University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/72094

This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.
ON THE IRREDUCIBLE CHARACTERS

OF THE WEYL GROUPS

Stephen Joel Mayer

University of Warwick

Ph.D. Thesis 1971
ABSTRACT

In this thesis we study the irreducible characters of the Weyl groups of the simple Lie algebras, in order to give a unified approach to this problem.

Chapter one sets up notation. In chapter two we give some known results on the character theory of Weyl groups of type A (the symmetric group) using Weyl subgroups. These are a common feature of Weyl groups and allow us, in chapter three, to generalize to type C. Chapter four deals with type D which presents a more difficult problem; chapter five is a brief study of the Weyl groups of type B, and finally, chapter six deals with the calculations in the exceptional types G_2, F_4 and E_6.
Chapter four
WEYL GROUPS OF TYPE D

§4.1 The conjugacy classes and irreducible characters
§4.2 An algorithm for $W(D_1)$
§4.3 The remaining irreducible characters
§4.4 Completion of the decomposition of the induced principal character
§4.5 Solomon's decomposition of the group algebra of $W(D_1)$
§4.6 The maximal Weyl subgroups of $W(D_1)$
§4.7 Some remarks on Weyl groups of type D
§4.8 The groups $W(D_4)$ and $W(D_5)$

Chapter five
WEYL GROUPS OF TYPE B

§5.1 An algorithm for $W(B_1)$
§5.2 The maximal Weyl subgroups of $W(B_1)$

Chapter six
WEYL GROUPS OF EXCEPTIONAL TYPE

§6.1 Construction of the mapping Y
§6.2 Some further remarks
§6.3 The tables

REFERENCES
The Weyl groups of the simple Lie algebras were classified many years ago and their conjugacy classes and irreducible characters were individually determined by many people (Frobenius, Schur, Young, Specht, Frame and Kondo, to name but a few) in many different ways. However, up till recently no unified approach had been obtained, using the common structure of the Weyl groups as reflection groups. It is desirable to do this in view of the importance of Weyl groups in many branches of mathematics; for example, immediate applications can be envisaged in the theories of algebraic groups and Chevalley groups.

Carter [5] has given such a unified approach to the problem of determining the conjugacy classes, and this thesis is directed towards solving the same problem for the irreducible characters. The fundamental idea in Carter's paper is that of a Weyl subgroup. He gives a correspondence (which is in general not a bijection) between the conjugacy classes and certain admissible diagrams. Some of these diagrams correspond to the Dynkin diagrams of Weyl subgroups and the others to, what we shall call, semi-Coxeter types.

As the numbers of conjugacy classes and irreducible characters are equal, one would hope that a similar association could be obtained between the irreducible characters and Weyl subgroups or semi-Coxeter types.

In the Weyl group of type A, the symmetric group, we reformulate some of the known results in order to
exhibit this association (which in this case is a bijection). We then go on to consider Weyl groups of type C and show that these results generalize very well. The situation in Weyl groups of type D is rather more complicated and the association is not so easy to find. However, we are able to give an algorithm which allows us to calculate the irreducible constituents of the principal character of a Weyl subgroup induced up to the Weyl group. This generalizes an algorithm introduced in type C which further extends the usual partial ordering on partitions in type A. A discussion in §4.7 shows how the results in type D should lead to the required association.

We also give a short chapter, mainly for completeness sake, on Weyl groups of type B, giving a similar algorithm for this case. We conclude with a chapter on the exceptional Weyl groups of types G_2, F_4 and E_6 and calculate the association that we want.

Parabolic subgroups are the usual tools for attacking problems of this kind, but methods using them are often unsatisfactory. For example, Solomon [17] has given a decomposition of the group algebra of a finite Coxeter group, which is far from complete; it would appear that Weyl subgroups may well lead to a refinement of the decomposition. It is with this idea in mind that we examine Solomon's results in the case of Weyl groups of types A, C and D.

Unless otherwise stated the results in this thesis are believed to be new.
I take great pleasure in thanking my supervisor, Professor R.W. Carter, for his encouragement, inspiration and unfailing patience. I would also like to thank Professor J.A. Green for the interest he has shown in my work, and Dr. G.B. Elkington and Mr. P.C. Gager for their fruitful conversations. Finally, I express my appreciation to the Science Research Council for their grant.
In this chapter we introduce the necessary notation and terminology, and state, and in some cases prove, a few elementary character theoretic results.

§1.1 Weyl groups

All groups considered in this thesis will be finite and all Lie algebras finite-dimensional, semi-simple and over the complex field.

Much of the terminology in this section may be found in Jacobson [13].

Let V be a Euclidean space of dimension 1. For each non-zero vector r in V, let w_r be the reflection in the hyperplane orthogonal to r.

Thus

$$w_r(x) = x - 2\langle r, x \rangle r$$

Let Φ be a subset of V satisfying the following axioms:

(i) Φ is a finite subset of non-zero vectors which span V;
(ii) if $r, s \in \Phi$ then $w_r(s) \in \Phi$;
(iii) if $r, s \in \Phi$ then $2\langle r, s \rangle / \langle r, r \rangle$ is a rational integer;
(iv) if $r, \xi r \in \Phi$ where ξ is real, then $\xi = \pm 1$.

Then Φ is a root system of some semi-simple Lie algebra, whose Weyl group is isomorphic to the group W of orthogonal transformations of V generated by the reflections w_r for all $r \in \Phi$. The dimension 1 of V is called the rank of W.

Definitions

(1) A sub-root system of a root system Φ is a subset of Φ
which is itself a root system in the space which it spans.
(ii) If \(W \) is the Weyl group of \(\Phi \), a Weyl subgroup of \(W \) is the subgroup generated by the reflections \(w_r \) corresponding to the roots \(r \in \Phi' \), where \(\Phi' \) is a sub-root system of \(\Phi \).

The graphs which are Dynkin diagrams of Weyl subgroups of a Weyl group \(W \) may be obtained by a standard algorithm ([2], [7]). To the Dynkin diagram of \(W \) is added a node corresponding to the negative of the highest root, forming the extended Dynkin diagram. The Dynkin diagrams of all possible Weyl subgroups may be obtained as follows. Take the extended Dynkin diagram of \(\Phi \) (the root system whose Weyl group is \(W \)) and remove one or more nodes in all possible ways. Take also the duals of the diagrams obtained in the same way from the dual system \(\tilde{\Phi} \) (which is obtained from \(\Phi \) by interchanging long and short roots). Then repeat the process with the diagrams obtained, and continue any number of times.

It is then easy to determine the maximal Weyl subgroups of \(W \) - the proper Weyl subgroups of \(W \) not contained in any other proper Weyl subgroup of \(W \). These have rank equal to rank \(W \) or rank \(W - 1 \). So the Dynkin diagrams of the maximal Weyl subgroups are those obtained by leaving out a node from the extended Dynkin diagram of \(W \) and also by leaving out a node from the Dynkin diagram of \(W \), and eliminating those of rank equal to rank \(W - 1 \) or rank \(W \) contained inside those whose rank is rank \(W \).

The Weyl subgroups which are obtained by leaving out any number of nodes from the Dynkin diagram of \(W \), are generated by a subset of the generating set of \(W \) and are called parabolic subgroups of \(W \).
So much for the general theory. The simple Lie algebras have been classified [13] and their Weyl groups are:

\[W(A_1) \quad 1 \times 1 \]
\[W(B_1) = W(C_1) \quad 1 \times 2 \]
\[W(D_1) \quad 1 \times 3 \]
\[W(C_2) \]
\[W(F_4) \]
\[W(E_6) \]
\[W(E_7) \]
\[W(E_8) \]

It will occasionally be convenient to add to this list two more Weyl groups:

\[W(C_1) \] - the cyclic group of order 2 generated by a sign change (see chapter three). The underlying Lie algebra is of type \(A_1 \) so \(W(C_1) \cong W(A_1) \).

\[W(D_2) \] - the non-cyclic group of order 4 generated by a transposition and a product of 2 sign changes (see chapter four). In this case the underlying Lie algebra \(A_1 \times A_1 \) is not simple.

