ in Dk
14: procedure AddTerminal(ti)
15: t′ := the active vertex in Dh which is nearest to ti
16: Ti := Ti−1 ∪ {tit′}
17: for j = 1, . . . , h do
18: activate color of ti in Dj
19: if lvl(tit′) ≤ j then
20: add tit

′ to Lj
21: merge colors of ti and t′ in Dj
22: TM := maximum weight tree among T0, . . . , Ti−1
23: for j = lvl⊥(TM ), . . . , lvl(TM ) do
24: FindReplacements(j)
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of edges of level at most j and the path in Ti from ti to every t 6∈ C contains an edge of level > j.
We find the vertex t 6∈ C which is the nearest to ti by querying Dj . Since ti has color C, we issue
a nearest(ti, 2) query to find the second nearest color from ti. Assume that we find a vertex t′. If
lvl(tit′) ≤ j, we have found a replacement pair. Let e′ be the heaviest edge on the path from ti to
t′ in Ti and e = tit

′. Clearly, (e, e′) is a replacement pair, and since the weight of e is lower than the
weight of e′ and the weights can differ at least by a factor of 1 + ς, this replacement is ς-efficient.
Note that we choose e′ to be the heaviest edge of the path from ti to t′ in Ti, as required by the
incremental scheme.

Our algorithm iterates through layers in increasing order, and for each layer it repeatedly looks
for replacements using the procedure described above. As we later show, in this way we will detect
all replacements that we need. In particular, applying a replacement on a higher level may not
create new (τ/2, 2µ(1 + τ)2)-good replacements on lower levels.

Let TM be the tree with maximum weight among T1, . . . , Ti−1. For efficiency, we only iterate
through layers j = lvl⊥(TM ), . . . , lvl(TM ) to perform replacements.6 After this procedure, some
ς-efficient replacements may still be possible in Ti, but they would not be (τ/2)/(2µ(1+τ)2)-heavy.

Every time we change the current tree, we update all layers accordingly. In case we add a
new edge, this boils down to a single merge operation (in each layer that is supposed to contain
the edge). A more difficult case is when we perform a replacement, as then we remove an edge
that is replaced. Assume that we perform a replacement (e, e′) and we need to update a layer Lj
that contains the edge e′. From the algorithm we know that e′ is the heaviest edge on the path
connecting the endpoints of e, so all edges of this path are contained in Lj and the endpoints of e
have the same color. Right after we remove e′ from Ti, we add e. Since the level of e is lower than
the level of e′, the edge e is added to layer Lj , which means that in the end the colors in Lj do not
change at all.

We first show that one call to FindReplacements correctly finds the replacements.

Lemma 6.5. After a call to FindReplacements(j), there are no possible ς-efficient replacements
(e, e′), such that lvl(e′) > j, lvl(e) ≤ j and e is incident to ti. Every replacement made by
FindReplacements is ς-efficient. Every time a replacement (e, e′) is made, the edge e′ is the
heaviest edge on the path between the endpoints of e.

Proof. The second and third claims of the lemma follow directly from the discussion above. It
remains to prove the first one. Note that once we identify a replacement pair, the loop in lines 8-13
correctly updates the data structures.

Assume that a desired replacement exists and e = tit
′′. The path from ti to t′′ in the current

spanning tree goes through e′. Consider the vertex-color distance oracle Dj . Since its colors
correspond to connected components of the subgraph consisting of edges of level at most j and
lvl(e′) > j, the color of t′′ is different from the color of ti. Thus, the vertex t′ found in 3rd line of
the algorithm, is at distance at most d(tit

′′) ≤ d(tit
′) from ti and lvl(tit′) ≤ j, so the while loop

does not terminate.

We now show, that considering layers in the increasing order is correct. In particular, performing
a replacement using one layer may not create replacements at lower levels.
6A simple solution would be to iterate through all layers, or through a range of layers defined in terms of Ti−1,

but we use a slightly more sophisticated approach in preparation for more efficient algorithm that we describe later.
The key property here is that the weight of TM may be only slightly larger than the weight of Ti, but at the same
time the weight of TM may only increase after adding every terminal.
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Lemma 6.6. After FindReplacements(j) is called with j = a, . . . , b, there does not exist a ς-
efficient replacement (e, e′), such that lvl(e) ≤ b, lvl(e′) > a and e is incident to ti. Moreover,
every time the algorithm identifies a replacement pair (e, e′) in the iteration j, we either have
lvl(e) = j, or j = a and lvl(e) ≤ a.

Proof. The proof is by induction on b− a. The base case b = a is provided by Lemma 6.5; observe
that also any replacement pair (e, e′) identified for j = a satisfies lvl(e) ≤ a. Consider now an
inductive step for b > a.

Throughout the proof we only consider replacements in which the replacement edge is incident
to e. By induction hypothesis, we know that in the beginning of last iteration for j = b there are no
ς-efficient replacement (e, e′), such that lvl(e) ≤ b− 1 and lvl(e′) > a. Moreover, by Lemma 6.5,
when the iteration is complete, there are no ς-efficient replacement (e, e′), such that lvl(e) ≤ b
and lvl(e′) > b. We combine this two facts to show the induction step, but we need to prove that
performing replacements may not introduce any new replacements (f, f ′) satisfying lvl(f) < b and
lvl(f ′) > a.

Consider the first replacement (e, e′) that we perform in the iteration j = b. Then, from
the induction hypothesis, it follows immediately that lvl(e) = b. We show that performing the
replacement may not introduce any new replacements (f, f ′), such that lvl(f) < b and lvl(f ′) > a.
Indeed, observe that such a replacement can be identified by querying Dlvl(f ′). But then the vertex-
color distance oracles Db′ , for b′ < b, are not modified, so no replacement pair (f, f ′) such that
lvl(f) < b and lvl(f ′) > a can be created.

Consequently, the next replacement (e, e′) performed in the iteration j = b also satisfies lvl(e) =
b, and the argument from the previous paragraph applies again. Consequently, as we perform
replacements, we do not introduce any replacement pair (f, f ′) such that lvl(f) < b and lvl(f ′) >
a. This concludes the proof of the lemma.

Lemma 6.7. The maintained tree Tk is a 2(1 + τ)µ-approximation of a minimum Steiner tree in
G that spans Sk.

Proof. The proof proceeds by induction on the number of terminals i. Our goal is to use Lemma 4.15,
so we have to show that the algorithm presented here implements the incremental scheme from Sec-
tion 4.4.

