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Abstract

Hippocampal volume is one of the best established biomarkers for Alzheimer’s dis-

ease. However, for appropriate use in clinical trials research, the evolution of hippocam-

pal volume needs to be well understood. Recent theoretical models propose a sigmoidal

pattern for its evolution. To support this theory, the use of Bayesian nonparametric

regression mixture models seems particularly suitable due to the flexibility that models
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of this type can achieve and the unsatisfactory predictive properties of semiparametric

methods. In this paper, our aim is to develop an interpretable Bayesian nonpara-

metric regression model which allows inference with combinations of both continuous

and discrete covariates, as required for a full analysis of the data set. Simple argu-

ments regarding the interpretation of Bayesian nonparametric regression mixtures lead

naturally to regression weights based on normalized sums. Difficulty in working with

the intractable normalizing constant is overcome thanks to recent advances in MCMC

methods and the development of a novel auxiliary variable scheme. We apply the new

model and MCMC method to study the dynamics of hippocampal volume, and our

results provide statistical evidence in support of the theoretical hypothesis.

Keywords: Mixture model; Dependent Dirichlet process; Latent model.
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1 Introduction

Alzheimer’s disease (AD) is an irreversible, progressive brain disease that slowly de-

stroys memory and thinking skills, and eventually even the ability to carry out the

simplest tasks (ADEAR, 2011). Due to its damaging effects and increasing preva-

lence, it has become a major public health concern. Thus, the development of disease-

modifying drugs or therapies is of great importance. In a clinical trial setting, with

the purpose of assessing the effectiveness of any proposed drugs or therapies, accurate

tools for monitoring disease progression are needed. Unfortunately, a definite measure

of disease progression is unavailable, as even a definitive diagnosis requires histopatho-

logic examination of brain tissue, an invasive procedure typically only performed at

autopsy. Non-invasive methods can be used to produce neuroimages and biospecimens

which provide evidence of the changes in the brain associated with AD. Moreover,

biomarkers based on neuroimaging or biological data may present a higher sensitivity

to changes due to drugs or therapies over shorter periods of time than clinical measures,

making them better suited tools for monitoring disease progression in clinical trials.

However, before biomarkers based on neuroimaging or biological data can be useful in

clinical trials, their evolution over time needs to be well understood. The biomarkers

which change earliest and fastest should be used as inclusion criteria for the trials and

those which change the most in the disease stage of interest should be used for disease

monitoring.

In this work, we focus on hippocampal volume, one of the best established neu-

roimaging biomarkers for AD. Jack et al. (2010), in a recent paper, propose a theoretical

model for the evolution of hippocampal volume, which is further discussed in Frisoni

et al. (2010). They hypothesize that hippocampal volume evolves sigmoidally with

changes beginning early and continuing into late stages of the disease. This theoretical

model needs to be validated, before the use of hippocampal volume as a measure for
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disease severity in clinical trials can be appropriately considered. Thus, in the present

paper, we focus on the validation of Jack et al.’s proposed model. Caroli and Frisoni

(2010) and Sabuncu et al. (2011) assess the fit of parametric sigmoidal curves, and

Jack et al. (2012) consider a more flexible model based on cubic splines with three

chosen knot points. This last approach is the most flexible among the three, but they

all impose significant restrictions which favor a sigmoidal shape. To provide strong sta-

tistical support for the sigmoidal shape hypothesis, a flexible nonparametric regression

model is needed that would remove all restrictions on the regression curve allowing

the data to choose the shape that provides the best fit and predictive properties for

unobserved values.

There are many methods for nonparametric regression, and most standard ap-

proaches, such as splines, wavelets, or regression trees (Denison et al., 2002; Dimatteo

et al., 2001), achieve flexibility by representing the regression function as a linear

combination of basis functions. Another increasingly popular practice is to place a

Gaussian process prior on the unknown regression function (Rasmussen and Williams,

2006). While these models are able to capture a wide range of regression functions, the

assumptions on the distribution of the errors about the mean is quite restrictrive; typ-

ically, independent and identically distributed additive Gaussian errors are assumed,

and thus, these models are often referred to as semiparametric. In the hippocampal

volume study, we not only expect a non linear behaviour for the evolution of the AD

biomarker with age, but also suspect the presence of multimodality, heavy tails, and

evolving variance in the error distribution due to variability in the onset of the disease

and unobserved factors, such as enhanced cognitive reserve or neuroprotective genes.

Indeed, in a semiparametric analysis of the data, we observe a non-normal behavior in

the errors that depends on the covariates, which raises suspicions about the estimated

regression curve. To correctly model the data, a nonparametric approach for modelling

4



the conditional density in its entirety is needed. In this way, no specific structure is

imposed on the regression function or error distribution, so a fit confirming the hy-

pothesized sigmiodal shape would provide strong statistical support for the theoretical

model.

In this paper, we investigate the dynamics of hippocampal volume as a function

of age, disease status, and gender. To do so, we construct a flexible and interpretable

nonparametric mixture model for the conditional density of hippocampal volume which

incorporates both continuous and discrete covariates. Simple arguments regarding

the interpretation of Bayesian nonparametric regression mixtures lead naturally to

regression weights based on normalized sums. To overcome the difficulties in working

with the intractable normalizing constant, a novel auxiliary variable Markov chain

Monte Carlo (MCMC) scheme is developed. The novel model and MCMC algorithm

are applied to study the behavior of hippocampal volume, and the results provide

strong support for the theoretical model.

The layout of the paper is as follows. In Section 2, we describe the model and

provide its unique provision of interpretability. In Section 3, we introduce the latent

variables necessary for estimating the model via MCMC methods. Section 4 describes

the MCMC algorithm for posterior inference with further details in the Appendix, and

in Section 5, we present a comprehensive simulation study outlining precisely how the

model works and what it is capable of achieving, particularly, in comparison to simpler

semiparametric models. In Section 6, we present the study of the Alzheimer’s disease

data. In addition to the detailed calculations required for the MCMC algorithm, the

Appendix also includes a discussion of parameter choices and a sensitivity analysis.
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2 The regression model

For independent and identically distributed observations, the standard mixture model

for density estimation is given by

fP (y) =

∫
K(y|θ)dP (θ), (1)

where K(·|θ) is a parametric family of density functions defined on Y and P is a

probability measure on the parameter space Θ. In a Bayesian setting, this model

is completed with a prior distribution on the mixing measure P . A common prior

choice, the stick-breaking prior, assumes P is a discrete random measure and can be

represented as

P =
∞∑
j=1

wjδθj ,

for atoms θj ∈ Θ, taken i.i.d. from some probability measure P0, known as the base

measure; and weights wj ≥ 0, such that
∑

j wj = 1 (a.s.), constructed from a sequence

vj
ind∼ Beta(ζ1,j , ζ2,j) with wj = vj

∏
j′<j(1 − vj′). The mixture model (Lo, 1984) can

then be expressed as a countable convex combination of kernels

fP (y) =
∞∑
j=1

wjK(y|θj).