The Weyl group \(W(A_1) \) is isomorphic to the symmetric group \(S_{1+1} \) on \(1+1 \) letters;

\[W(B_1) \] and \(W(C_1) \) are both isomorphic to the hyper-octahedral group of order \(2^{1.11} \);

\[W(D_1) \] is a subgroup of \(W(C_1) \) of index 2;

\[W(G_2) \] is isomorphic to the dihedral group of order 12;

\[W(F_4) \] is a soluble group of order 1152, isomorphic to the orthogonal group \(O_4(3) \) leaving invariant a quadratic form of maximal index in a 4-dimensional vector space over the Galois field of 3 elements.
We shall mainly be interested in the four infinite families, and their Weyl subgroups are given in the relevant chapters. We can also obtain the maximal Weyl subgroups in each case, which again are listed in the sections where we use them. Notice that $W(B_1)$ and $W(C_1)$, although isomorphic, have different Weyl subgroups because the underlying root systems are different.

A fundamental distinction between $W(A_1)$ and Weyl groups of other types is that in $W(A_1)$ a Weyl subgroup is always conjugate to a parabolic subgroup, so that in the symmetric group the two ideas are equivalent; it is only in the other cases that a distinction arises.

§1.2 Some character theoretic results

We shall be assuming a background of (ordinary) character theory, but we give here a few of the important results, many of which appear in Curtis and Reiner [6].

If I,J are 2 sets $J \subset I$ will mean J is a proper subset of I ($J \subset I$ and $J \neq I$).

Let G be a group (assumed to be finite), then its order is denoted by $|G|$. We adopt the convention that $x^y = yxy^{-1}$ where $x,y \in G$, so that $H^g = gHg^{-1}$ where H is a subgroup of G $(H \leq G)$ and $g \in G$. We use $< >$ to mean the group generated by the elements inside the diamond brackets.

All characters and representations (unless otherwise stated) will be assumed to be over the complex field \mathbb{C}, so that all tensor products are also over \mathbb{C}. A representation module of a group G will be called, interchangeably, a
\mathbb{C}- or G-module.

$\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ denote the reals, rationals and rational integers respectively.

$(\; , \;)$ will denote the scalar product of characters, and where we need to specify the group we shall write e.g. $(\; , \;)_G$.

Let χ be a character of a group H and $K \leq H \leq G$. Then χ^G denotes the induced character of G, χ^K the restricted character of K. We also write $\bar{\chi}$ for the character of $N = H \cdot g^{-1}$ defined by $\bar{\chi}(n) = \chi(gng^{-1})$ for all $n \in N$.

If $H \leq G$, we define the centralizer of χ in G to be $C_G(\chi) = \{ g \in G : \bar{\chi} = \chi \}$

It is easy to see that $C_G(\chi^G) = C_G(\chi)^G$ for all $\chi \in G$.

The Weyl groups W admit a homomorphism $\varepsilon : W \rightarrow \{+1, -1\}$ defined by $\varepsilon(r_1) = -1$ for $r_1 \in I$, where I is the generating set of involutions of W. Thus ε is a linear character of W and will be called the \textit{sign character} of W. 1 (or 1_W) will always denote the principal character of W.

A result that is fundamental to our work is a theorem in character theory due to Mackey.

\textbf{Theorem 1.2.1 (Mackey's Formula)}

Let $H, K \leq G$ and suppose $\{ y_1 \}$ is a set of (H, K)-double coset representatives in G. Suppose also that χ is a character of H, θ a character of K. Then

$$(\chi^G, \varepsilon^G) = \sum_{y \in \{ y_1 \}} (\chi_H^Y|_{H \cdot K} , \theta_H^K)$$

Because the scalar product is symmetric, which
character is conjugated is unimportant. In applying this theorem we shall always assume that \(y = 1 \).

An equivalent result, which we shall only use once, is also due to Mackey

Theorem 1.2.2 (Mackey's Subgroup Formula)

With the notation of 1.2.1

\[
(x^G)_H = \sum_{y \in \{ y \}} ((y \chi)^H)^K
\]

A particular case of these results (when \(H = G \)) is

Theorem 1.2.3 (Frobenius' Reciprocity Formula)

With the notation of 1.2.1

\[
(x, \theta^G) = (x, \theta)_K
\]

The application of this theorem will invariably be indicated by the phrase 'by Frobenius'.

A useful result (which we state in a restricted form) is

Lemma 1.2.4

Let \(H \leq G, \chi \) a character of \(G \), \(\theta \) a character of \(H \).

Then

\[
\chi \cdot \theta^G = (\chi \cdot \theta)^G
\]

Lemma 1.2.5

1. Let \(H, K \leq G \) such that \(G = HK \) and \(H \cap K = 1 \).

Suppose \(\chi \) is a character of \(G \) such that

\[
\chi(hk) = \theta(h)\phi(k), \text{ for all } h \in H, k \in K, \text{ where } \theta \text{ is a character of } H, \phi \text{ a character of } K.
\]

Then

\[
(\chi, \chi) = (\theta, \theta)(\phi, \phi)
\]
(ii) Suppose $G = H \times K$ and $H_1 \unlhd H$, $K_1 \unlhd K$ and
θ is a character of H_1, ϕ a character of K_1. Then

$$(\theta \cdot \phi)^{H \times K} = \theta^H \cdot \phi^K$$

(iii) If $H \triangleleft K \triangleleft G$, χ a character of H and $g \in G$, then

$$\mathcal{E}(\chi^K) = (\mathcal{E} \chi)^{g^{-1}}$$

Proof

(i) is trivial to check using

$$(\chi, \chi) = \sum_{g \in G} \chi(g) \chi(g^{-1})$$

(ii) and (iii) follow immediately from the formula

$$(\chi, \chi) = \sum_{x \in G} \hat{\chi}(xyx^{-1})$$

where $\hat{\chi}(y) = 0$ if $y \in G \setminus H$

and $\hat{\chi}(y) = \chi(y)$ if $y \in H$.

Lemma 1.2.6

Suppose $H \unlhd G$, χ, θ both characters of G. Then

$$(\chi, \theta) \neq 0 \Rightarrow (\chi_H, \theta_H) \neq 0$$

Proof

$$(\chi, \theta) \neq 0 \Rightarrow \chi, \theta \text{ have an irreducible constituent, }$

ϕ say, in common. Hence χ_H, θ_H have the character ϕ_H of

H in common, so $(\chi_H, \theta_H) \neq 0$

We conclude this chapter with a couple of results about representation modules.

Let G be a group and $A = CG$, its complex group

algebra. Let * be the unique G-linear map $A \to A$ such

that $g^* = g^{-1}$ for all $g \in G$. Then we see that * is an
involutory anti-automorphism of A. The map $*$ was introduced by Solomon [17], and he proved

Theorem 1.2.7 ([17] lemma 6)

If $x \in A$ then Ax and Ax^* are isomorphic A-modules.

Note that if X is a character of G and e is an idempotent of A defined by

$$e = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g^{-1}) g$$

then $e^* = e$.

If B, C are two A-modules such that B is isomorphic to a submodule of C, we write $B \subseteq C$.

Lemma 1.2.8

Let e_1, e_2, e be idempotents of A and suppose Ae_1, Ae_2, Ae afford the characters χ_1, χ_2, χ of G respectively. Suppose also that the left A-module Ae_3, where $e_3 = e_1 e_2$, affords the character χ_3 of G. Then

$$\langle \chi, \chi_3 \rangle \neq 0 \Rightarrow \langle \chi, \chi_1 \rangle \neq 0 \text{ and } \langle \chi, \chi_2 \rangle \neq 0$$

Proof

Suppose that θ is an irreducible constituent of X such that $\langle \theta, \chi_3 \rangle \neq 0$; let Ae' afford θ. Then $Ae' \subseteq Ae_3 = Ae_1 e_2 \subseteq Ae_2$ so $\langle \theta, \chi_2 \rangle \neq 0$.

However,

$$Ae' \subseteq Ae_3 = Ae_1 e_2 = A(e_1 e_2)^* \text{ by 1.2.7}$$

$$= Ae_2^* e_1^*$$

$$\subseteq Ae_1^*$$

$$= Ae_1 \text{ by 1.2.7 again}$$

So $Ae' \subseteq Ae_1$ and therefore $\langle \theta, \chi_3 \rangle \neq 0$. Because $(\theta, X) \neq 0$ we have that $(\chi, \chi_1) \neq 0$ and $(\chi, \chi_2) \neq 0$.
Lemma 1.2.9

Let $H \leq G$ and $A' = \mathbb{C}H$. Suppose $A'e$ is an A'-module affording the character χ of H. Then Ae affords the character χ^G of G.