In order to show that we follow the incremental scheme from Section 4.4 we need to prove that
there are no (τ/2, 2µ(1 + τ)2)-good replacements (e, e′) with e incident to ti. By Lemma 6.6, after
all calls to FindReplacements, for every such replacement, we either have lvl(e) > lvl(TM ) of
lvl(e′) ≤ lvl⊥(TM ). Since the edges that we replace either belong to Ti−1 or have been added as a
replacement for an edge in Ti−1, and dGD(TM ) ≥ dGD(Ti) the first case may not hold. Let us then
consider the second case. We show that the condition implies that (e, e′) is not (τ/2)/(2µ(1 + τ)2)-
heavy. We have

d(e′) ≤ τd(TM )

8(1 + τ)3µ2n
from lvl(e′) ≤ lvl⊥(TM )

≤ τ2(1 + τ)µd(Ti)

8(1 + τ)3µ2n
by Lemma 4.14, d(TM ) ≤ 2(1 + τ)µd(Ti)

≤ τd(Ti)

4(1 + τ)2µn
.
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This shows that the update procedure correctly implements the incremental scheme from Sec-
tion 4.4, so, by Lemma 4.15, it computes a 2(1 + τ)µ-approximation of a minimum Steiner tree in
G that spans Sk.

The above algorithm can be speeded up by reducing the number of layers, so that it does not
depend on the stretch of the metric induced by the input graph. Observe that although we maintain
O(log1+ς D) layers, we only use layers lvl⊥(TM ), . . . , lvl(TM ) to find the replacements. Thus, we
may modify our algorithm so that it only maintains the layers that are necessary. We will maintain
h layers L1, . . . , Lh that correspond to levels lvl⊥(TM ), . . . , lvl⊥(TM ) + h − 1. The value h is
chosen such that lvl⊥(TM ) + h− 1 is at least lvl(TM ), regardless of the weight of TM . Thus, for
some tree T ,

h =
⌊
log1+ς d(T )

⌋
−
⌊

log1+ς
τd(T )

8µ2(1 + τ)3n

⌋
= O(log1+ς(µ

2(1 + τ)3n/τ)) = O(τ−1 log(n/τ))

Since the weight of TM may increase over time, the layers will be dynamic, that is, the level
corresponding to each layer will also increase.

The algorithm may be easily adapted to handle the dynamic layers. Once a new tree Ti has
been computed and the weight of TM increases, the layers may correspond to higher levels and
may need to be updated by adding some edges to them. However, there are at most n− 1 of these
additions for every layer.

Let us now analyze the efficiency of the algorithm. Note that while the layers are used for the
description of the algorithm, they may be omitted in the implementation, as they are never read.
We first bound the running time of one call to FindReplacements.

Lemma 6.8. Assume that a call to FindReplacements performs r replacements. Then, it issues
r+ 1 nearest queries and at most r merge operations on every level. Moreover, it uses O(r log n)
additional time.

Proof. We issue a nearest query to find replacements. r of these queries identify new replacements
and the last one detects that there are no more replacements to be made. After a replacement is
detected, we may execute a merge operation on every level. Moreover, after a replacement is
detected, we find the heaviest edge on some path in the tree (see line 6 of Algorithm 1). To do that
efficiently, we maintain the the trees Ti as top trees [3]. This allows us to perform this operation
in O(log n) time.

Lemma 6.9. Let 0 < τ = O(1). Given h = O(τ−1 log(n/τ)) instances of an incremental µ-
approximate vertex-color distance oracle (µ = O(1)), there exists a dynamic algorithm that main-
tains a 2µ(1 + τ)-approximation of a minimum-cost Steiner tree under a sequence of terminal in-
sertions. For every terminal addition, in amortized sense, the algorithm executes O(τ−1 log(n/τ))
activate, merge and nearest operations. The space usage is dominated by the space usage of the
oracles.

Proof. By Lemma 6.7, the incremental algorithm implements the incremental scheme. As a result,
we may use Lemma 4.17 to bound the running time.

Assume that we have added k terminals. First, we need to bound the number of replacements.
Since we round the distances up to a power of (1 + ς), we operate on a µ(1 + ς)-near metric space.
Our algorithm implements the incremental scheme with parameters ς = τ/2. Thus, by Lemma 4.17,
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adding k terminals may trigger O(kτ−1 log((1 + τ)µ)) = O(kτ−1) replacements. In particular, this
shows that the update procedure terminates.

Let us now calculate the number of operations performed on the vertex-color distance oracles.
We use one copy of the oracle for each layer. In the course of adding k terminals, in each of the h
layers at most k vertices may be activated and colors may be merged k − 1 times. Note that this
includes the merging of colors caused by maintaining dynamic layers. For every terminal insertion
we also issue one nearest query to find the first edge connecting the new terminal with the current
tree. Since a single terminal insertion triggers O(τ−1) replacements, by Lemma 6.8, we we issue
O(h + τ−1) = O(τ−1 log(n/τ)) nearest queries, in amortized sense. We also spend O(τ−1 log n)
additional time, but this time is dominated by the oracle operations.

Apart from the oracles, the algorithm uses O(n) space to represent the trees. Thus, the space
usage is dominated by the oracles.

By using the two oracles developed in Section 3.2, we obtain the following two dynamic algo-
rithms.

Theorem 6.10. Let G = (V,E, dG) be a graph, n = |V | and ε > 0. Let S ⊆ V be a dynamic
set, subject to vertex insertions (initially S = ∅). Then, after preprocessing in O(ε−1

√
n(m +

n log(n/ε))) expected time we may maintain (6+ε)-approximate Steiner tree that spans S, handling
each insertion to S in Õ(ε−1

√
n) amortized time. The algorithm uses O(ε−1n

√
n log n log(n/ε))

space.

Proof. We combine the 3-approximate vertex-color distance oracle from Theorem 5.8 (based on
Lemma 5.7) with Lemma 6.9. Thus µ = 3 = O(1). We set τ = ε/3.

We first build O(τ−1 log(n/τ)) copies of the oracle, by first building a single one and then
copying it. Building the first oracle requires O(

√
n(m + n log n)) expected time. Since the space

usage is O(n
√
n log n), the copying requires O(τ−1n

√
n log n log(n/τ)) time, and so is the space

usage.
The oracle handles activate and merge operations in O(

√
n log n) time, whereas nearest

queries are answered in O(
√
n) time. Since we perform O(τ−1 log(n/τ)) of each of these operations,

they require O(τ−1
√
n log n log(n/τ)) = Õ(ε−1

√
n) amortized time per terminal insertion.