For the covariate dependent density estimation problem in which we are interested,

the mixture model (1) can be adapted by allowing the mixing distribution Px to depend

on the covariate x and replacing the density model K(y|θ) with a regression model

K(y|x, θ), such as a linear model. Hence, for every x ∈ X,

fPx(y|x) =

∫
K(y|x, θ)dPx(θ).

Once again, the Bayesian model is completed by assigning a prior distribution on the

family (Px)x∈X of covariate dependent mixing probability measures. If the prior gives
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probability one to the set of discrete probability measures, then

Px =
∞∑
j=1

wj(x)δθj(x), and fPx(y|x) =
∞∑
j=1

wj(x)K(y|x, θj(x)), (2)

where θj(x) ∈ Θ, and the wj(x) ≥ 0 are such that
∑

j wj(x) = 1 (a.s.) for all x ∈ X.

This general model was introduced by MacEachern (1999; 2000), who focused on the

case when the weights are constant functions of x, wj(x) = wj , defined in accordance

with a Dirichlet process (DP). This simplified version of the model is popular, as

inference can be carried out using any of the well established algorithms for DP mixture

models (see e.g. Neal, 2000; Papaspiliopoulos and Roberts, 2008; Kalli et al., 2011).

Recent developments explore the use of covariate dependent weights. To simplify

computations and ease interpretation, atoms are usually assumed not to depend on

the covariates. The main constraint for prior specification, in this case, is the con-

dition,
∑

j wj(x) = 1 for all x ∈ X, which is non trivial for an infinite number of

positive weights. The only technique currently in use for directly defining the covariate

dependent weights is through the stick-breaking representation, given by

w1(x) = v1(x) and for j > 1 wj(x) = vj(x)
∏
j′<j

(1− vj′(x)), (3)

where the (vj(·)) are independent processes on X and independent of the atoms, (θj).

There are various proposals for the construction of the vj(x), see e.g. Griffin and Steel

(2006); Dunson and Park (2008); Rodriguez and Dunson (2011); Chung and Dunson

(2009); Ren et al. (2011); or Dunson (2010) and Müller and Quintana (2010) for reviews

of nonparametric regression mixture models.

The stick-breaking definition poses challenges in terms of the various choices that

need to be made for functional shapes and hyperparameters when defining the (vj(x)).

The difficulties are amplified by the lack of interpretation of the quantities involved.

Moreover, combining continuous and discrete covariates in a useful way is not straight-

forward. We, therefore, propose a different construction of the covariate dependent
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weights, which follows from an alternative perspective on mixture models. The idea is

to realize that, in the i.i.d. setting, each weight contains information about the applica-

bility of each parametric component, within the sample space Y. In a regression setting,

covariate dependent weights are necessary because it is not reasonable to assume that

such importance is equal throughout the entire covariate space X; rather, it depends

on the value x. Since the nature of such dependence is unknown, the uncertainty about

it should be incorporated through prior specification.

In the nonparametric regression mixture model

fPx(y|x) =

∞∑
j=1

wj(x)K(y|x, θj),

each covariate dependent weight wj(x) represents the probability that an observation

with a covariate value of x comes from the jth parametric regression model K(y|x, θj).

Thus, letting d be the random variable indicating the component from which an obser-

vation is generated, we have that wj(x) = p(d = j|x). A simple application of Bayes

theorem implies

p(d = j|x) ∝ p(d = j)p(x|d = j),

where p(d = j) represents the probability that an observation, regardless of the value

of the covariate, comes from parametric regression model j; and p(x|d = j) describes

how likely it is that an observation generated from regression model j has a covariate

value of x. Therefore, p(x|d = j) can be defined to reflect prior beliefs as to where in

the covariate space the regression model j will have the largest relative applicability.

A natural and simple way to achieve this is to define it through a parametric kernel

function K(x|ψj) and with some prior on the ψj . Uncertainty about the p(d = j) :=

wj is expressed through a prior on the infinite dimensional simplex. Putting things

together, and incorporating the normalizing constant, we have that

wj(x) =
wjK(x|ψj)∑∞

j′=1wj′K(x|ψj′)
, (4)
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where 0 ≤ wj ≤ 1 for all j and
∑∞

j=1wj = 1.

Note that the conditional densities p(x|j) are not related to whether the covariates

are picked by an expert or sampled from some distribution, which itself could be known

or unknown. They only indicate the prior belief about where, in X, regression model

j best applies. Moreover, the density p(x) =
∑∞

j=1 P (j) p(x|j) does not correspond to

the distribution from which the covariates are sampled, if indeed they are sampled; it

simply represents the likelihood that an observation has a covariate value of x. The key

element that must be defined is the kernel K(x|ψj). If x is a continuous covariate, a

natural choice is the normal density function. In this case, the interpretation would be

that there is some central location µj ∈ X where regression model j applies best, and a

parameter τj describing the rate at which the applicability of the model decays around

µj . On the other hand, if x is discrete, then a standard distribution on discrete spaces

can be used, such as the Bernoulli or its generalization, the categorical distribution.

Even if x is a combination of both discrete and continuous covariates, it is still possible

to specify a joint density by combining both discrete and continuous distributions.

This will be explained and demonstrated later on in the paper.

It is to be noted that the infinite sum in the denominator of (4) introduces an

intractable normalizing constant for which no posterior simulation methods are cur-

rently available. Only finite versions of this type of model have been introduced in the

literature (see e.g. Pettitt et al., 2003; Møller et al., 2006; Murray et al., 2006; Adams

et al., 2008), since simulation methods are available only for the finite case. In the

next section, we introduce a suitable set of latent variables, that solves the infinite

dimensional intractable normalizing constant problem.
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3 The latent model

The aim of this section is to re-express the model in terms of latent variables, which

are essential for Bayesian inference. For a sample
(
(y1, x1), . . . , (yn, xn)

)
, the likelihood

for the proposed model is given by

fP (y1:n |x1:n) =
n∏
i=1

 ∞∑
j=1

wj(xi)K(yi|xi, θj)

 , (5)

with covariate dependent weights given by expression (4). The infinite sum in the

denominator constitutes an intractable normalizing constant, which makes inference

infeasible. However, through a simple trick, which relies on the series expansion,

∞∑
k=0

(1− r)k = r−1, for 0 < r < 1, (6)

we can move the infinite sum from the denominator to the numerator, thus making

inference possible, following the introduction of auxiliary variables.