Proof

This follows from the definition of the induced representation, since

$$Ae = A \otimes_{A'} A'e = (A'e)^G.$$
Chapter two THE SYMMETRIC GROUP

Frobenius, Specht, Young and many others have contributed much to the character theory of the symmetric group. However, we shall be presenting their results here in a new light, occasionally with new proofs, as we shall be viewing the symmetric group as the Weyl group of type A. This will enable us to apply the methods to other Weyl groups of simple Lie algebras.

§2.1 Some classical results

In this chapter only, we write \(W = W(\mathfrak{A}_1) \cong S_{l+1} \). It might be more natural to use \(l \) instead of \(l+1 \) for the symmetric group, but we shall stick to a notation more in keeping with our overall view.

Many of the assumed results appear in [6] (pp 190-197), and in [1] (chapter IV).

Definition

A partition \(\lambda \) of \(l+1 \) (written \(\lambda : l+1 \) or \(\| \lambda \| = l+1 \)), is a sequence \((\lambda_1, \lambda_2, \ldots, \lambda_r) \) of integers such that

\[\lambda_1 \geq \lambda_2 \geq \ldots > 0 \quad \text{and} \quad \lambda_1 + \lambda_2 + \ldots + \lambda_r = l+1. \]

\(\lambda_1, \ldots, \lambda_r \) are called the parts of \(\lambda \).

Young ([18] and [19]) introduced the idea of frames and tableaux.

Suppose \(\lambda = (\lambda_1, \ldots, \lambda_r) \vdash l+1 \). Then the frame associated with \(\lambda \) consists of \(\lambda_1 \) squares in the first row, \(\lambda_2 \) squares in the second row, \(\ldots \), and \(\lambda_r \) squares
in the last row.
e.g. if \(1+1 = 9 \) then the frame corresponding to
\((3,3,2,1)\), which we shall often write as \((3^2 21)\), is

```
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
```

A **tableau** (or **diagram**) \(D_\lambda \) corresponding to \(\lambda \) is obtained by filling the squares of the frame with the symbols \(1, \ldots, 1+1 \) in any order.

The **dual** (tableau) is obtained from the original (frame) by interchanging the rows and columns.

The dual frame gives rise to a partition of \(1+1 \) which is denoted by \(\lambda' \) and is called the **dual** of \(\lambda \).

The **row stabilizer** \(R(D_\lambda) \) of a tableau \(D_\lambda \) is the group of row permutations of \(D_\lambda \).

\[R(D_\lambda) = \{ p \in S_{1+1} : p \text{ permutes the symbols in each row of } D_\lambda \} \]

Similarly, the **column stabilizer** \(C(D_\lambda) \) is the group of column permutations and so is the row stabilizer of the dual tableau \(D_\lambda' \).

Now \(R(D_\lambda) \cong S_{\lambda_1} \times \cdots \times S_{\lambda_r} \) and this is a Weyl subgroup of \(W \) of type \(A_{\lambda_1-1} + \cdots + A_{\lambda_r-1} \). In fact all Weyl subgroups of \(W \) can be considered in this way as the **row stabilizer** of some diagram. Thus the Weyl subgroups can
be parameterized by the partitions of $l+1$, so that a Weyl subgroup isomorphic to $S_{\lambda_1} \times \ldots \times S_{\lambda_r}$ will be written W_{λ}; in particular $W = W^{(l+1)}$.

Thus $W_{\lambda} = R(D_{\lambda})$, $W_{\lambda} = C(D_{\lambda})$.

The group W acts on a diagram D_{λ} by defining wD_{λ} for $w \in W$, to be the diagram obtained by applying w to the symbols in D_{λ}.

We then have the following easy, but fundamental, result

Lemma 2.1.1 ([6] 28.10)

If $w \in W$, $\lambda \vdash l+1$ then $R(wD_{\lambda}) = wR(D_{\lambda})w^{-1}$ and $C(wD_{\lambda}) = wC(D_{\lambda})w^{-1}$.

It follows that any two isomorphic Weyl subgroups of W are conjugate via the element of W that transforms one associated diagram into the other.

Definition

Two symbols which lie in the same row (resp. column) of a diagram are said to be collinear (resp. co-columnar).

Lemma 2.1.2 ([6] 28.11)

An element $w \in W$ is expressible in the form $w = pq$, where $p \in W_{\lambda}$, $q \in W_{\lambda'}$, if and only if no two collinear symbols of D_{λ} are co-columnar in wD_{λ}.

Let $A = CW$ - the group algebra of W over C. We define two essential idempotents of A (an essential idempotent being a scalar multiple of an idempotent):

$$
\xi_{\lambda} = \sum_{p \in W_{\lambda}} p, \quad \eta_{\lambda} = \sum_{q \in W_{\lambda'}} \xi(q)q
$$
where ε is the sign character of W.

Thus $A\xi\lambda$, $A\eta\lambda$ afford the characters $\iota_{W,\lambda}$ and $\varepsilon_{W,\lambda'}$ respectively of W considered as A-modules.

Let $e_\lambda = \xi_\lambda \eta_\lambda$. Notice that e_λ depends on W_λ, $W_{\lambda'}$ and hence on the particular arrangement of the symbols in D_λ. However a different arrangement only gives rise to $w e_\lambda w^{-1}$, for some $w \in W$, by 2.1.2, and hence to an A-module isomorphic to Ae_λ.

The following result appears in [6] (28.15)

Theorem 2.1.3

Let $\lambda \vdash 1+1$. For each diagram D_λ, e_λ is essentially idempotent and Ae_λ is a minimal left ideal of A, hence an irreducible A-module. Further, ideals coming from different diagrams with the same frame are isomorphic, but ideals from diagrams with different frames are not. Thus the ideals $\{Ae_\lambda\}$ where λ ranges over all the partitions of $1+1$, gives a full set of non-isomorphic irreducible A-modules.

Notation

The irreducible character of W afforded by Ae_λ will be denoted by χ^λ.

Thus the irreducible characters of W may be parameterized by partitions of $1+1$; we shall be giving an alternative characterization of χ^λ in §2.2.

The above results hold if we replace \mathbb{C} by \mathbb{Q}. Hence (with respect to some basis depending on the representation)
the matrix entries of any representation of \(W \) lie in \(\mathbb{Q} \).

However, by a result in [6] (75.4), they are also algebraic integers and so are rational integers.

Thus we have

Theorem 2.1.4

Any complex representation of \(W \) may be afforded by a basis with respect to which the matrix entries consist of rational integers. In particular, the characters of \(W \) are (rational) integral-valued.

One can obtain a decomposition of the group algebra \(A \) into minimal left ideals by using the notion of standard tableaux.

Definition

A **standard tableau** is a tableau in which the numbers increase in every row from left to right and in every column downwards.

Now \(A \) splits up into a number of simple rings \(A_i \), \(1 \leq i \leq r \), i.e., \(A = A_1 \oplus \ldots \oplus A_r \) and each \(A_i \) consists of a direct sum of isomorphic minimal left ideals of \(A \), which are not isomorphic to any that occur in an \(A_j, j \neq i \).

Theorem 2.1.5 ([1] IV,4.6)

The minimal left ideals which arise from the standard tableaux belonging to one frame in the way indicated in 2.1.3, are linearly independent and span a simple ring \(A_i \). Thus \(A \) is the direct sum of the minimal left ideals which arise from the standard tableaux belonging to any frame associated with a partition of \(1+1 \).
It follows that the degree of χ^λ is equal to the number of standard tableaux belonging to a frame associated with λ. This leads to a formula for the degree.

Definition

Let $\lambda \vdash 1+1$ and F_λ its associated frame. The square in the ith row and jth column is called the ij-node. The number of squares to the right and below this node (including the ij-node) is called the hook length of the ij-node. The hook product H_λ is the product of the $1+1$ hook lengths.

A hook graph is a partition of the form $(i, 1^{1+1-i})$ for some $i \in \{1, \ldots, 1+1\}$. Thus the frame of a hook graph is a hook.