We obtain an approximation factor of 2(1 + ε)3 = 6(1 + ε), which may be reduced to 6 + ε by
manipulating the value of ε.

Theorem 6.11. Let G = (V,E, dG) be planar a graph, n = |V | and D be the stretch of the metric
induced by G. Fix ε > 0. Let S ⊆ V be a dynamic set, subject to vertex insertions (initially
S = ∅). Then, after preprocessing in O(ε−2n log n log(n/ε) logD)) time we may maintain (2 + ε)-
approximate Steiner tree that spans S, handling every insertion to S in O(ε−2 log2 n log(n/ε) logD)
expected amortized time or O(ε−2 log2 n log log n log(n/ε) logD) deterministic amortized time. The
algorithm uses O(ε−2n log n log(n/ε) logD)) space.

Proof. We combine the (1 + ε)-approximate vertex-color distance oracle of Theorem 5.14 with
Lemma 6.9. We set τ = ε.

We first build O(τ−1 log(n/τ)) copies of the oracle, by first building a single one and then
copying it. Building the first oracle requires O(τ−1n log2 n logD) time. Since the space usage is
O(τ−1n log n logD), the copying requiresO(τ−2n log n log(n/τ) logD)) = O(ε−2n log n log(n/ε) logD))
time, and so is the space usage. The copying also dominates the preprocessing time.
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The oracle handles activate and merge operations in O(ε−1 log2 n logD) expected amortized
time, whereas nearest queries are answered in O(ε−1 log n logD) time (and additional log logn
factor is needed for deterministic algorithms). Since we perform O(τ−1 log(n/τ)) of each of these
operations, they require O(ε−2 log2 n log(n/τ) logD) expected amortized time (with an additional
log logn factor for a deterministic algorithm).

We obtain approximation ratio of 2(1 + ε)2. It is easy to see that by manipulating the value of
ε, we may obtain (2 + ε)-approximation.

6.3 Fully dynamic algorithm

In this section we merge the ideas of the decremental and incremental algorithms to obtain a fully
dynamic algorithm, which supports both terminal additions and deletions. The algorithm simply
maintains the invariants of both the incremental and decremental algorithms. Let ε > 0 and
ς = τ > 0. We set η = 1 + dε−1e. We implement the fully dynamic scheme of Section 4.5 with
the parameters ε, ς and τ . Recall that ε (and η) controls the degree threshold for nonterminals
that are deleted, and ς defines the efficiency of the replacements that we make. We maintain the
invariant that the tree does not contain any τ -efficient replacements. Since, ς = τ , in the following
we only use τ .

Similarly to the decremental algorithm, we work with a graph G = (V,E, dG) that is accessed
with approximate vertex-color distance oracles, that yield a µ-near metric space GD, which ap-
proximates G (see Corollary 5.17). We assume that µ = O(1) and that every edge length is GD
has length being a power of (1 + τ). This can be achieved by rounding up the distances returned
by the oracle. As a result, the graph GD yielded by the oracle becomes a µ(1 + τ)-near metric
approximating G, but in the description we assume the approximation factor of µ. The additional
1 + τ factor will be included in the final analysis.

As in the decremental algorithm, we do not maintain the tree explicitly, but instead we use the
dynamic MSF algorithm (see Theorem 2.2) on top of a carefully chosen graph H with vertex set V .
Again, each connected component of H is an isolated vertex, with the exception of one component,
denoted H0, that contains all terminals. We declare that the currently maintained Steiner tree, T ,
is the tree maintained by the dynamic MSF algorithm in the component H0.

We define the level of an edge uv to be lvl(uv) := log1+τ dGD(uv). Our algorithm maintains a
tree T which spans the set of terminals and nonterminals of degree more than η. The tree T will
not admit τ -efficient replacements, but since the distances are powers of 1 + τ , this means that T
does not admit any efficient replacements. Thus, by Lemma 4.8, it is the MST of its vertex set.

Denote by D the stretch of the metric induced by G. Thus, the longest edge in GD is at most
µ ·D = O(D) times longer than the shortest one. In the algorithm we maintain h = blog1+τ Dc =
O(τ−1 logD) fully dynamic vertex-color distance oracles D1, . . . ,Dh. Dh is the counterpart of the
oracle from the decremental algorithm. The colors of Dh correspond to connected components of
H. The only active color is the one corresponding to component H0. The tree associated with this
color is equal to the tree T . The oracle Di is obtained from Dh by splitting along edges of level
more than i. In other words, we consider the forest consisting of edges of T of level at most i and
for each tree Fj in this forest, Di contains an active color associated with the tree Fj . We update
the oracles in order to maintain those properties.

Note that we may assume that all oracles have the same structure, i.e., the sets portals(v) and
pieces(v) are the same in each oracle. This can be achieved by constructing one oracle and then
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copying it to create all the others. Thus, referring to piece or portal distance between vertices in
unambiguous.

As in the decremental algorithm of Section 6.1, we maintain an invariant that for every two
vertices u,w ∈ V (T ), if u is piece-visible from w, the graph H contains an edge connecting them,
whose length is equal to the piece distance.

With respect to the vertex-color distance oracles, note that each modification (edge addition,
removal or replacement) in the tree T requires us to perform O(1) operations on each oracle Di.

Vertex removal. To use the fully dynamic scheme of Section 4.5, we first need to describe how
the algorithm behaves if the procedure removeη requires us to remove a vertex v of degree at most
η from the tree T . We resolve this situation in exactly the same manner as in the decremental
algorithm of Section 6.1. For sake of completeness, let us recall the steps.

1. Split the active color V (T ) in Dh into s+ 1 pieces being {v} and the s connected components
of T \ {v}, and then deactivate {v}. Update all oracles Dj accordingly.

2. Compute the set of reconnecting edges that correspond to portal distances (using Lemma 5.18)
and add these edges to H.

3. Remove all edges incident to v from H.

4. At this point, the dynamic MSF algorithm may update the maintained tree. Update the
vertex-color distance oracles Di, so that they reflect these changes of the MSF of H.

Vertex addition. A second ingredient needed to implement the fully dynamic scheme is the
behavior upon addition of a new terminal v. If v ∈ V (H0), we simply mark it as a terminal and
finish.