In order to illustrate the ideas with a simplified notation, we start by considering

the likelihood of a single data point. We assume that the first q elements of x represent

discrete covariates, each xh taking values in {0, . . . , Gh}, for h = 1 . . . , q; the last p

elements of x represent continuous covariates. In this case, we let

K(y|x, θj) = N(y|Xβj , σ2j ),

K(x|ψj) =

q∏
h=1

Cat(xh|ρj,h)

p∏
h=1

N(xh+q|µj,h, τ−1h ),

where θj = (βj , σj), ψj = (ρj , µj , τ), X = (1, x′); and Cat(·|ρh) represents the categor-

ical distribution,

Cat(xh|ρh) =

Gh∏
g=0

ρ
1 (xh=g)
h,g .

For simplicity, in the above expression we have τj ≡ τ for all j, but this restriction

may be removed with some realistic assumptions on τj .
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The likelihood of the single data point (y, x) may be written as

fP (y |x) =
1

r(x)

∞∑
j=1

wjK(x|ψj)K(y |x, θj),

where
r(x) =

∞∑
j=1

wjK(x|ψj); K(x|ψj) =

q+p∏
h=1

K(xh|ψj,h);

and

K(xh|ψj,h) =


∏Gh
g=0 ρ

1 (xh=g)
h,g h = 1, . . . , q

exp{−1
2τh−q(xh − µj,h−q)

2} h = q + 1, . . . , q + p.

Notice that we have redefined the kernel function K(x|ψj) by cancelling the precision

term τ from the normal density, which appears both in the numerator and the denomi-

nator of the normalized weights expression. In this way, we guarantee that 0 < r(x) < 1

for all x ∈ X, so we can apply the series expansion (6) to write

1

r(x)
=
∞∑
k=0

1−
∞∑
j=1

wjK(x|ψj)

k =
∞∑
k=0

 ∞∑
j=1

wj(1−K(x|ψj))

k ,
where the last equality relies on the fact that

∑∞
j=1wj = 1 almost surely. This trick

allows us to move the infinite sum from the denominator to the numerator and equiv-

alently express the likelihood as

fP (y |x) =
∞∑
j=1

wjK(x|ψj)K(y |x, θj)
∞∑
k=0

 ∞∑
j=1

wj(1−K(x|ψj))

k . (7)

We now introduce a latent variable k taking values in {0, . . . ,∞}, where the joint

density of (y, k) given x and the model parameters is

fP (y, k |x) =

∞∑
j=1

wjK(x|ψj)K(y |x, θj)

 ∞∑
j=1

wj(1−K(x|ψj))

k .
This allows us to deal with the mixture in the usual way, by introducing a latent variable

d to indicate the mixture component to which a given observation is associated. Thus,
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we obtain

fP (y, k, d |x) = wdK(x|ψd)K(y |x, θd)

 ∞∑
j=1

wj(1−K(x|ψj))

k .
For the remaining sum, we have the exponent k to consider. We first re-write this

term as the product of k copies of the infinite sum,

fP (y, k, d |x) = wdK(x|ψd)K(y |x, θd)
k∏
l=1

∞∑
jl=1

wjl(1−K(x|ψjl)),

and then, introduce k latent variables, D1, . . . , Dk, arriving at the full latent model

fP (y, k, d,D |x) = wdK(x|ψd)K(y |x, θd)
k∏
l=1

wDl
(1−K(x|ψDl

)).

It is easy to check that the original likelihood (7) is recovered by marginalizing over

the d, k and D = (D1, . . . , Dk).

For a sample of size n ≥ 1 we simply need n copies of the latent variables. Therefore,

the full latent model is given by

fP (y1:n, k1:n, d1:n, D1:n |x1:n) =
n∏
i=1

wdiK(xi|ψdi)K(yi | xi, θdi)

ki∏
l=1

wDl,i

(
1−K(xi|ψDl,i

)
)
.

(8)

Once again, we note that the original likelihood (5) can be easily recovered by marginal-

izing over the d1:n, k1:n, and D1:n. However, the introduction of these latent variables

makes Bayesian inference possible, via posterior simulation of the (wj), the (θj) and

the (ψj), as we show in the next section.

4 Posterior inference via MCMC

A prior for P , defined by a prior specification for the weights (wj) and the parameters,

(θj) and (ψj), completes the Bayesian model. Our focus for the prior on the weights
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(wj) is on stick-breaking priors (Ishwaran and James (2001)). Therefore, for some

positive sequence (ζ1,j , ζ2,j)
∞
j=1 and independent vj ∼ Beta(ζ1,j , ζ2,j) variables, we have

w1 = v1, and for j > 1, wj = vj
∏
j′<j

(1− vj′).

Some important examples of this type of prior are the Dirichlet process, when ζ1,j = 1

and ζ2,j = ζ for all j; the Poisson-Dirichlet process, when ζ1,j = 1−ζ1 and ζ2,j = ζ2+jζ1

for 0 ≤ ζ1 < 1 and ζ2 > −ζ1; and the two parameter stick-breaking process where

ζ1,j = ζ1 and ζ2,j = ζ2 for all j.

To complete the prior specification, the (θj , ψj) are i.i.d. from some fixed distribu-

tion F0 and independent from the (vj). We define F0 through its associated density

f0, which in this case is defined by the product of the following components,

f0(βj , σ
2
j ) = N(βj |β0, σ2jC−1)Ga(1/σ2j |α1, α2);

f0(µj , τ) =

p∏
h=1

N(µj,h |µ0,h, (τhch)−1)Ga(τh | ah, bh); and f0(ρj) =

q∏
h=1

Dir(ρj,h | γh).

Together with the joint latent model, this provides a joint density for all the variables

which need to be sampled for posterior estimation, i.e. the (wj , θj , ψj , ki, di, Dl,i).

However, there is still an issue due to the infinite choice of the (di, Dl,i), which

we overcome through the slice sampling technique of Kalli et al. (2011). Accordingly,

in order to reduce the choices represented by (di, Dl,i) to a finite set, we introduce

new latent variables, (νi, νl,i), which interact with the model through the indicating

functions 1
(
νi < exp(−ξdi)

)
and 1

(
νl,i < exp(−ξDl,i)

)
, for some ξ > 0. Hence, the

full conditional distributions for the index variables are given by

P(di = j| · · · ) ∝ wj exp(ξj)K(xi|ψj)K(yi |xi, θj)1(1 ≤ j ≤ Ji),

P(Dl,i = j| · · · ) ∝ wj exp(ξj) (1−K(xi|ψj)) 1(1 ≤ Dl,i ≤ Jl,i),

where Ji = b−ξ−1 log νic; Jl,i = b−ξ−1 log νl,ic. Note that, at any given iteration,

the full conditional densities for the variables involved in the MCMC algorithm do
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not depend on values beyond J = maxl,i{Ji, Jl,i}, so we only need to sample a finite

number of the (ψj , θj , wj).