Theorem 2.1.6 ([10] theorem 1)

$$\chi^\lambda(1) = \frac{(1+1)!}{H_\lambda}$$

Finally, we state a further formula (which is used in proving 2.1.5) relating the degree of $\chi^\lambda(\lambda+1)$ to degrees of characters of partitions of $1+1$.

Lemma 2.1.7

Let $\lambda \vdash 1$. Then

$$(1+1)\chi^\lambda(1) = \sum_{\mu} \chi^\mu(1)$$

summed over all partitions μ of $1+1$ whose frame may be obtained by adding a square to the end of a row of the frame of λ.
§2.2 *Decomposition of induced principal character*

Let \(\lambda \vdash l+1 \) and fix a diagram \(D_\lambda \) and we let

\[W_\lambda = R(D_\lambda). \]

The aim of this section is to decompose \(W_\lambda \) into its irreducible components.

First we obtain an alternative characterization of \(\chi^\lambda \). We shall need:

Lemma 2.2.1

If \(y \in W \), then \(W_\lambda \cap yW_\lambda y^{-1} \) contains only even permutations if and only if \(y \in W_\lambda W_\lambda' \).

Proof

Suppose \(W_\lambda \cap yW_\lambda y^{-1} \) contains only even permutations and that there exist two symbols \(a, b \in \{1, \ldots, l+1\} \) such that \(a, b \) are collinear in \(D_\lambda \) and co-columnar in \(yD_\lambda \). Let \(t \) be the transposition \((ab)\).

Hence \(t \in R(D_\lambda) \cap C(yD_\lambda) \)

\[= R(D_\lambda) \cap yC(D_\lambda)y^{-1} \quad \text{by 2.1.1} \]

\[= W_\lambda \cap yW_\lambda y^{-1} \]

which is a contradiction since \(t \) is an odd permutation.

Thus no two collinear symbols of \(D_\lambda \) are co-columnar in \(yD_\lambda \) and so by 2.1.2, \(y \in W_\lambda W_\lambda' \).

Conversely, let \(y = pq \) where \(p \in W_\lambda, q \in W_\lambda' \).

Then \(W_\lambda \cap yW_\lambda y^{-1} \)

\[= W_\lambda \cap yW_\lambda y^{-1} \]

\[= p(p^{-1}W_\lambda p \cap W_\lambda')^{-1} \]

\[= p(p^{-1}W_\lambda \cap W_\lambda')^{-1} \]

\[= p(R(D_\lambda) \cap C(D_\lambda))^{-1} \]

\[= p \cdot 1 \cdot p^{-1} \]

\[= 1 \]

so certainly \(W_\lambda \cap yW_\lambda y^{-1} \) only contains even permutations.
Lemma 2.2.2

\[(1_{W}, \varepsilon_{W}) = 1\]

Proof

By Mackey's formula

\[\left(1_{W_{\lambda}}, \varepsilon_{W_{\lambda}}\right) = \sum_{y \in \{y_{1}\}} \left(1_{W_{\lambda}} \cap yW_{\lambda}y^{-1}, \varepsilon_{W_{\lambda}} \cap yW_{\lambda}y^{-1}\right)\]

where \(\{y_{1}\}\) is a set of \((W_{\lambda}, W_{\lambda})\)-double coset representatives.

Now \(\left(1_{W_{\lambda}} \cap yW_{\lambda}y^{-1}, \varepsilon_{W_{\lambda}} \cap yW_{\lambda}y^{-1}\right) \neq 0\)

\[\Rightarrow \left(1_{W_{\lambda}} \cap yW_{\lambda}y^{-1} = \varepsilon_{W_{\lambda}} \cap yW_{\lambda}y^{-1}\right) \text{ since both characters are linear} \]

\[\Rightarrow W_{\lambda} \cap yW_{\lambda}y^{-1} \text{ contains only even permutations} \]

\[\Rightarrow y \in W_{\lambda}W_{\lambda} \text{ by 2.2.1} \]

\[\Rightarrow y = y_{1} = 1\]

Thus only the first term is non-zero and is

\[\left(1_{W_{\lambda}} \cap W_{\lambda}, \varepsilon_{W_{\lambda}} \cap W_{\lambda}\right) = (1_{W_{\lambda}}, \varepsilon_{W_{\lambda}}) = 1\]

which proves the lemma.

It follows from 2.2.2 that \(1_{W_{\lambda}}\) and \(W_{\lambda}\) contain a unique common irreducible constituent; we shall show that this is \(\chi^{\lambda}\).

\(1_{W_{\lambda}}\) is afforded by the \(A\)-module \(A\xi_{\lambda}\), \(\varepsilon_{W_{\lambda}}\) by the \(A\)-module \(A\eta_{\lambda}\) and \(\chi^{\lambda}\) by the irreducible \(A\)-module \(A\xi_{\lambda}\eta_{\lambda}\).

It is clear that \(A\xi_{\lambda}\eta_{\lambda} \leq A\eta_{\lambda}\). It follows, using 1.2.7, that \(A\xi_{\lambda}\eta_{\lambda} = A(\xi_{\lambda}\eta_{\lambda}) = A\eta_{\lambda}\xi_{\lambda} \leq A\xi_{\lambda}\). Thus \(A\xi_{\lambda}\eta_{\lambda}\) is isomorphic both to a submodule of \(A\xi_{\lambda}\) and of \(A\eta_{\lambda}\).

Hence \(\chi^{\lambda}\) is an irreducible component of both \(1_{W_{\lambda}}\) and \(\varepsilon_{W_{\lambda}}\), and by 2.2.2 the result follows. We have thus proved:

Theorem 2.2.3

\(\chi^{\lambda}\) is the unique common irreducible constituent of
1 wand W_λ and $\xi W_{\lambda'}$ and occurs with multiplicity one.

We now define a partial ordering on the partitions of 1+1; this ordering is weaker than the lexicographic ordering which is often used (see e.g. [6] p 191) but is much more natural for our purposes as will become apparent in later sections.

Definition

Let $\lambda = (\lambda_1, \ldots, \lambda_r) \vdash 1+1$ and $\mu = (\mu_1, \ldots, \mu_s) \vdash 1+1$. Then $\lambda \preceq \mu$ if and only if $\sum_{i=1}^{r} \lambda_i \preceq \sum_{i=1}^{s} \mu_i$, for $m = 1, \ldots, \min(r,s)$.

This is not a total ordering (e.g. (3^2) and (41^2) are not comparable) and we shall be investigating the partial ordering further in §2.3.

However, we can now utilize this ordering to decompose $1 W_{\lambda}$.

Lemma 2.2.4

Let $\lambda, \mu \vdash 1+1$ and suppose $\lambda \not\preceq \mu$. Then if D_λ, D_μ are corresponding diagrams, then there exist two symbols collinear in D_λ and co-columnar in D_μ.

Proof

Put $\lambda = (\lambda_1, \ldots, \lambda_r)$, $\mu = (\mu_1, \ldots, \mu_s)$. Suppose that any 2 symbols collinear in D_λ are not co-columnar in D_μ. Therefore, the λ_i entries in the first row of D_λ must occur in different columns of D_μ. Since D_λ has μ_1 columns we have $\lambda_1 \preceq \mu_1$. Apply a column permutation to D_μ to obtain a new diagram D_μ' so that the entries in the first row of D_λ appear in the first row of D_μ'.
Now, inductively assume\(\sum_{i=1}^{m-1} \lambda_i \leq \sum_{i=1}^{m-1} \mu_i\), (we have \(\lambda_i \leq \mu_i\) above) and that the entries in the first \(m-1\) rows of \(D_{\lambda}\) lie in the first \(m-1\) rows of \(D_{\mu}'\), and no two symbols collinear in \(D_{\lambda}\) are co-columnar in \(D_{\mu}'\). Then the \(\lambda_i\) entries in the \(m\)th row of \(D_{\lambda}\) lie in different columns of \(D_{\mu}'\), and we can bring them up, via a column permutation, to occupy squares in the first \(m\) rows of \(D_{\mu}'\).

It follows that \(\sum_{i=1}^{m} \lambda_i \leq \sum_{i=1}^{m} \mu_i\). Hence by induction, this holds for all \(m\), so that \(\lambda \leq \mu\), contradicting our hypothesis, which proves the lemma.