Let us now assume that we are adding a new vertex v to the tree. We use a similar method as
in the incremental scheme, but here we need to assure that after adding v, the tree does not admit
any τ -efficient replacements. We use the following algorithm. Note after every change to T done
by the dynamic MSF algorithm we update the nearest oracles accordingly.

1. Connect v to the tree with the shortest possible edge in GD. Add this edge to H.

2. Iterate through levels in increasing order, and for each level find and apply all occurring τ -
efficient replacements. This is done with the procedure FindReplacements from the (see
Algorithm 1, Section 6.2). Each time a replacement (e, e′) is found, simply add edge e to H.
The edge e′ may safely remain in H.

3. For every vertex w, whose degree became at most η due to replacements, call removeη(w).

4. Add edges corresponding to piece distances between v and vertices of T .

We claim that the dynamic MSF algorithm modifies the tree T exactly the way the fully dynamic
scheme requires it to do.

Lemma 6.12. The tree T implements the fully dynamic scheme of Section 4.5.
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Proof. The correctness of the implementation of the procedure removeη follows from the same
arguments as in the decremental algorithm. Indeed, our algorithm maintains the same invariants
about graph H and before the removal the tree T is the MST of the terminals. Since we use the
same procedure for handling deletions, the proof is analogous to the proof of Lemma 6.1.

Let us now focus on a step when a vertex v /∈ V (H0) is added to the terminal set. By Lemma 6.5,
every replacement (e, e′) is τ -efficient and e′ is the friend of e with maximum possible cost. Since
we iterate through all levels, by Lemma 6.6, we have that after handling the insertion there are no
τ -efficient replacements (e, e′) with e incident to v. Now, by Lemma 4.18, if there are no τ -efficient
replacements (e, e′) with e incident to v, there are no τ -efficient replacements at all. In particular,
the addition of edges incident to v corresponding to pieces distances does not cause any changes to
T .

Finally, note that as the weights of the edges in the dynamic MSF algorithm equal their levels
in GD, and we break ties by timestamps, if an addition of a new edge results in a replacement in
T , such a replacement is τ -efficient. This concludes the proof of the lemma.

We are now ready to state the main result of this section.

Lemma 6.13. Let G = (V,E, dG) be a graph, ε > 0. Denote by D the stretch of the metric induced
by G. Assume there exists a fully dynamic µ-approximate vertex-color distance oracles, where
µ = O(1). Let pnum be the (expected) total number of portals in the oracle. Moreover, assume that
every vertex is assigned at most rmax pieces (in expectation), the (expected) size of each piece is
bounded by r#max, and the (expected) total number of pieces is rtot.

Then, there exists a dynamic algorithm that maintains a 2(1 + ε)2µ approximation of a min-
imum cost Steiner tree under a sequence of terminal additions and deletions (initially, the ter-
minal set is empty). For every terminal addition, in amortized sense, the algorithm executes
O(ε−2 log2D) split and merge and issues O(ε−1 logD) nearest queries. Moreover, it uses
O(ε−1pnum + ε−2 log n logD + (rmaxr

#
max + ε−1) log4 n) additional (expected) time.

The initialization time is dominated by the time needed to initialize Θ(ε−1 logD) fully dynamic
vertex-color distance oracles. Similarly, the space usage is dominated by the oracles.

Proof. Set τ = ε. By Lemma 6.12, our algorithm implements the fully dynamic scheme. Thus, by
Lemma 4.18, it maintains a 2(1 + ε)2µ approximation of a minimum cost Steiner tree.

The algorithm starts by constructing Θ(τ−1 logD) = O(ε−1 logD) oracles Di. Initially, the
graph H is empty.

After each removal of a vertex in T we apply Lemma 5.18, which requires O(ε−1pnum +
ε−1 log ε−1) time. Moreover, we issueO(τ−1) merge and split operations in each of theO(τ−1 logD)
oracles, that is, a total of O(τ−2 logD) = O(ε−2 logD) operations.

Now consider a vertex addition. By Lemma 4.19, an addition may trigger O(τ−1 logD) =
O(ε−1 logD) replacements. When a new vertex is added we call FindReplacements O(τ−1 logD)
times, and each call issues one nearest query, regardless of the number of replacements. More-
over, for every replacement, all calls to FindReplacements issue an additional nearest query
and O(τ−1 logD) merge operations. It also uses O(τ−1 log n) additional time. This gives a to-
tal of O(τ−2 log2D) = O(ε−2 log2D) merge and split operations per insertion, O(τ−1 logD) =
O(ε−1 logD) nearest queries and O(τ−2 log n logD) = O(ε−2 log n logD) additional time.

Whenever we add or remove a vertex from T , we add or remove all edges corresponding to piece
distances. There are at most O(rmaxr

#
max) such edges for every vertex (in expectance). All these

edges can be computed in O(rmaxr
#
max log n) using Dijkstra’s algorithm.
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We are left with bounding the amortized cost of maintaining the dynamic MSF algorithm over
the graph H. Each call to removeη that results in a modification of T as well as each addition
of a new terminal adds to H O(rmaxr

#
max) edges corresponding to piece distances. By Lemma 4.19

and Theorem 2.2 this amortizes to O(rmaxr
#
max log4 n) per operation. Moreover, each removal adds

O(ε−1) new edges to H, which accounts for O(ε−1 log4 n) amortized time.
Altogether, the amortized cost of one operation is O(ε−2 log n logD + ε−1pnum + ε−1 log ε−1 +

rmaxr
#
max log4 n+ ε−1 log4 n) = O(ε−1pnum + ε−2 log n logD + (rmaxr

#
max + ε−1) log4 n).

Apart from the vertex-color distance oracles, the space usage is O(n). Thus, the oracles domi-
nate the space usage.

By using the two oracles developed in Section 3.2, we obtain the following dynamic algorithms.

Theorem 6.14. Let G = (V,E, dG) be a graph, n = |V |, m = |E| and ε > 0. Denote by D
the stretch of the metric induced by G. Let S ⊆ V be a dynamic set, subject to vertex additions
and removals (initially S = ∅). Then, after preprocessing in O(

√
n(m+ ε−1n log n logD)) expected

time, we may maintain a (6 + ε)-approximate Steiner tree that spans S, handling each change to S
in Õ(ε−2

√
n log2D) expected amortized time. The algorithm uses O(n

√
n log nε−1 logD) expected

space.