The (wj)
J
j=1 can be updated at each iteration of the MCMC algorithm in the usual

way, that is, by making w1 = v1 and, for j > 1, wj = vj
∏
j′<j(1 − vj′), where

the (vj) are sampled independently from Beta distributions with updated parameters

(specified in the Appendix). The variables involved in the linear regression kernel, that

is, the (βj , σ
2
j ), are also updated in the standard way. Since the normal-inverse gamma

base measure is conjugate, we simply need to sample from a normal-inverse gamma

distribution with updated parameters, detailed in the Appendix.

The full conditional distribution for the (ψj)
J
j=1 seems somewhat more complicated,

due to the additional product term in the latent model (equation (8)), involving the

latent variables (ki) and (Dl,i). However, such a product can be easily transformed

into a truncation term, by the introduction of additional auxiliary variables. Thus,

posterior simulation for the (ψj)
J
j=1 is achieved by sampling from standard truncated

distributions with updated parameters, which can be easily calculated due to the choice

of conjugate base measure. The details of this procedure, as well as the resulting

updated parameters and truncations are presented in the Appendix. At this point,

we only mention that the introduction of the additional variables does not pose a

problem, since they are all conditionally independent given the (ψj)
J
j=1, and hence can

be sampled in parallel, using the “parfor” routine in Matlab.

Finally, for the update of each ki, we use ideas involving a version of reversible

jump MCMC (see Green, 1995) introduced by Godsill (2001), to deal with the change

of dimension in the sampling space. We start by proposing a move from ki to ki + 1

with probability 1/2, and accepting it with probability

min

1,
J∑
j=1

wj (1−K(xi|ψj))

 .
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In this case, we need to sample the additional index Di,ki+1, and we choose Di,ki+1 = j

with probability proportional to wj (1−K(xi|ψj)), for j = 1, . . . , J . Similarly, if ki > 0,

a move from ki to ki−1 is proposed with probability 1/2, and accepted with probability

min

1,

 J∑
j=1

wj (1−K(xi|ψj))

−1 .

It is therefore possible to perform posterior inference for the nonparametric regres-

sion model proposed, via an MCMC scheme applied to the latent model. We have

successfully implemented the method in Matlab (R2012a), and present some results

in the next section. In the following examples, the aim is prediction and predictive

density estimation, which under the quadratic loss are, respectively, given by

E[Yn+1|y1:n, x1:n+1] = E

 ∞∑
j=1

wj(xn+1)Xn+1βj

∣∣∣y1:n, x1:n
 , (9)

f(yn+1|y1:n, x1:n+1) = E

 ∞∑
j=1

wj(xn+1)N(y|Xn+1βj , σ
2
j )
∣∣∣y1:n, x1:n

 , (10)

where and Xn+1 = (1, x′n+1); and the expectation is taken with respect to the posterior

distribution of (wj , θj , ψj). MCMC estimates for these quantities are used, as specified

in the Appendix.

5 Simulation Study

To demonstrate the ability of the model to recover a complex regression function with

covariate dependent errors, we simulate n = 200 data points (depicted in Figure 1a)

through the following formula,

xi
iid∼ N(·|0, 2.52), yi|xi

ind∼ N

(
·
∣∣∣ 5

1 + exp(−xi)
,

[
1

4
+ exp

(
xi − 6

3

)]2)
.

Our model is given by
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Figure 1: The left panel depicts the data and the true regression mean. The right panel depicts the

predicted regression function (in blue) for a grid of new covariate values, along with 95% pointwise

credible intervals; the black line represents the true mean function.

fP (y|x) =

∞∑
j=1

wj(x)N(y|Xβj , σ2j ), with wj(x) =
wj exp(−τ/2(x− µj)2)∑∞

j′=1wj′ exp(−τ/2(x− µj′)2)
.

The prior for (wj) and (θj , ψj) is described in Section 4. The prior choice for the (wj)

is a Dirichlet process with unit mass, i.e. ζ1,j = ζ2,j = 1, and for the prior of (θj , ψj),

we set

β0 = (5/2, 5/8)′; C−1 = diag(4, 1/4); α1 = 1; α2 = 1;

µ0 = 0; c = 1/8; a = 1; b = 1.

An explanation for the choice of these quantities can be found in the Appendix, along

with a sensitivity analysis. Inference is carried out via the algorithm discussed in

Section 4 with 5,000 iterations after a burn-in period of 5,000.

Figure 1b depicts, in blue, the estimated regression function for a grid of unobserved

x values, along with 95% pointwise credible intervals. The true regression function is
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Figure 2: The left panel depicts the partition with the highest posterior probability, where the data

are colored by component membership. The right panel depicts a sample of the covariate-dependent

weights associated to this partition.

shown in black. For large values of x we can observe a deterioration of the curve

estimate, which is pulled down by some extreme observations. This is to be expected

due to a lack of data for large x-values. Indeed, with an increased sample size, this

behavior is corrected (analysis not shown).

The flexibility in estimating the regression function relies heavily on the posterior

distribution of the covariate dependent weights. The left panel of Figure 2 depicts the

partition with highest estimated posterior probability, with data points coloured by

component membership. The right panel of Figure 2 shows a posterior sample of the

covariate-dependent weights as a function of x, given this partition. It is important

to observe that aposteriori the weights are able to peak close to one in areas of high

applicability of their associated linear regression models and decay smoothly or sharply,

as needed, when the covariates move away from this area. For example, for values of x
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(a) True conditional densities (b) Estimated conditional densities

Figure 3: The left panel depicts a heat plot of the true conditional densities f(y|x) for a grid of

covariate values; the right panel corresponds to the estimated conditional densities. In both cases,

the corresponding mean curve is shown, along with the data.

around −3 (green cluster), a single linear regression model dominates; for values around

3 (cyan cluster), the dominance is less clear; while, for values around 0 a combined

effect of two linear models is indicated by the dependent weights. We emphasize that

Figure 2 clearly shows that the kernels in the covariate space are not modelling the

density of x, which is a simple Gaussian, but reflect the regions in the covariate space

where each linear regression model applies.

We are also able to produce estimates of the predictive densities, that is, the entire

conditional density f(y|x) at any value of x in the covariate space. Results are shown

in Figure 3b. The estimated densities are represented through heat maps, where a

darker color indicates higher density values. The estimated densities can be compared

with the true conditional densities, shown in Figure 3a. As is expected, the estimated

variance is higher than the true for small values of x where less data is observed.