Corollary 2.2.5

Let \(\lambda, \mu \vdash 1+1\). Then

\[\lambda \not\leq \mu \Rightarrow (1^W_{\lambda}, \varepsilon^W_{\mu'}) = 0.\]

Proof

As in the proof of 2.2.2, if \(\{y_1\}\) is a set of \((W_{\lambda}, W_{\mu'})\)-double coset representatives

\[(1^W_{\lambda}, \varepsilon^W_{\mu'}) = \text{the number of } y\text{'s } \in \{y_1\} \text{ such that } W_{\lambda} \cap yW_{\mu'}y^{-1} \text{ contains only even permutations.}\]

By 2.2.4, there exist 2 symbols, \(a, b\) say, collinear in \(D_{\lambda}\) and co-columnar in \(yD_{\mu}\) (where \(W_{\lambda} = R(D_{\lambda}), W_{\mu'} = R(D_{\mu'})\)) for any \(y \in W\).

Hence the transposition \(t = (ab) \in R(D_{\lambda}) \cap C(yD_{\mu})\)

\[= W_{\lambda} \cap yW_{\mu'}y^{-1}\]

Since \(t\) is an odd permutation it follows that

\[(1^W_{\lambda}, \varepsilon^W_{\mu'}) = 0.\]

The previous corollary allows us to give an alternative proof of a well-known result.
Corollary 2.2.6

\[\lambda \neq \mu \implies \chi^\lambda \neq \chi^\mu \]

Proof

Suppose \(\chi^\lambda = \chi^\mu \). Then by 2.2.3 \(\chi^\mu \) occurs as a common irreducible constituent of \(1_W^W \) and \(\varepsilon_{W,\lambda}^W \) and \(\chi^\lambda \) occurs as a common irreducible constituent of \(1_W^W \) and \(\varepsilon_{W,\mu}^W \). Thus

\[(1_W^W, \varepsilon_{W,\lambda}^W) \neq 0 \quad \text{and} \quad (1_W^W, \varepsilon_{W,\mu}^W) \neq 0. \]

But \(\lambda \neq \mu \implies \lambda \neq \mu \) or \(\mu \neq \lambda \). It follows from 2.2.5 that one of the above multiplicities is zero, contradicting our assumption that \(\chi^\lambda = \chi^\mu \).

Since the conjugacy classes of \(W \) are parameterized by partitions of \(1+1 \), we have that all irreducible characters of \(W \) have the form \(\chi^\lambda \) where \(\lambda \vdash 1+1 \).

We are now in the position to give the main theorem of this section, which was originally proved by Frobenius.

Theorem 2.2.7

Let \(\lambda, \mu \vdash 1+1 \). Then

\[1_W^W = \chi^\lambda + \sum_{\mu > \lambda} a_{\mu} \chi^\mu \]

and

\[\varepsilon_{W,\lambda}^W = \chi^\lambda + \sum_{\mu < \lambda} b_{\mu} \chi^\mu \]

where \(a_{\mu}, b_{\mu} \) are non-negative integers.

Proof

Suppose \((1_W^W, \chi^\mu) \neq 0 \), then by 2.2.3 \((\varepsilon_{W,\lambda}^W, \chi^\mu) \neq 0 \), so that \((1_W^W, \varepsilon_{W,\mu}^W) \neq 0 \) and hence, by 2.2.5, \(\lambda \preceq \mu \).

\((1_W^W, \chi^\lambda) = 1 \) by 2.2.3 proving the first equation. The second equation follows similarly.
In §2.3 we shall strengthen 2.2.7 and show that both a_μ and b_μ are non-zero.

This theorem allows us to define a bijection between the Weyl subgroups and irreducible characters of W in a manner which will generalize to other Weyl groups.

Define a map

$X : \text{set of Weyl subgroups} \rightarrow \text{set of irreducible characters}$

by

$X(W_\lambda) = \left\{ \chi \text{irred. character : } (\chi, 1_{W_\lambda}^W) \neq 0 \text{ and } (\chi, 1_{W_\lambda}^W) = 0 \right\}$

for all Weyl subgroups $W' = W_\mu$

such that $\mu > \lambda$.

Theorem 2.2.8

$X(W_\lambda) = \{ \chi^\lambda \}$ for all partitions λ of $1+1$

Proof

2.2.7 shows $(\chi^{\mu}, 1_{W_\lambda}^W) \neq 0 \Rightarrow \lambda \leq \mu$.

Suppose $\mu > \lambda$. By 2.2.3 $(\chi^{\mu}, 1_{W_\lambda}^W) \neq 0$, so putting $W' = W_\mu$ we see that $\chi^{\mu} \notin X(W_\lambda)$.

Also $(\chi^\lambda, 1_{W_\lambda}^W) \neq 0$ and by 2.2.7 $\mu > \lambda \Rightarrow (\chi^\lambda, 1_{W_\lambda}^W) = 0$ so $\chi^\lambda \in X(W_\lambda)$.

Thus $X(W_\lambda) = \{ \chi^\lambda \}$

§2.3 The partial ordering on partitions

In this section we shall give a more convenient definition of the partial ordering defined in §2.2, which will simplify some of the proofs.

In the rest of this section we shall assume that $\lambda, \mu \vdash 1+1$ and $\lambda = (\lambda_1, \ldots, \lambda_r)$, $\mu = (\mu_1, \ldots, \mu_s)$.

It will often be convenient to abuse notation by referring to a diagram or frame of a partition λ simply
as λ itself. It will be clear from the context, when not specifically stated, what is meant e.g. in 2.3.1 we are dealing with the frames.

Theorem 2.3.1

$\lambda \leq \mu$ if and only if μ may be obtained from λ by repeating as many times as is necessary the operation of taking a square from the end of a row of λ and adding it onto the end of a row higher up so as to obtain another partition.

This process will often be referred to as 'moving (squares) up'.

Proof

Suppose μ may be obtained from λ by the given algorithm. If we move a square up from the j^{th} row of λ to the i^{th} row ($i<j$) to obtain a partition $\nu = (\nu_1, \nu_2, \ldots)$ then

$$\sum_{k=1}^{\infty} \lambda_k = \sum_{k=1}^{\infty} \nu_k \quad \text{for } m\geq j \text{ or } m<i$$

and

$$\sum_{k=1}^{\infty} \lambda_k = \sum_{k=1}^{\infty} \nu_k - 1 \leq \sum_{k=1}^{\infty} \nu_k \quad \text{for } i \leq m < j$$

Thus $\lambda \leq \nu$. Since \leq is a partial ordering, repeating the process gives $\lambda \leq \mu$.

Conversely suppose $\lambda \leq \mu$. We have

$$\sum_{i=1}^{\infty} \lambda_i \leq \sum_{i=1}^{\infty} \mu_i \quad \text{for all } m, \text{ and we may suppose } \lambda < \mu.$$

We choose k to be the first row in which λ_k differs from μ_k i.e. $\lambda_i = \mu_i$ for $i<k$

and $\lambda_k < \mu_k$

Let j be the last row in which λ_j differs from μ_j i.e. $\lambda_i = \mu_i$ for $i>j$

and $\lambda_j > \mu_j$

Since $\lambda < \mu$ and $|\lambda| = |\mu|$, k and j exist. Now move a square from the j^{th} row up to the k^{th} row to obtain a
partition \(\nu \). It follows from the first part that \(\lambda < \nu \).

If \(\nu = (\nu_1, \ldots, \nu_n) \) then

\[
\sum_{i=1}^{\infty} \nu_i = \sum_{i=1}^{\infty} \mu_i \quad \text{for } m < k \text{ or } m > j
\]

\[
\sum_{i=1}^{\infty} \nu_i = \sum_{i=1}^{\infty} \lambda_i + 1 < \sum_{i=1}^{\infty} \mu_i \quad \text{for } k \geq m > j
\]

Hence \(\nu \leq \mu \), so we may repeat the operation of moving one square up in \(\nu \). Eventually we will reach \(\mu \), proving the theorem.

We can now prove a fundamental property of this ordering.

Lemma 2.3.2 (Duality Relation)

\[\lambda \leq \mu \quad \iff \quad \mu' \leq \lambda' \]

Proof

It will be sufficient to prove the implication in one direction. So suppose \(\lambda \leq \mu \). By 2.3.1 we may move squares up inside \(\lambda \) to obtain \(\mu \). But this means that we are moving down inside \(\mu' \) to obtain \(\lambda' \). Hence, by 2.3.1, \(\mu' \leq \lambda' \).