Proof. We combine Lemma 6.13 with vertex-color distance oracles for general graphs of Theorem 5.8
(based on Lemma 5.7). We have that µ = 3 = O(1). The expected total number of portals is
pnum =

√
n. Every vertex is assigned a single piece rmax = 1 of expected size at most r#max =

O(
√
n). The total number of pieces is rtot = O(n). Each merge and split operation requires

Tmerge = O(
√
n log n) expected time, whereas a nearest query can be handled in Tquery = O(

√
n)

expected time.
It takes O(

√
n(m + n log n)) expected time to initialize one oracle, and, since the expected

space usage is O(n
√
n log n), copying the oracle Θ(ε−1 logD) times requires O(n

√
n log nε−1 logD)

time. Thus, the expected preprocessing time is O(
√
n(m + n log n) + n

√
n log nε−1 logD) =

O(
√
n(m + ε−1n log n logD)). The space usage is dominated by the oracles, and amounts to

O(n
√
n log nε−1 logD).

Each terminal addition or deletion requires time

O(ε−2 log2DTmerge + ε−1 logDTquery + ε−1pnum + ε−2 log n logD + (rmaxr
#
max + ε−1) log4 n)

= O(ε−2 log2D
√
n log n+ ε−1 logD

√
n+ ε−2 log n logD + (

√
n+ ε−1) log4 n)

= O(ε−2 log2D
√
n log n+

√
n log4 n)

= Õ(ε−2
√
n log2D).

We obtain approximation factor of 2(1 + ε)23 = 6(1 + ε)2, which can be reduced to 6 + ε by
manipulating the value of ε.

Using Theorem 4.20, we may decrease the dependency on the stretch of the metric at the cost
of increasing the polylogarithmic factors.

Theorem 6.15. Let G = (V,E, dG) be a graph, n = |V |, m = |E| and ε > 0. Denote by D the
stretch of the metric induced by G. Let S ⊆ V be a dynamic set, subject to vertex additions and re-
movals (initially S = ∅). Then, after preprocessing in O(ε−1

√
n(m+ε−2n log n log(ε−1n) logD)) ex-

pected time, we may maintain a (6+ε)-approximate Steiner tree that spans S, handling each change
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to S in Õ(ε−5
√
n logD) expected amortized time. The algorithm uses O(ε−2n

√
n log n log(ε−1n) logD)

expected space.

Finally, we show a fully dynamic algorithm for planar graphs.

Theorem 6.16. Let G = (V,E, dG) be a planar graph, n = |V | and ε > 0. Denote by D the stretch
of the metric induced by G. Let S ⊆ V be a dynamic set, subject to vertex additions and removals
(initially S = ∅). Then, after preprocessing in O(ε−2n log2 n log2D) time, we may maintain a
(2 + ε)-approximate Steiner tree that spans S, handling each change to S in Õ(ε−2 log2.5D

√
n)

amortized time. The algorithm uses O(ε−2n log2 n log2D) space.

Proof. We combine Lemma 6.13 with (1 + ε)-approximate vertex-color distance oracles for general
graphs of Theorem 5.8. We have that µ = 1 + ε = O(1). The total number of portals is pnum =
O(ε−1n/ρ logD). Every vertex belongs to rmax = O(logD) pieces and each piece is a planar graph
containing r#max = O(ρ) vertices. The total number of pieces is rtot = O(n/ρ logD). Each merge

and split operation requires Tmerge = O(ε−1 nρ log n logD) time, whereas a nearest query can be
handled in Tquery = O((ε−1 log n+ ρ) logD) time.

It takes O(ε−1n log2 n logD) time to initialize one oracle, and, since we copy it Θ(ε−1 logD)
and its space usage is O(ε−1n log2 n logD), the copying requires O(ε−2n log2 n log2D) time. This
also dominates the preprocessing time. The space usage of the oracles and the algorithm is also
O(ε−2n log2 n log2D).

Each terminal addition or deletion requires time

O(ε−2 log2DTmerge + ε−1 logDTquery + ε−1pnum + ε−2 log n logD + (rmaxr
#
max + ε−1) log4 n)

= O(ε−3 log3D(n/ρ) log n+ ε−1 log2D(ε−1 log n+ ρ) + ε−2(n/ρ) logD + ε−2 log n logD+

(ρ logD + ε−1) log4 n)

= O(ε−3 log3D(n/ρ) log n+ ε−1 log2D(ε−1 log n+ ρ) + ε−2(n/ρ) logD + ε−2 log n logD+

(ρ logD + ε−1) log4 n).

We set ρ = ε−1
√
n logD and obtain a running time of O(ε−2 log2.5D

√
n log n+

√
n log2.5D log4 n) =

Õ(ε−2 log2.5D
√
n). We obtain approximation factor of 2(1 + ε)3, which can be reduced to 2 + ε by

manipulating the value of ε.

We may again apply Theorem 4.20 to decrease the dependency on the stretch of the metric
induced by G.

Theorem 6.17. Let G = (V,E, dG) be a planar graph, n = |V | and ε > 0. Denote by D the
stretch of the metric induced by G. Let S ⊆ V be a dynamic set, subject to vertex additions and
removals (initially S = ∅). Then, after preprocessing in Õ(ε−5n logD) time, we may maintain
a (2 + ε)-approximate Steiner tree that spans S, handling each change to S in Õ(ε−5.5

√
n logD)

amortized time.

7 Steiner tree via bipartite emulators

In this section we present an alternative solution for maintaining approximate Steiner tree. This
solution exposes a trade-off between the running time and the approximation ratio. The algorithms
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V (G)
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Figure 6: An illustration of a bipartite emulator. The blue thick dashed path corresponds to the
distance δ̃B(u, v) = dB(ux) + dB(xv).

presented here are faster than the algorithms from previous sections, however their approximation
ratio is much higher. We introduce the notion of bipartite emulator, which will be essential for the
algorithms proposed here. In essence, a bipartite emulator is a sparse bipartite graph that stores
the information about the approximate distances in the input graph. In this section we show how
to use a bipartite emulator to maintain a good approximation of the minimum Steiner tree. In
Section 7.1 we show how to construct the emulators themselves.