18



−5 0 5 10
−4

−2

0

2

4

6

y

x

(a) Cubic Spline

−5 0 5 10
−4

−2

0

2

4

6

y

x

(b) GP

−4 −2 0 2 4
0

0.1

0.2

0.3

All data

−4 −2 0 2 4
0

0.1

0.2

0.3

x<−2

−4 −2 0 2 4
0

0.1

0.2

0.3

−2<x<2

−4 −2 0 2 4
0

0.1

0.2

0.3

x>2

(c) Cubic Spline

−4 −2 0 2 4
0

0.1

0.2

0.3

All data

−4 −2 0 2 4
0

0.1

0.2

0.3

x<−2

−4 −2 0 2 4
0

0.1

0.2

0.3

−2<x<2

−4 −2 0 2 4
0

0.1

0.2

0.3

x>2

(d) GP

Figure 4: The predicted regression function (in blue) and 95% pointwise confidence (spline) and

credible (GP) intervals for a grid of new covariate values along with true mean function in black

for the cubic spline and GP models, respectively, and histograms of the standardized residuals for

restricted ranges of covariate values.
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However, it is clear from the picture that the change, with x, of the variance of y|x is

recovered by the model.

Finally, we consider a comparison with semiparametric models. Figure 4 plots

the predicted regression function for a grid of new covariate values for two competing

models, namely, the cubic spline (CS) and Gaussian process (GP) models, implemented

in the crs package in R and the GPML toolbox in Matlab, respectively. The crs

package includes an automatic tool which selects the “best” spline model over a range of

degrees, number of knot points, and the choice of equally-spaced knots or knots placed

at the quantiles. When restricted to cubic splines (Figure 4a), the selected spline model

contained 6 knot points placed at the quantiles. Without this restriction, the selected

spline model had a degree of 7 with 8 knot points placed at the quantiles. Results in

this case are not shown since the model was outperformed by the cubic spline restricted

version under the performance metrics that we consider. The Gaussian process model

(Figure 4b) assumed a squared exponential covariance function.

For these semiparametric models, the poor mean function predictions for large

values of x with overly narrow confidence/credible intervals are clearly observed in

Figures 4a and 4b. It is important to note that these simpler models assume i.i.d.

standard normal errors, an assumption that is clearly violated in this case, as can

be observed in the histograms of the corresponding standardized residuals obtained

after fitting these models (Figures 4c and 4d). This raises questions about the use of

these models for this dataset, particularly for prediction. Table 1 provides a numerical

comparison of the models with respect to some commonly used distance measures

between the true and estimated regression curves, as well as between the true and

estimated conditional densities. In terms of fit (error calculated on observed covariate

values), the models are quite comparable, although measures which are more sensitive

to outliers (L2 and max(L1)) are improved for the proposed model. However, in terms
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of prediction (estimation for unobserved x values), our proposed nonparametric model

with normalized weights is superior, as would be expected given the non-normality of

the errors.

Estimated Item Error measure CS GP NW

Regression mean Fit L̂1 0.08 0.08 0.10

L̂2 0.44 0.41 0.38

Predictive L̂1 0.98 0.88 0.79

L̂2 2.33 1.95 1.46

Conditional densities Fit avg(L̂1) 0.15 0.30 0.22

max(L̂1) 5.12 1.79 1.25

Predictive avg(L̂1) 1.07 0.70 0.25

max(L̂1) 9.81 1.79 1.25

Table 1: Model Comparison: NW (normalized weights) stands for our model

To summarize the simulation study; it is important to model f(y|x) in its entirety

as a density rather than just a mean, for example. It is also important to model

the weights as a function of x. While we do not believe other Bayesian nonparametric

models could improve on things, but could do as well as our model, the model proposed

here does have full interpretation for the parameters.

6 Alzheimer’s disease study

Hippocampal volume is one of the best established and most studied biomarkers be-

cause of its known association with memory skills and relatively easy identification in

sMRI. In two recent papers, Jack et al. (2010) and Frisoni et al. (2010) discussed a

hypothetical model for the dynamics of hippocampal volume as a function of age and
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disease severity. If confirmed, this model would have important implications for the

use of hippocampal volume to measure the efficacy of treatments in clinical trials.

The clinical stages of the AD are divided into three phases (Jack et al. (2010));

the pre-symptomatic phase, the prodromal phase, and the dementia phase. During

the pre-symptomatic phase, some AD pathological changes are present, but patients

do not exhibit clinical symptoms. This phase may begin possibly 20 years before the

onset of clinical symptoms. The pre-prodromal stage of AD is known as mild cognitive

impairment (MCI); patients diagnosed with MCI exhibit early symptoms of cognitive

impairment, but do not meet the dementia criteria. The final stage of AD is dementia,

when patients are officially diagnosed AD. Jack et al. (2010) and Frisoni et al. (2010)

hypothesized that hippocampal volume evolves sigmoidally over time, with changes

starting slightly before the MCI stage and occurring until late in dementia phase. The

steepest changes are supposed to occur shortly after the dementia threshold has been

crossed.

To provide validation for this model, we study the evolution of hippocampal vol-

ume as a function of age, gender, and disease status. Data was obtained from the

Alzheimer’s Disease Neuroimaging Initiative database which is publicly accessible at

UCLA’s Laboratory of Neuroimaging1. The ADNI database contains neuroimaging,

1The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $ 60 million, 5-year public- private partnership.

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Determination of sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost

of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center
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biological, and clinical data, along with summaries of neuroimages, including the vol-

ume of various brain structures. The dataset analysed here consists of the volume

hippocampus obtained from the sMRI performed at the first visit for 736 patients. Of

the 736 patients in our study, 159 have been diagnosed with AD, 357 have MCI, and

218 are cognitively normal (CN). Figure 5 displays the data.
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Figure 5: Hippocampal volume plotted against age. The data are colored by disease status with

circles representing females and crosses representing males.

As discussed in Jack et al. (2010), we not only expect non-linearity in the regression

function, but also suspect the possibility of non-normal and covariate dependent errors,

and University of California-San Francisco. ADNI is the result of efforts of many co-investigators from a

broad range of academic institutions and private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to

participate in the research, approximately 200 cognitively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years and 200 people with early AD to be followed for 2 years. For

up-to-date information, see www.adni-info.org.
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Figure 6: Cubic spline model: (6a) estimated regression function and (6b) histogram of the stan-

dardized errors as a function of sex and disease status.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

55 60 65 70 75 80 85

4
5

6
7

8
9

10

Age

H
ip

po
ca

m
pa

l V
ol

um
e

CN MALE
CN FEMALE
MCI MALE
MCI FEMALE
AD MALE
AD FEMALE

(a) Regression function

AD Male

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

AD Female

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

MCI Male

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
00

0.
10

0.
20

0.
30

MCI Female

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

CN Male

D
en

si
ty

−2 −1 0 1 2 3

0.
00

0.
10

0.
20

0.
30

CN Female

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

(b) Standardized errors

Figure 7: Gaussian process model: (7a) estimated regression function and (7b) histogram of the

standardized errors as a function of sex and disease status.
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for example due to the presence of unobserved neuroprotective genes. Indeed, in a pre-

liminary semiparametric analysis where the errors are assumed to be i.i.d. normal, we

find some peculiarities in the model fit. Figures 6 and 7 display the estimated regres-

sion function and histogram of the standardized errors within each combination of sex

and disease status for the semi-parametric cubic spline and Gaussian process models,

respectively, which are implemented in the crs and kernlab packages in R. Notice that

both of these models tend to overfit the data to overcome the rigid assumption on the

errors. Furthermore, we find some abnormal behaviour in the errors that depends on

sex and disease status. As we learned in the simulation study, this odd behavior in

the fitted errors for the semiparametric models raises doubts about their use for this

dataset and can be a signal for poor prediction.