The rest of this section will be devoted to showing that all the irreducible characters \(\chi^\mu \) which may occur in the decomposition of \(1_{W_\lambda}^{W_\nu} \) given in 2.2.7 actually do occur. This is a special case of the Littlewood-Richardson rule (see [15]) which gives a method of calculating the multiplicity \(a_\mu = (1_{W_\lambda}^{W_\nu}, \chi^\mu) \). However, as we shall not need the full power of this rule, it is worth giving an alternative proof that \(a_\mu \) is non-zero.

We first prove the converse of 2.2.4
Lemma 2.3.3

Let D_{λ} be a diagram corresponding to λ and suppose $\lambda \leq \mu$. Then there exists a diagram D_{μ} corresponding to μ such that no two collinear symbols in D_{λ} are co-columnar in D_{μ}.

Proof

By possibly renumbering the symbols in D_{μ} we may assume that the symbols in D_{λ} are given by numbering the squares consecutively from the top left-hand corner moving across each row and then onto the next row; this will be called the natural ordering of the symbols in D_{λ}.

Since $\lambda \leq \mu$, we may move squares up in the frame for λ to obtain the frame for μ. Thus we may move up the squares in D_{λ} in the same way to obtain a diagram for μ (by keeping the symbols in their squares). To obtain the required D_{μ} we move the squares up in D_{λ} in this way, except for the following case:

Suppose $\lambda_i = \lambda_{i+1}$, and $j > i+1$ and we are required to move 2 consecutive squares in row j of D_{λ} containing the symbols $a, a+1$ and put them onto the end of row i and row $i+1$ respectively.

Let b be the symbol occurring at the end of row $i+1$ of D_{λ}. Then move this square up to row i (even though this
may not be allowed in the definition of moving squares up in 2.3.1) and then move the squares containing the symbols $a, a+1$ onto the end of row $i+1$ of the resulting diagram.

By the transitivity of the ordering we may then repeat the process, on moving squares up, to obtain D_{μ}. It is clear from the construction that no 2 symbols are collinear in D_{λ} and co-columnar in D_{μ}.

The proof of the next theorem was suggested to me by J.A. Green

Theorem 2.3.4

Suppose $\lambda \preceq \mu$ and that D_{λ}, D_{μ} are corresponding diagrams such that no 2 collinear symbols of D_{λ} are co-columnar in D_{μ}. Then, with the notation of \S 2.1,

$$\xi_{\lambda} e_{\mu} \neq 0$$

Proof

Let $W_{\lambda} = R(D_{\lambda})$ and $W_{\mu} = R(D_{\mu})$; the condition in the statement of the theorem becomes $R(D_{\lambda}) \cap C(D_{\mu}) = 1$.

We have that $\lambda = (\lambda_1, \ldots, \lambda_r)$ where $\lambda_1 \geq \ldots \geq \lambda_r > 0$, and we shall use induction on the number of parts n_{λ} say, of λ not equal to 1.

If $n_{\lambda} = 0$ then $\lambda = (1^n)$ and the result is trivial because $\xi_{\lambda} = 1$.

However, it will be necessary to prove the case in which $n_{\lambda} = 1$. Thus $\lambda = (\lambda_1, 1^{l+1-\lambda_1})$ with $\lambda_1 > 1$.

To show $\xi_{\lambda} e_{\mu} \neq 0$ it will be sufficient to show that the coefficient of the unit element 1 of W in $\xi_{\lambda} e_{\mu}$ is non-zero. This coefficient is $\sum \xi(q_{\mu})$ summed over those elements q_{μ} of W_{μ} such that there exist elements p_{μ} of W_{μ}
and \(p_\lambda \) of \(\mathcal{W}_\lambda \) such that \(p_\lambda p_\mu q_\mu = 1 \).

Suppose that the symbols in the first row of \(D_\lambda \) are \(\{a_1, \ldots, a_\lambda\} \) and let \(b \notin \{a_1, \ldots, a_\lambda\} \). Then because \(p_\lambda(b) = b \) we have that \(p_\mu(b) = q_\mu^{-1}(b) = c \), say. Hence \(b \) and \(c \) are collinear in \(D_\mu \) and co-columnar in \(D_\mu \), so we must have \(b = c \) i.e. \(q_\mu(b) = b \). Thus in the cycle decomposition of \(q_\mu \) only the symbols \(\{a_1, \ldots, a_\lambda\} \) can occur, i.e. \(q_\mu \in \mathcal{W}_\lambda \), so if \(q_\mu \neq 1 \) it contains two distinct symbols which are collinear in \(D_\lambda \) and co-columnar in \(D_\mu \), an impossibility. Hence \(q_\mu = 1 \) and therefore \(\sum \mathcal{E}(q_\mu) = \sum \mathcal{E}(1) > 0 \). So we have shown that \(\xi_\lambda e_\mu \neq 0 \) for \(n_\lambda = 1 \).

Now suppose \(n_\lambda > 1 \) and that if \(\nu \geq 1 + 1, \nu < \mu \) and \(R(D_\nu) \cap C(D_\mu) = 1 \) then \(n_\nu < n_\lambda \Rightarrow \xi_\nu e_\mu \neq 0 \).

We let \(\tilde{\lambda} = (\lambda_1, \ldots, \lambda_{\lambda^+}, 1^+1) \) and \(\tilde{\lambda} = (\lambda_1, 1+1, 1, \ldots, \lambda_{\lambda^+}) \) which are both partitions of \(1+1 \). Notice that, because \(n_\lambda > 1 \),

\[\lambda < \tilde{\lambda} < \lambda < \mu, \quad n_\gamma < n_\lambda \text{ and } n_{\tilde{\lambda}} = 1 \]

So by induction, if \(\tilde{\lambda} < \nu \), \(R(D_\nu) \cap C(D_\gamma) = 1 \) then \(\xi_\lambda e_\nu \neq 0 \). However, \(e_\nu \) is a multiple of a primitive idempotent (2.1.3) so

\[
\xi_{\tilde{\lambda}} = \sum_{\tilde{\lambda} < \nu} x_\nu e_\nu \quad \ldots \quad (1)
\]

where \(R(D_\nu) \cap C(D_\lambda) = 1 \) and \(x_\nu \) are positive non-zero integers.

Similarly, because \(n_{\tilde{\lambda}} = 1 < n_\lambda \)

\[
\xi_{\tilde{\lambda}} = \sum_{\tilde{\lambda} < \gamma} y_\gamma e_\gamma \quad \ldots \quad (2)
\]

where \(R(D_\gamma) \cap C(D_\tilde{\lambda}) = 1 \) and \(y_\gamma \) are positive non-zero integers.

We are at liberty to choose \(D_{\tilde{\lambda}} \) and \(D_{\lambda} \) as we please.

So order the symbols in the first \(s-1 \) rows of \(D_{\tilde{\lambda}} \) in the
same way as in the first \(s-1 \) rows of \(D_\lambda \) and order the symbols in the first row of \(D_\lambda \) in the same way as the \(s^{th} \) row of \(D_\lambda \).

It follows that with these orderings, \(\xi_\lambda = \xi_\lambda \xi_\lambda \). Thus, from (1) and (2),

\[
\xi_\lambda = \sum_{\lambda < \nu} \sum_{\lambda \leq \rho} x_{\nu \lambda} v_{\nu} e_{\nu} e_{\rho}
\]

summed over the appropriate \(\nu, \rho \). But if \(\nu \neq \rho \), \(v_{\nu} \) and \(e_{\rho} \) are orthogonal primitive idempotents which afford distinct irreducible characters of \(W (2.1, 3) \). Hence, as \(\lambda \leq \nu \),

\[
\xi_\lambda = \sum_{\lambda < \nu} x_{\nu \lambda} v_{\nu} e_{\nu} \quad \ldots \quad (3)
\]

where \(R(D_{\lambda}) \cap C(D_{\nu}) = 1 \) and \(R(D_{\lambda}) \cap C(D_{\nu}) = 1 \).

Hence because \(x_{\nu \lambda} v_{\nu} \neq 0 \) for such partitions \(\nu \) of \(1+1 \),

\(\xi_\lambda e_{\nu} \neq 0 \).