Definition 7.1. Let G be a graph and α ≥ 1. A bipartite emulator of G is a bipartite graph
B = (V (G) ] N,EB, dB), where the vertex set is partitioned into V (G) and a set of auxiliary
vertices N representing the distances in G. For every u, v ∈ V (G), it holds that δG(u, v) ≤
δB(u, v) ≤ α · δG(u, v). Moreover, for every u, v ∈ V (G), there exists in B a vertex x ∈ N ,
such that dB(ux) + dB(xv) ≤ α · δG(u, v). We say that α is the stretch of emulator B. We denote
δ̃B(u, v) = minx∈N{dB(ux) + dB(xv)} and we let G̃ = (V (G),

(
V (G)
2

)
, δ̃B) be the approximation of

the metric closure of G given by the emulator.

Note that a bipartite emulator is not an emulator according to the usual definition, as an
emulator is required to have the same vertex set as the graph it emulates. Observe also that G̃
may not be a metric space itself, as it may not satisfy the triangle inequality. See also Figure 6 for
an illustration.

The definition shows that a bipartite emulator B contains estimates of all distances in G and
that the distance estimate is given by a path of length two in B. Moreover, it easily follows that,
to approximate ST (G,S), it suffices to focus on MST (G̃[S]).

Lemma 7.2. Let B be a bipartite emulator of G with stretch α. Then for any set of terminals
S ⊆ V (G) it holds that

δ̃B(MST (G̃[S])) ≤ 2αdG(ST (G,S)).

Proof. Denote TMST = MST (G[S]) and observe that

δ̃B(MST (G̃[S])) ≤ δ̃B(TMST ) by the definition of MST

≤ αdG(TMST ) by the stretch of B

≤ 2αdG(ST (G,S)) by Lemma 2.1.

To obtain the necessary distances (distances in G̃ between vertices of S) it is enough to consider
the subgraph B[S ∪ Γ(S)] of B induced by S and its neighborhood in B. We make sure that the
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Γ(S)

Figure 7: A minimum spanning tree T ′ of B[S ∪ Γ(S)] (blue thick solid and dashed lines) and its
subtree T created by removing all leaves that lie in N (blue thick solid lines).

degree of every vertex of V (G) in B is bounded. This will allow us to maintain graph B[S ∪ Γ(S)]
efficiently as S is undergoing changes. If a vertex of V (G) becomes a terminal, we add it and the
adjacent edges to B[S ∪ Γ(S)] in time proportional to its degree. We apply to B[S ∪ Γ(S)] the
dynamic MSF algorithm (see Theorem 2.2), which maintains the minimum spanning forest in a
graph under edge additions or deletions. Each edge insertion/removal is handled in polylogarithmic
time, so the time we need to add a vertex to B is bounded by its degree times logarithmic factors.
The only problem that remains is that the maintained spanning tree may be too heavy, as Γ(S)
may contain more vertices than needed. Note that every edge in G̃[S] corresponds to a vertex
in Γ(S) ⊆ N . We need vertices corresponding to the edges of MST (G̃[S]), and the rest of Γ(S)
unnecessarily increases the cost of the spanning tree. In the next lemma we show, that if we
remove leaves of MST (B[S ∪ Γ(S)]) that belong to N , then the obtained tree costs at most twice
the weight of MST (G̃[S]). The quite easy proof is provided in Section 4.2, where we develop a
convenient language for such claims (see also Figure 7 for an illustration).

Lemma 7.3. Let T ′ = MST (B[S ∪ Γ(S)]), and let LN be the set of leaf vertices of T ′ contained
in N . Let T be a tree obtained from T ′ by removing leaves in N , formally T = T ′[V (T ′) \ LN ].
Denote TMST = MST (G̃[S]). Then dB(T ) ≤ 2δ̃B(TMST ).

Due to Lemma 7.3, MST (B[S∪Γ(S)]) without the leaves in N costs at most twice the weight of
MST (G̃[S]), which is, by Lemma 7.2, at most 4αdG(ST (G,S)). Clearly, the cost MST (B[S∪Γ(S)])
without the leaves in N cannot be smaller then the cost of the minimum Steiner tree in G. Thus,
this approach gives us a 4α-approximation of the Steiner tree in the input graph G.

Lemma 7.4. Let G be a graph and let B be its bipartite emulator of stretch α (possibly obtained by
a randomized algorithm). Moreover, assume that the (expected) degree in B of any vertex of V (G)
is bounded by ∆. Let S be a set subject to insertions and deletions, such that at any time S ⊆ V .
Then, we can maintain a 4α-approximate Steiner tree of G that spans S, handling each update to
S in (expected) amortized O(∆ log4 n) time.

Let us comment on the possible randomization of the construction of a bipartite emulator. In
Section 7.1.1 we construct a randomized emulator, with only a bound on the expected degree of a
vertex in V (G). Then Lemma 7.4 gives us a bound on expected amortized time. That is, for any
positive integer r, the expected time spent on the first r operations is bounded by O(r∆ log4 n).
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In Section 7.1 we show two constructions of emulators. The construction for general graphs
gives an emulator with ∆ = O(kn1/k) (in expectation) and stretch 2k−1, which yields an algorithm
for maintaining (8k − 4)-approximate Steiner tree in O(kn1/k log4 n) expected time per terminal
addition or deletion. In case of planar graphs, we have an emulator with ∆ = O(ε−1 log2 n) and
stretch 1 + ε, so we obtain (4 + ε)-approximate algorithm, handling updates in O(ε−1 log6 n) time.

7.1 Constructing bipartite emulators

In this section we show how to construct emulators that can be plug into Lemma 7.4 to obtain
dynamic algorithms for maintaining the Steiner tree.

7.1.1 General graphs

Our emulator for general graphs is based on an approximate distance oracle by Thorup and
Zwick [37].

Lemma 7.5 ([37]). Let G = (V,E, d) be a graph, n = |V |, m = |E|, and k ≥ 1 be an integer.
Then, we can compute an emulator of G of stretch 2k − 1 in O(kmn1/k) expected time.

We now modify the construction slightly in order to obtain a bipartite emulator of G. The
emulator constructed in [37] is obtained by computing for each v ∈ V a set B(v) called a bunch
and, for each w ∈ B(v), adding an edge vw of length δ(v, w). The expected size of each bunch is
O(kn1/k). Moreover, from the query algorithm it follows that for any two u, v ∈ V there exists
w ∈ B(u) ∩B(v) such that δ(u,w) + δ(w, v) ≤ (2k − 1)δ(u, v).