In order to fully capture the dynamics of the data, a nonparametric approach which

flexibly models both the regression function and the error distribution is needed. To this

aim, we consider the model developed in this paper, specifically, the infinite Gaussian

kernel mixture model with covariate dependent weights given by

wj(x) =
wj
∏2
h=1

∏Gh
g=0 ρ

1xh=g

j,h,g exp(−τ/2(x3 − µj)2)∑∞
j′=1wj′

∏2
h=1

∏Gh
g=0 ρ

1xh=g

j′,h,g exp(−τ/2(x3 − µj′)2)
,

where G1 = 1 (x1 represents gender) and G2 = 2 (x2 represents disease status). Note

that here age (x3) is a real number measuring time from birth to exam date and thus,

is treated as a continuous covariate.

The prior distribution for wj and (θj , ψj) is described in Section 4. The prior

parameters for wj are ζ1,j = 1 and ζ2,j = 1, corresponding to a Dirichlet process prior

with a precision parameter of 1. For the prior of (θj , ψj), we set

β0 = (8,−1,−1,−1/4)′; C−1 = diag(4, 1/4, 1/4, 1/50); α1 = 1; α2 = 1;

γ1 = (1, 1)′; γ2 = (1, 1, 1)′; µ0 = 72.5; c = 1/4; a1 = 1; bh = 1.
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See the Appendix for an explanation of these parameter choices. Inference is carried

out via the algorithm discussed in Section 4 with 23,000 iterations after a burn-in

period of 7,000.
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Figure 8: Estimated mean hippocampal volume as a function of age, disease, and sex. The curves

are colored by disease status with dashed lines representing 95% pointwise credible intervals around

the estimated regression function.

Figure 8 displays the estimated mean regression function for a grid of ages with

all possible combinations of disease status and sex. Interestingly, we observe a confir-

mation of the hypothesized sigmoidal evolution of hippocampal volume with increas-

ing age. The estimated mean function coincides with the point predictor under the

quadratic loss function. In this sense, cognitively normal subjects are predicted to have

highest values of hippocampal volume at all ages, and MCI patients are predicted to

have higher values of hippocampal volume at all ages when compared with AD patients.

This indicates that hippocampal volume may be useful in disease staging during both

the MCI and AD phases. With careful examination of Figure 8, we observe that CN
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patients are predicted to show the most gradual decline with increasing age, while AD

patients display the greatest. Notice that, as expected, females are predicted to have

lower values of hippocampal volume. We should comment that there is little data for

the subgroup of CN subjects under 60, which reflects on the greater uncertainty in the

estimation.

(a) AD Male (b) MCI Male (c) CN Male

(d) AD Female (e) MCI Female (f) CN Female

Figure 9: Heat map of conditional density estimates, i.e. predictve density, for new covariates with

a grid of ages between 50 and 90 and all combinations of disease status and sex.

Figure 9 displays the heat map of conditional density estimates, i.e. the predictive

densities, for a grid of new ages between 50 and 90 and all combinations of disease status

and sex. In a clinical trial setting, the preference is for reliable outcome measures,

i.e. biomarkers with small variability. In general, we observe that variance decreases
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with increasing age, indicating that hippocampal volume is more reliable for elderly

patients. The difference is slightly more pronounced for females as opposed to males.

In particular, hippocampal volume is predicted to have a large variability for young

females across all disease stages, with the largest for young CN females (the subgroup

with no data). Instead, for older females, the variance is much smaller for all disease

stages. When comparing males across disease status, we notice that young CN patients

are predicted to show a large variability compared with young MCI and AD patients,

while old MCI patients are predicted to show the largest variability when compared

with their CN and AD counterparts.

This figure clearly illustrates a feature which provides a strong motivation for our

model, rather than a simpler one which assumes, for example, constant variance and

skewness. The data suggest that it is important to model mean, variance, skewness and

possibly also kurtosis as being dependent on the covariate values. Hence, a standard

model such as y = m(x) + σε, ε
iid∼ N(0, 1) will fail to reproduce the results we have

obtained for the more general f(y|x) model. Even though the model is necessarily

more complicated, all the elements in it are interpretable.

7 Discussion

In this paper, we have described and implemented a fully Bayesian nonparametric ap-

proach to examine the evolution of hippocampal volume as a function of age, gender,

and disease status. We find that with increasing age, hippocampal volume is predicted

to display a sigmoidal decline for cognitively normal, MCI, and AD patients. We also

observe the most gradual decline for CN patients, while AD patients are predicted

to show the steepest decline. As the approach was nonparametric, no structure was

assumed for the regression function, yet our results confirm the hypothetical dynamics
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of hippocampal volume proposed by Jack et al. (2010). This provides strong statistical

support for their model of hippocampal atrophy. A comparison with two commonly

used semiparametric models suggest the superiority of the proposed model for pre-

diction, i.e. estimation of the regression curve and conditional densities f(y|x) for

unobserved covariate values. Future work in this application will involve examining

the dynamics of various biomarkers jointly, which could be accomplished by replacing

the normal linear regression component for y with a multivariate linear regression com-

ponent. Another important future study will consist of combining the cross-sectional

data with the longitudinal data for each patient.

In our analysis of the dynamics of hippocampal volume, we have developed a novel

Bayesian nonparametric regression model based on normalized covariate dependent

weights. The important contributions of this approach are a natural and interpretable

structure for the weights, a novel algorithm for exact posterior inference, and the inclu-

sion of both continuous and discrete covariates. We have focused on a univariate and

continuous response, but the model and algorithm can be easily extended to accommo-

date other types of responses by, for example, replacing the normal linear regression

component for y with a generalized linear model. Future work will consist of examining

theoretical properties of this model.
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Appendix

Section 3 details

We specify the full conditional distributions for the MCMC posterior sampling scheme

used for inference on the latent model constructed in Section 3.