Returning to \(\mu \), as we have arranged \(R(D_{\lambda}) \leq R(D_{\mu}) \), \(R(D_{\lambda}) \leq R(D_{\mu}) \), we know that \(\mu \geq \lambda > \lambda \) and \(R(D_{\lambda}) \cap C(D_{\mu}) = 1 \) and \(R(D_{\lambda}) \cap C(D_{\mu}) = 1 \).

Hence \(\xi_\lambda e_{\mu} \neq 0 \), which, by induction, completes the theorem.

Remark

In (3), for \(\nu \) to satisfy the required conditions it is easy to see that, in fact, \(\lambda \leq \nu \); this verifies part of 2.2.7.

Lemma 2.3.5

\[
\xi \chi_\lambda = \chi_{\lambda'}
\]

Proof

By 2.2.3, \(\chi_{\lambda'} \) is the unique common irreducible
constituent of \(1^W_{\lambda'}\) and \(\varepsilon^W_{\lambda'}\).

But \((\varepsilon^\lambda, 1^W_{\lambda'}) = (\chi^\lambda, \varepsilon^W_{\lambda'})\) since \(\varepsilon^1 = 1\)

\[= (\chi^\lambda, \varepsilon^W_{\lambda'})\]

\[= 1 \text{ by 2.2.3}\]

and \((\varepsilon^\lambda, \varepsilon^W_{\lambda'}) = (\chi^\lambda, \varepsilon^W_{\lambda'})\)

\[= (\chi^\lambda, 1^W_{\lambda'})\]

\[= 1 \text{ by 2.2.3}\]

Hence \(\varepsilon^\lambda\) is a common constituent of \(1^W_{\lambda'}\) and \(\varepsilon^W_{\lambda'}\) and is also irreducible since \((\varepsilon^\lambda, \varepsilon^\lambda) = (\chi^\lambda, \chi^\lambda) = 1\).

So \(\varepsilon^\lambda = \chi^\lambda'\).

Corollary 2.3.6

\[1^W_{\lambda}, \chi^\mu' \neq 0 \iff \lambda \leq \mu\]

\[\varepsilon^W_{\lambda'}, \chi^\mu' \neq 0 \iff \lambda \geq \mu\]

Proof

If \((1^W_{\lambda}, \chi^\mu') \neq 0\) then \(\lambda \leq \mu\) by 2.2.7. Conversely, let \(\lambda \leq \mu\). Therefore, by 2.3.3, there exist diagrams \(D_{\lambda}\) and \(D_{\mu}\) satisfying the conditions of 2.3.4. Hence, by 2.3.4, \(\varepsilon^\lambda \varepsilon^\mu \neq 0\), so that \(A\varepsilon^\lambda \leq A\varepsilon^\mu\) since \(A\varepsilon^\mu\) is irreducible.

But \(A\varepsilon^\lambda\) affords the character \(1^W_{\lambda'}\), and \(A\varepsilon^\mu\) affords \(\chi^\mu'\), so \((1^W_{\lambda'}, \chi^\mu') \neq 0\).

The second half of the result follows from 2.2.7 and the fact that

\[\lambda \geq \mu\]

\[\Rightarrow \lambda' \leq \mu'\] (2.3.2)

\[\Rightarrow (1^W_{\lambda'}, \chi^\mu') \neq 0\] by the first part

\[\Rightarrow (\varepsilon^W_{\lambda'}, \chi^\mu') \neq 0\]
§2.4 A decomposition of the group algebra of $W(A_1)$

Solomon [17] has given a decomposition of the group algebra of an arbitrary finite Coxeter group, and in this section we interpret his results as applied to the symmetric group. In later chapters we look at the decomposition for other Weyl groups.

By tensoring with \mathbb{C}, we shall assume that all modules, representations and characters are over the field of complex numbers. In particular, $A = \mathbb{C}W$. Otherwise we shall use the same notation as in [17].

The generating set I for W is the set of 1 transpositions $\{(12), (23), \ldots, (1 \, 1+1)\}$. Let $J \subseteq I$, then W_J is the parabolic subgroup of W generated by the elements of J. Now, W_J is also a Weyl subgroup of W, and hence is of the form W_μ for some partition μ of $1+1$. Thus each subset J of I defines a unique partition μ of $1+1$ and we write $p(J) = \mu$.

We fix an arbitrary subset J of I. Let $p(J) = \emptyset$, and since $\hat{J} = \text{the complement of } J \text{ in } I$ is also a subset of I, we can put $p(\hat{J}) = \mu^\vee$, where μ^\vee is $1+1$ (we use the dual of μ for convenience only).

Then define

$$\xi_J = \sum_{w \in W_J} w, \quad \eta_J^\vee = \sum_{w \in \hat{J}} \xi(w)w$$

(these differ from [17] only by a scalar multiple, but the module $A\xi_J \eta_J^\vee$ is the same in both cases), so that
Solomon [17] shows that the module $A J J$ affords the character ψ_j of W where

$$\psi_j = \sum_{J \leq K \leq I} (-1)^{|K-J|} W_{\mu \nu}$$

We shall be investigating the irreducible submodules of $A J J$.

Theorem 2.4.1

Let $\lambda \vdash 1+1$. Then $(\psi_j, \chi^\lambda) \neq 0 \Rightarrow \varphi \leq \lambda \leq \mu$

i.e. $A J J$ only contains irreducible submodules isomorphic to some $A \lambda \eta \lambda$, where $\varphi \leq \lambda \leq \mu$.

Proof

By 1.2.8, since $A J J = A J J$ affords W_{μ} and $A J J = A J J$ affords W_{μ}, (1.2.9)

$$(\psi_j, \chi^\lambda) \neq 0 \Rightarrow (1, W_{\nu}, \chi^\lambda) \neq 0 \text{ and } (1, W_{\nu}, \chi^\lambda) = 0$$

$$\Rightarrow \varphi \leq \lambda \leq \mu \quad \text{by 2.3.6}$$

Lemma 2.4.2

$$(\psi_j, \chi^\varphi) = (\psi_j, \chi^\mu) = 1$$

Hence $\varphi \leq \mu$.

Proof

Suppose $J \subseteq K \subseteq I$. Then if $p(K) = \sigma$, σ consists of φ with complete rows moved up. In particular $\sigma \prec \varphi$.

Hence, by 2.3.6, $(1, W_{\sigma}, \chi^\varphi) = 0$ i.e. $(1, W_{\mu}, \chi^\varphi) = 0$.

Thus,

$$(\psi_j, \chi^\varphi) = \sum_{J \leq K \leq I} (1, W_{\mu}, \chi^\varphi)$$

$$= (1, W_{\varphi}, \chi^\varphi)$$
Similarly, \((\psi J, \chi J) = 1\) since \(p(J) = \mu\).

Now by \([17]\) lemma 7, \(\xi \psi J = \psi J\)

Thus

\[
(\psi J, \chi J) = (\xi \psi J, \xi \chi J) = (\psi J, \chi J') \quad \text{by 2.3.5}
\]

\[
= 1
\]

It follows immediately from above and 2.4.1 that \(\lambda \leq \mu\).

Solomon \([17]\) theorem 4, also shows that if \(|\hat{J}| = p\)

then \(A_\hat{J} \eta J\) has a unique irreducible submodule isomorphic to \(\Lambda^p V\) of dimension \(\binom{1}{p}\), where \(V\) is the Euclidean space of dimension 1 which affords the Witt representation of \(W\) as a reflection group.

In our case \(V\) is the hyperplane of \(\mathbb{R}^{1+1}\) consisting of the points whose sum of the coordinates is zero \((\beta, \) table I). We shall now identify \(\Lambda^p V\) and the irreducible character it affords.

Suppose \(|\hat{J}| = p\)

Definition

Let \(\beta\) be the partition of \(1+1\) given by

\[
\beta = (1-p+1, p)
\]

Then we call \(\beta\) the **hook graph** for \(J\)

and \(\chi^\beta\) the **hook character** for \(J\).

Notice that the hook graph depends only on the order of \(J\), and that \(\chi^\beta(1) = \binom{1}{p}\) by 2.1.6.