Thus, the bipartite emulator G′ = (V ∪V ′, E′, d′) can be constructed as follows. The vertex set
of G′ consists of two copies of V , i.e., for each v ∈ V , there is its copy v′ ∈ V ′. We connect each
vertex v ∈ V to its copy with an edge of length 0. Moreover, for each v ∈ V and each w ∈ B(v) we
add to G′ an edge vw′ of length δG(v, w).

It follows that G′ is a bipartite graph, in which the degree of every v ∈ V is O(kn1/k) and
for every two vertices u,w there exists a two-edge path of length ≤ (2k − 1)δ(u, v). Thus, using
Lemma 7.4 we obtain the following result.

Theorem 7.6. Let G = (V,E, d) be a graph, n = |V |, m = |E| and k ≥ 1 be an integer. Let
S ⊆ V be a dynamic set, subject to vertex insertions and removals (initially S = ∅). Then, after
preprocessing in O(kmn1/k) expected time, we may maintain a (8k − 4)-approximate Steiner tree
that spans S, handling each update to S in O(kn1/k log4 n) expected amortized time.

7.1.2 Planar graphs

In this section we show an emulator construction for planar graphs. As a result we obtain an
algorithm that maintains a (4 + ε)-approximate Steiner tree in polylogarithmic time per update.
In order to reach this goal, we use a construction by Thorup (section 3.8 in [36]) that we extend in
order to construct an emulator (see Lemma 7.8).

Let G = (V,E) be a planar graph. The overall idea uses recursive division of G using balanced
separators. A balanced separator of G is a set Q ⊆ V such that each connected component of G\Q
is a constant fraction smaller than G. We find a balanced separator of G that consists of a constant
number of shortest paths P1, . . . , Pk (the separator consists of vertices contained in these paths).
For a shortest path Pi, we build an emulator that approximates all the shortest paths in G that
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intersect Pi. Then, we recurse on each of the connected components of G \ (P1 ∪ . . . ∪ Pk). Hence,
we now focus on the following problem. Given a planar graph G and a shortest path P , build an
emulator that approximates all shortest paths intersecting P .

We define a connection to be an edge that connects a vertex v ∈ V with a vertex a ∈ P and has
length d(va) at least δG(v, a) (it would be convenient to assume that the length is equal to δG(v, a),
but the algorithm we use may sometimes give longer connections). A connection vb ε-covers x if
d(vb) + δG(b, x) ≤ (1 + ε)δG(v, x); observe that the distance δG(b, x) can be equivalently measured
along the path P . A set of connections C(v, P ) is ε-covering if it ε-covers every x ∈ P .

Lemma 7.7. Let G = (V,E, d) be a planar graph, n = |V |, and 0 < ε ≤ 1. Let P be a shortest path
in G. For each v ∈ V (G) we can construct an ε-covering set C(v, P ) of size O(ε−1) in O(ε−1n log n)
total time.

A very similar fact is shown in [36], but the definition of ε-covering used there is slightly different,
so, for the sake of completeness, we rewrite the proof.

Proof. Let ε0 = ε/2. We say that a connection vb strongly-ε-covers a if d(vb) + (1 + ε)δG(b, a) ≤
(1 + ε)δG(v, a). By Lemma 3.18 in [36], for each v ∈ V (G) we can construct a strongly-(ε0/2)-
covering set D(v, P ) of size O(ε−10 log n) in O(ε−10 n log n) time.7 We now show that we can use it
to construct an ε-covering set C(v, P ) ⊆ D(v, P ) of size O(ε−1).

Let vc be the shortest connection from D(v, P ) and s be one of the two endpoints of P . We add
vc to C(v, P ). Now, iterate through connections in D(v, P ) starting from vc and going towards s.
Let vb be the connection that was most recently added to C(v, P ). If for the current connection va
we have d(vb) + δG(b, a) > (1 + ε0)d(va), we add va to C(v, P ). Then, we run a similar procedure
using the other endpoint of P .

To prove that C(v, P ) covers every vertex between c and s, consider some vertex x ∈ P . There
exists a connection va ∈ D(v, P ) that strongly-(ε0/2)-covers vx, so d(va) + (1 + ε0/2)δG(a, x) ≤
(1 + ε0/2)δG(v, x). If this connection is in C(v, P ) then vx is strongly-ε0/2-covered and obviously
also ε-covered. Otherwise, there exists a connection vb such that d(vb) + δG(b, a) ≤ (1 + ε0)d(va).
We have

d(vb) + δG(b, x) ≤ d(vb) + δG(b, a) + δG(a, x)

≤ (1 + ε0)d(va) + δG(a, x)

≤ (1 + ε0)d(va) + (1 + ε0)(1 + ε0/2)δG(a, x)

= (1 + ε0)(d(va) + (1 + ε0/2)δG(a, x))

≤ (1 + ε0)(1 + ε0/2)δG(v, x)

≤ (1 + ε)δG(v, x).

The last inequality follows from ε0 = ε/2 ≤ 1. It remains to bound the size of C(v, P ). Let
f(vb) = d(vb) + δG(b, s). As connections are added to C(v, P ) we trace the value of f(vb), where
vb is the last connection that we have added. Every time we add a connection va we reduce the
value of f by

f(vb)−f(va) = d(vb)+δG(b, s)−d(va)−δG(a, s) = d(vb)−d(va)+δG(b, a) > ε0d(va) ≥ ε0δG(v, c).

7Strictly speaking, the strongly-ε-covering set according to our definition is an ε/(ε+1)-covering set according to
the definition used in the statement of Lemma 3.18 of [36].
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However, the total change equals

f(vc)− f(vs) = d(vc) + δG(c, s)− d(vs) ≤ (1 + ε0)δG(v, c) + δG(c, s)− δG(v, s) ≤ (2 + ε0)δG(v, c).

Thus, at most O(ε−10 ) = O(ε−1) connections are added to C(v, P ).
The same procedure is then repeated for the other endpoint of P , so we get a total of O(ε−1)

connections.

Lemma 7.8. Let G = (V,E, d) be a planar graph, n = |V |, 0 < ε ≤ 1. Let P be a shortest path in
G. For each v ∈ V (G) we can construct a set of connections C ′(v, P ) of size O(ε−1 log n), which
satisfies the following property. For any two vertices u,w ∈ V , if the shortest path between u and w
intersects P , then for some x ∈ P there exist connections ux ∈ C ′(u, P ) and wx ∈ C ′(w,P ), such
that δ(u,w) ≤ d(ux)+d(wx) ≤ (1+ε)δ(u,w). The sets C ′(v, P ) can be constructed in O(ε−1n log n)
time.