The sampling of the weights is obtained via the Stick Breaking definition, where

the (vj) must be independently sampled from the corresponding full conditionals,

f(vj | · · · ) = Be(ζ1,j + nj +Nj , ζ2,j + n+j +N+
j ),

where nj =
∑
i

1(di = j); Nj =
∑
l,i

1(Dl,i = j);

n+j =
∑
i

1(di > j); N+
j =

∑
l,i

1(Dl,i > j).

Each of the (βj , σ
2
j ) can be sampled independently across j, from the full conditional

density

f(βj , σ
2
j | · · · ) = N(βj | β̂j , σ2j Ĉ−1j )Ga(1/σ2j | α̂1j , α̂2j),

where α̂1j = α1 + nj/2; α̂2j = α2 +
1

2
(y
j
−Xjβ0)

′Wj(yj −Xjβ0);

β̂j = Ĉ−1j (Cβ0 +X ′jyj); Ĉj = C +X ′jXj ; Wj = Ij −XjĈ
−1
j X ′j .

Here, Xj denotes the matrix with rows given by Xi = (1, x′i) for di = j; y
j

is defined

analogously; and Ij denotes the identity matrix of size nj .

We now show how the introduction of an additional set of latent variables enables

the update of the (ψj)
J
j=1, as explained in Section 4, and specify the resulting pos-

terior densities and truncation regions. Observe that, for any integer H and vector

(c1, . . . , cH) ∈ (0, 1)H , the following identity holds

1−
H∏
h=1

ch =
∑
u∈U

∫
(0,1)H

H∏
h=1

[uh1 (Uh < ch) + (1− uh)1 (Uh > ch)] dU,
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where U = (U1, . . . , UH), u = (u1, . . . , uH) and U is the set of H-dimensional {0, 1}

vectors of which at least one entry is 0. We can, therefore, introduce latent variables

(ui,l,h, Ui,l,h), for i = 1, . . . , n, l = 1, . . . , ki and h = 1, . . . , q + p, to deal with the

terms (1−
∏
hK(xi,h|ψj,h)) in the latent likelihood (equation (8)). The full conditional

density for (ψj)
J
j=1 is thus extended to the latent model

f(ψ1:J , {ui,l,h}, {Ui,l,h}| · · · ) ∝
J∏
j=1

f0(ψj)

n∏
i=1

q+p∏
h=1

K(xi,h|ψdi,h)

ki∏
l=1

[ui,l,h1 (Ui,l,h < Ki,l,h) + (1− ui,l,h)1 (Ui,l,h > Ki,l,h)] ,

where Ki,l,h = K(xi,h|ψDi,l,h), from which the original conditional density can be re-

covered by marginalizing over the (ui,l,h, Ui,l,h).

The latent variables (ui,l,h, Ui,l,h) can be sampled from their full conditional density

by first observing that they are independent across i = l, . . . , n and l = 1, . . . , ki. For

each i, l, the variable ui,l is a (q+ p)-dimensional vector of zeros and ones with at least

one zero entry. There are 2p+q − 1 such vectors, and for any u in this set, the update

must be done according to the following distribution

P(ui,l = u| · · · ) ∝
q+p∏
h=1

[
uhK(xi,h|ψDi,l,h) + (1− uh)(1−K(xi,h|ψDi,l,h))

]
.

Conditional on ui,l, the latent variables Ui,l,h for h = 1, . . . , p+ q are independent and

uniformly distributed in the region

[
K(xi,h|ψDi,l,h)(1− ui,l,h),K(xi,h|ψDi,l,h)ui,l,h

]
.

Therefore, the additional variables do not pose a problem for posterior simulation.

Furthermore, the introduction of these new variables transforms the latent term, intro-

duced to deal with the intractable normalizing constant, into a product of truncation

terms which is multiplied by the usual posterior density for the nonparametric mixture.
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We first consider the update of the (ρj)
J
j=1, which is achieved by sampling each ρj,h

independently from a truncated Dirichlet distribution,

f(ρj,h | · · · ) ∝ Dir(ρj,h | γ̂j,h)1 (ρj,h ∈ Rj,h) , where γ̂j,h,g = γj,h,g+
∑
di=j

1 (xi,h = g) .

The truncation region for each of the (ρj)
J
j=1 is given by

Rj,h =
{
ρ ∈ (0, 1)Gh : r−j,h,g < ρg < r+j,h,g, g = 1, . . . , Gh

}
and for g = 0 . . . , Gh,

r−j,h,g = max {Ui,l,h1 (xi,h = g) : Di,l = j, ui,l,h = 1} ,

r+j,h,g = min
{
U

1 (xi,h=g)
i,l,h : Di,l = j, ui,l,h = 0

}
.

We then consider the (µj , τj)
J
j=1. Recall that τj = τ for every j, so we update this

variable by sampling each τh independently from a truncated gamma density,

f(τh | · · · ) ∝ Ga(τh | âh, b̂h)1 (τh ∈ Th),

where

âh = ah + J/2 and b̂h = bh +
1

2

n∑
i=1

(xi,h+q − µdi,h)2 +
1

2
ch

J∑
j=1

(µj,h − µ0,h)2.

The truncation region for each τh is an interval Th = (τ−h , τ
+
h ), where

τ−h = max

{
−2 logUi,l,h+q

(xi,h+q − µDi,l,h)2
: ui,l,h+q = 0

}
,

τ+h = min

{
−2 logUi,l,h+q

(xi,h+q − µDi,l,h)2
: ui,l,h+q = 1

}
.

We then sample each µj,h independently from a truncated normal

f(µj,h | · · · ) ∝ N(µj,h | µ̂j,h, (τhĉj,h)−1)1 (µj,h ∈ Aj,h) ,

where

µ̂j,h =
1

ĉj,h

chµ0,h +
∑
di=j

xi,h+q

 ; ĉj,h = ch + nj .
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The truncation region for each of the µj,h is an intersection of sets,

Aj,h =
⋂

Di,l=j

Ai,l,h,

where each Ai,l,h is defined in terms of the intervals,

Ii,l,h =

(
xi,h+q −

√
−2 logUi,l,h+q

τh
, xi,h+q +

√
−2 logUi,l,h+q

τh

)
,

as Ai,l,h = Ii,l,h when ui,l,h+p = 1, and Ai,l,h = Ici,j,h when ui,l,h+p = 0.

