Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An antibody specific for the C-terminal tall of the gp41 transmembrane protein of human immunodeficiency virus type 1 mediates post-attachment neutralization, probably through inhibition of virus-cell fusion

Tools
- Tools
+ Tools

UNSPECIFIED (2005) An antibody specific for the C-terminal tall of the gp41 transmembrane protein of human immunodeficiency virus type 1 mediates post-attachment neutralization, probably through inhibition of virus-cell fusion. JOURNAL OF GENERAL VIROLOGY, 86 (Part 5). pp. 1499-1507. doi:10.1099/vir.0.80414-0 ISSN 0022-1317.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1099/vir.080414-0

Request Changes to record.

Abstract

Evidence has been presented which shows that part of the C-terminal tail of the gp4l transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a neutralization epitope and is thus exposed on the external surface of the virion. Here, SAR1, a monoclonal antibody, which was stimulated by immunization with a plant virus expressing 60 copies of the GERDRDR sequence from the exposed gp4l tail, and has an unusual pattern of neutralization activity, giving little or no neutralization of free virions, but effecting modest post-attachment neutralization (PAN) of virus bound to target cells was investigated. Here, the properties of PAN were investigated. It was found that PAN could be mediated at 4 or 20 degrees C, but that at 20 degrees C maximum PAN required virus-cell complexes to be incubated for 3 h before addition of antibody. Further PAN appeared stable at 20 degrees C and could be mediated for at least 5 In at this temperature. In contrast, when virus-cell complexes formed at 20 degrees C but then shifted to 37 degrees C for various times before addition of SAR1, PAN was maximal after just 10 min, and was lost after 30 min incubation. Thus, PAN at 37 degrees C is transient and temperature-dependent. Since this scenario recalled the temperature requirements of virus-cell fusion, fusion of HIV-1 -infected and non-infected cells was investigated, and it was found that SAR1 inhibited this process by up to 75 %, in a dose-dependent manner. However, antibodies to adjacent epitopes did not inhibit fusion. These data confirm the external location of the SAR1 epitope, implicate the gp41 C-terminal tail in the HIV-1 fusion process for the first time, and suggest that SAR1 mediates PAN by inhibiting virus-mediated fusion.

Item Type: Journal Article
Subjects: T Technology > TP Chemical technology
Q Science > QR Microbiology > QR355 Virology
Journal or Publication Title: JOURNAL OF GENERAL VIROLOGY
Publisher: SOC GENERAL MICROBIOLOGY
ISSN: 0022-1317
Official Date: May 2005
Dates:
DateEvent
May 2005UNSPECIFIED
Volume: 86
Number: Part 5
Number of Pages: 9
Page Range: pp. 1499-1507
DOI: 10.1099/vir.0.80414-0
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us