Proof. First, using Lemma 7.7, for every v ∈ V we construct an ε-covering sets of connections
C(v, P ). Assume that the shortest path Q between u and w intersects P in x ∈ P . There exists
a path Q′ between u and w which consists of a connection, subpath of P , denoted henceforth
Q′P , and another connection. Moreover, d(Q′) ≤ (1 + ε)d(Q). We call each path of this form an
approximating path. Our goal is to substitute every approximating path with an approximating
path that consists solely of two connections from C ′(v, P ).

The construction is done recursively. The parameter of the recursion is a subpath P ′ of P .
Consider a single step, with a parameter P ′ = p1p2 . . . pk. Let pm = pbk/2c be the middle vertex of
P ′. For any v ∈ V and pi ∈ P ′, if there is an connection vpi ∈ C(v, P ), we add a connection vpm of
length d(vpi) + δ(pi, pm) to C ′(v, P ). Then, we recurse on P1 = p1p2 . . . pm−1 and P2 = pm+1 . . . pk.
Lastly, for each pi ∈ P we add a connection pipi of length 0.

To prove the correctness of the procedure, consider now the aforementioned approximating path
Q′, and recall that Q′P = P ∩ Q′. Let p be the vertex that is taken as pm in the closest to root
node in the recursion tree of the algorithm, among all vertices of Q′P . Observe that in the single
recursive step when pm = p, we add to C ′(v, P ) the connections up and wp of length exactly equal
to the length of the part of Q′ between u and p, and the part of q′ between p and w, respectively.
Also, the connections we add clearly do not cause any distances to be underestimated.

The running time of each step is proportional to the length of the subpath we consider and the
number of connections incident to this subpath. Moreover, every connection may be considered
in at most O(log n) recursive calls, so we we add to C ′(v, P ) at most O(ε−1 log n) connections. It
follows that the total running time of the procedure is O(ε−1n log n).

Lemma 7.9. Let G = (V,E, d) be a planar graph, n = |V |, 0 < ε ≤ 1. We can construct a
bipartite emulator B = (V ∪N,EB, dB) of G of stretch 1 + ε. The degree of every v ∈ V in B is
O(ε−1 log2 n). The graph B can be constructed in O(ε−1n log2 n).

Proof. We begin with B being a graph with vertex set V and no edges. The construction is done
recursively. As it is shown, e.g., in [36], each planar graph admits a balanced separator that consists
of a constant number of shortest paths P1, . . . , Pk, and, moreover, such a separator can be found
in O(n) time. For each path Pi we use Lemma 7.8 to construct a set of connections C ′(v, Pi) for
every v ∈ V . Next, we iterate through the vertices of the paths Pi. For each vertex w ∈ Pi we add
a new auxiliary vertex w′ to B and add an edge uw′ for each connection uw from G (the length of
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the edge is the length of the connection). After that, we recurse on each connected component of
G \ (P1 ∪ . . . ∪ Pk).

Let us now prove the correctness of the construction. Consider any two v1, v2 ∈ V and the
shortest path Q between them. At some step of the recursion, some vertex of Q belongs to the
separator that we have found. From the construction, it follows that in this step we have added to
B a vertex w′ and edges v1w′ and v2w

′ to B of total length at most (1 + ε)δG(v1, v2). Moreover,
since the length of every connection is lower bounded by the length of the corresponding shortest
path, B may not underestimate the distances between vertices of V .

Since every vertex v ∈ V takes part in O(log n) recursive steps and in every step we add
O(ε−1 log n) edges incident to any v ∈ V , we have that the degree of any vertex of V in B is
O(ε−1 log2 n). As shown in [36], finding the separators requires O(n log n) total time. The running
time of every recursive step is dominated by the time from Lemma 7.8. Summing this over all
recursive steps, we get that the construction can be done in O(ε−1n log2 n) time.

By constructing B according to Lemma 7.9 and applying Lemma 7.4 we obtain the following.

Theorem 7.10. Let G = (V,E, d) be a planar graph and 0 < ε ≤ 1. Let S ⊆ V be a dy-
namic set, subject to vertex insertions and removals (initially S = ∅). Then, after preprocessing in
O(ε−1n log2 n) time, we may maintain a (4 + ε)-approximate Steiner tree that spans S, handling
each update to S in O(ε−1 log6 n) amortized time.

8 Conclusions

In our work we have given the first sublinear dynamic algorithms for the Steiner tree problem and
the subset TSP problem, where the set of terminals changes over time. We have exhibited a tight
connection to vertex-color distance oracles and the replacement schemes previously developed for
the online model.

We believe our result would inspire further work on the dynamic Steiner tree problem, focusing
not only on the number of replacements required to maintain a good Steiner tree (as in the online
model), but also on the entire efficiency of updates. In particular, we would like to emphasize here
the following open questions.

1. The approximation guarantee of our dynamic algorithms, even for planar graphs, contains
the term 2, inherited from the fact that we approximate Steiner tree by a minimum spanning
tree in the metric closure of the input graph. We have chosen this approach for its simplicity.
Can any of the approximation algorithms that guarantees better approximation than 2 be
adapted to our dynamic setting? In particular, there exists a PTAS for the (static) Steiner
tree problem in planar graphs [9]. Can we obtain a dynamic (1 + ε)-approximation algorithm
for planar graphs? The other direction to approach this question is to devise simple and
almost linear time approximation algorithm for Steiner tree that would beat the factor of 2
in non-planar graphs. This could be of some practical importance in big data applications.

2. A second question concerning better approximation ratios would be whether it is possible
to obtain a c-approximate vertex-color distance oracle in general graphs for some constant
c < 3.
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3. In the deletion step, we relied on a somehow weak variant of a color-to-color distance query,
where the returned distance takes into account only portal distances between the colors. Is
it possible to enhance our oracles to perform a general color-to-color queries efficiently?

4. Our decremental and fully dynamic algorithms for general graphs require preprocessing time
of roughly order O(

√
nm) and space of roughly order O(n

√
n). Can it be improved to near-

linear time and space?

5. The running time of our fully dynamic algorithms depends on the stretch of the metric. Can
this dependency be avoided, or at least further reduced?

6. Which other combinatorial problems, e.g., facility location, allow for dynamic sublinear time
approximation algorithms?
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