Finally, in order to improve the mixing of the algorithm we applied the label switch-

ing moves introduced by Papaspiliopoulos and Roberts (2008). The Markov Chain

scheme detailed here and explained in Section 4, produces posterior samples (wsj , θ
s
j , ψ

s
j )

for s = 1, . . . , S, which can be used to estimate the regression mean (9) and predictive

density (10) via

E[Yn+1|y1:n, x1:n+1] ≈
S∑
s=1

Js∑
j=1

wsj (xn+1)Xn+1β
s
j ,

f(yn+1|y1:n, x1:n+1) ≈
S∑
s=1

Js∑
j=1

wsj (xn+1)N(y|Xn+1β
s
j , σ

2s
j ),

where

wsj (xn+1) =
wsjK(xn+1|ψsj )∑Js

j′=1w
s
j′K(xn+1|ψsj′)

.

Prior Specification and Sensitivity Analysis

We discuss the specification of the prior parameters in Sections 5 and 6 and provide a

sensitivity analysis with respect to the prior parameters of the simulation study, where

a comparison of the results to the true data-generating model is possible. For both

examples, based on a visual analysis of the data set and prior knowledge, we were able

to determine of maximum range for the parameters, which was then used to select the

prior parameters.
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We first consider the simulated dataset analysed in Section 5. In order to fit the

scatter plot of the data, the local linear components must be allowed to have a slope

between [0, 5/2] and an intercept between [0, 5]. Thus, we chose to center the prior for

the regression kernel parameters on β0 = (5/2, 5/4)′ with a variability 4 and 1/4 for

the intercept and slope, respectively, thus allowing them to cover the specified range.

The variance σ around the local regression lines should range between [1/4, 4], and the

choice of a inverse gamma prior with parameters (1, 1) is sufficiently diffuse to cover

that range. Since most of the observed covariates are concentrated in the interval

[−5, 5], we chose to center the covariate-related location parameters on µ0 = 0 with a

variability increased by a factor of 8 with respect to the component variability, thus

making c = 1/8; the precision τ linked to the range of applicability of each regression

kernel in the covariate space is given a gamma prior with parameters (1, 1). These

choices reflect the fact that true model can be approximated by dividing the x-space

into regions (with little overlap) of moderate range with a normal linear regression

component within each region.

For the ADNI dataset, many studies have shown that hippocampal volume shrinks

with age with greater decreases for diseased patients. A sensible range for the slope,

as observed in the scatter plot of the data, is [−1/2, 0], i.e. between a minimum of

no shrinkage and a maximum decrease of .5 cm3 in one year. We center therefore the

prior for the slope on −1/4 with a variability of 1/50 to cover this range. We chose

to center the intercept on 8 cm3, as it reflects the average hippocampal volume of

cognitively normal males, with a variability of 4 to cover the range of intercepts that

we could anticipate. Women tend to have lower brain volume than men, and a range

of [−2, 0] reflects the belief that hippocampal volume could be equal or up to 2 cm3

less for women and men of the same age and disease status; the slope of the gender

indicator is centered on −1 with a variability of 1/4. We assume that when compared
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to cognitively normal subjects of the same age and gender, MCI patients may have

a minimum of no decrease in hippocampal volume to a maximum decrease of 2 cm3,

while AD patients compared to cognitively normal subjects of the same age and gender

have a minimum of no decrease and a maximum decrease of 4 cm3; the slope of the

AD indicator is centered on −1 with a variability of 1/4. Finally, we selected vague

uniform prior to describe prior information about the regions where the components

best apply in the discrete x-space. In the continous x-space, the conjugate normal

gamma prior was centered on the average age of 72.5 with parameters (1, 1) for the

precision and the variability of locations relative to the range of best applicability was

increased by a factor of 4; this was chosen to encourage fairly well separated x-regions

of moderate range.

Rather than using a hyper-prior for the precision parameter of the Dirichlet process,

we fix it to be ζ2,j = 1 in both examples. Due to the unidentifiability of the weights,

such a practice corresponds to the standard solution of fixing the location of one of

the variables for models with identifiability issues. The unidentifiability of the weights

arises from the fact that they are given by wj(x) ∝ wjK(x|ψj). We resolve this in the

usual way by fixing the locations of the (wj) rather than assigning a hyper-prior to the

precision parameter. Note that the model is fundamentally different from the usual

DP mixture model, where the weights corresponding to each component in the mixture

are simply the (wj), without any multiplicative factors. Hence in the DP model the

use of a hyper-prior for the precision parameter is known to be important, while in the

present model that need is overcome by the effect of the kernels K(x|ψj).

Additionally, we performed a sensitivity analysis with regards to the prior specifica-

tion for the simulation study. Table 2 lists performance metrics for the proposed model

under various modifications of the prior hyperparameters. Specifically, we explored de-

creasing and increasing the mass parameter of the Dirichlet process prior; decreasing
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Estimated item Error NW NW NW NW NW NW NW NW NW

measure ↓ m ↑ m ↓ C−1 ↑ C−1 ↑ α ↓ c−1 ↑ c−1 ↑ a1

Regression Fit L̂1 0.10 0.10 0.10 0.11 0.09 0.11 0.11 0.10 0.11

mean L̂2 0.38 0.38 0.38 0.37 0.38 0.38 0.36 0.37 0.39

Predictive L̂1 0.79 0.79 0.79 0.76 0.81 0.80 0.75 0.76 0.80

L̂2 1.46 1.46 1.45 1.38 1.57 1.46 1.38 1.43 1.48

Conditional Fit avg(L̂1) 0.22 0.22 0.25 0.24 0.20 0.26 0.24 0.22 0.23

densities max(L̂1) 1.25 1.25 1.25 1.23 1.23 1.30 1.12 1.18 1.29

Predictive avg(L̂1) 0.25 0.25 0.28 0.27 0.22 0.29 0.27 0.25 0.26

max(L̂1) 1.25 1.25 1.25 1.24 1.24 1.30 1.14 1.20 1.29

Table 2: Sensitivity Analysis: comparison of fitted and predictive errors in the regression mean

and conditional density for varying choices of the prior parameters. The first two prior parameter

modifications explore decreasing and increasing the mass parameter, m, of the Dirichlet process to

0.5 and 5. The following prior parameter changes explore decreasing and increasing the variability

of the local regression coefficients (with ↓ C−1 corresponding to C−1 = diag(1.5, 1/10) and ↑ C−1

corresponding to C−1 = diag(10, 1)); decreasing the variability of the precision around the local

regression lines (with ↑ α corresponding to α1 = 2, α2 = 2); decreasing and increasing the variability

of the locations of the components in the x-space (with ↓ c−1 corresponding to c−1 = 4 and ↑ c−1

corresponding to c−1 = 16); and increasing the location and variability of the precision associated

to the components in the x-space (a1 = 2).

and increasing the variability of the local regression coefficients; decreasing the vari-

ability of the precision of the local linear regression models; decreasing and increasing

the variability of the locations of the components in the x-space; and increasing the

location and variability of precision of the components in the x-space. We find that

the results are quite robust to these choices.
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