If \(\lambda \vdash 1+1\) then let \(r(\lambda)\) = the number of rows of (the frame of) \(\lambda\).
Lemma 2.4.3

(i) \(r(\varphi) = p+1 \)

(ii) \((\psi_J, \chi^\delta) = 1 \)

Proof

(i) Let \(D_\varphi \) be the diagram corresponding to \(\varphi \) which is defined by \(W_J \). Then there exists an element \(x \) of \(W \) such that \(xD_\varphi \) is a diagram corresponding to \(\varphi \) whose symbols are naturally ordered.

Hence,
\[
R(xD_\varphi) = xW_Jx^{-1} \quad (2.1.1)
\]
\[
= W_{xJx}^{-1}
\]
\[
= W_J^x
\]

By construction
\[
J^x = \bigcup_{i=0}^{\infty} \{(a_1+1, a_2+2, a_3+3, \ldots, a_i+1, a_{i+1})\}
\]
where \(\varphi = (\varphi_1, \ldots, \varphi_r) \) so that \(r(\varphi) = r \)
and
\[
a_0 = 0
\]
\[
a_1 = \varphi_1
\]
\[
a_2 = \varphi_1 + \varphi_2
\]
\[
\vdots
\]
\[
a_{r-1} = \varphi_1 + \ldots + \varphi_{r-1}
\]
\[
a_r = \varphi_1 + \ldots + \varphi_r = 1+1
\]

Hence
\[
J^x = \{(a_1, a_1+1), (a_2, a_2+1), \ldots, (a_{r-1}, a_{r-1}+1)\}
\]
so that
\[
r-1 = |J^x| = |I| - |J^x| = 1 - |J|
\]
\[
= p \quad \text{since } |J| = p
\]

Hence \(r(\varphi) = r = p+1 \)

(ii) Move up all the squares of \(\varphi \) that do not lie
in the first column, up to the first row. This gives us a frame whose first column has length equal to the length of the first column of ψ which is $r(\psi) = p+1$. Since this frame is a hook by definition, it represents the partition $(1-p+1,1^p) = \beta$. Thus, by 2.3.1 $\psi \leq \beta$.

Now suppose $J \subseteq K \subseteq I$ and $p(K) = \alpha$. Then α is obtained from ψ by moving up whole rows.

i.e. $r(\alpha) < r(\psi) = p+1 = r(\beta)$

But if $\alpha < \beta$ then it is clear from 2.3.1 that $r(\alpha) \geq r(\beta)$. Thus $\alpha \neq \beta$.

Therefore, by 2.3.6, $(1_{W_K}^W, \chi^\beta) = 0$

Hence

$$
(\psi_J^W, \chi^\beta) = \sum_{J \subseteq K \subseteq I} (1_{W_K}^W, \chi^\beta)
= (1_{W_J}^W, \chi^\beta)
= (1_{W_J}^W, \chi^\beta) \neq 0 \text{ by 2.3.6 since } \psi < \beta
$$

Thus we have shown $|J| = p \Rightarrow (\psi_J^W, \chi^\beta) \neq 0$

Now the fundamental result in [17] is that

$$
A = \sum_{J \subseteq I} A_{\xi_J} \eta_J
$$

so that

$$
\chi^{\text{reg}} = \sum_{J \subseteq I} \psi_J^W, \text{ where } \chi^{\text{reg}} \text{ is the regular character of } W.
$$

Hence $$(\frac{1}{p}) = \chi^\beta(1) = (\chi^{\text{reg}}, \chi^\beta) = \sum_{J \subseteq I} (\psi_J^W, \chi^\beta)
$$

But there are $(1/p)$ subsets J of I such that $|J| = p$,

and for each of these $(\psi_J^W, \chi^\beta) \neq 0$. It follows immediately that $(\psi_K^W, \chi^\beta) = 1$; and, incidentally, that $(\psi_K^W, \chi^\alpha) = 0$ if $|K| \neq p$.

Theorem 2.4.4

Let χ be the irreducible character of W afforded by $\Lambda^P V$. Then $\chi = \chi^\alpha$. Thus $\Lambda^P V = A_{\xi_\alpha} \eta_\beta$
Proof

\(X \) is irreducible so \(X = X^\lambda \) for some \(\lambda > 1 + 1 \).

Let \(J = \{(12), (23), \ldots, (l-p, l-p+1)\} \)

hence \(\hat{J} = \{(l-p+1, l-p+2), \ldots, (l, l+1)\} \)

so that \(|\hat{J}| = p \).

Then \(\rho = p(J) = (l-p+1, l-p) = \beta \)
and \(\mu' = p(J) = (p+1, l-p) = \beta' \) i.e. \(\mu = \beta \)

By \([17] \) \(\Lambda^p \) is an irreducible submodule of \(A\eta^\lambda_J \)
and therefore \((\psi_J, X^\lambda) \neq 0 \). Hence, by 2.4.1, \(\rho < \lambda < \mu \)
i.e. \(\beta < \lambda < \beta \) so that \(\lambda = \beta \) as required.

It will be of interest to determine for which \(J \), the module \(A\eta^\lambda_J \) is irreducible. We show that this happens for only a few subsets \(J \) of \(I \), so that the decomposition given in \([17] \) (theorem 2) is far from being a complete decomposition of \(A \).

Definition

Let \(J \) be a subset of \(I \). Then \(J \) is decomposable if \(J = J_1 \cup J_2 \) such that all the elements of \(J_1 \) commute with all the elements of \(J_2 \). Otherwise \(J \) is indecomposable.

It is easy to see that \(J \) is indecomposable if and only if \(J \) consists only of consecutive generating involutions.

Theorem 2.4.5

\(A\eta^\lambda_J \) is irreducible if and only if both \(J \) and \(\hat{J} \) are indecomposable.

Proof

Suppose \(A\eta^\lambda_J \) is irreducible so that \(\psi_J \) is irreducible.

Let \(|\hat{J}| = p \), then by 2.4.2, 2.4.3, \(\rho = \beta = \mu' \), so that
ℓ, μ and therefore μ', are all hook graphs. Thus the generating sets J, \hat{J} consist of consecutive generators and so are indecomposable.

Conversely, suppose that both J, \hat{J} are indecomposable. Then it is easy to see that $\ell = \mu$. Hence

$$A_\ell \gamma_\ell = A_\mu \gamma_\mu = A_\mu \gamma_\mu$$

which is an irreducible A-module affording the character χ^ℓ.

§2.5 The maximal Weyl subgroups of $W(A_1)$

In the final section of this chapter we deal with the maximal Weyl subgroups of W, which can be determined by the algorithm in §1.1.

They are the Weyl groups of type A_{l-1} and $A_1 + A_{l-1-1}$ for $1 \leq i \leq l-2$.

In 2.2.8 we defined a bijection χ from the set of Weyl subgroups of W to the set of irreducible characters of W. So if W' is a Weyl subgroup of W we define $\chi_{W'}(W)$ to be the irreducible character of W associated in this way with W'.

We shall be particularly interested in the case $W' = W(A_{l-1})$. Suppose W'' is a Weyl subgroup of W' then it has associated with it an irreducible character $\chi_{W''}(W')$ of W'. However, W'' is also a Weyl subgroup of W to which the irreducible character $\chi_{W''}(W)$ is associated. The next result will show that these associations are consistent in the sense that

$$\left[\chi_{W''}(W')\right]^W = \chi_{W''}(W) + \text{higher terms} \quad \ldots (1)$$

where we order the irreducible characters by their corresponding partitions:

\[\lambda' \leq \mu' \iff \lambda \leq \mu \]

Now suppose \(\lambda' \leq 1+1 \) and \(\chi^\lambda_{W''} = \chi^\lambda \), so that by our construction \(W'' = W_{\lambda'}. \)

We let \(\lambda = (\lambda_1, \ldots, \lambda_r) \) and \(\lambda' = (\lambda_1, \ldots, \lambda_r, 1) \) which we can write as \(\lambda' = (\lambda_1) \). Then \(\lambda' \leq 1+1 \) and

\[
W_{\lambda'} = S_{\lambda_1} \times \cdots \times S_{\lambda_r} \times S_1 = S_{\lambda_1} \times \cdots \times S_{\lambda_r} \equiv W_{\lambda} = W''.
\]

Hence \(\chi^\lambda_{W''}(W) = \chi^\lambda_{\lambda'} \) since \(W'' = W_{\lambda'} \) as a Weyl subgroup of \(W \).

Thus (1) becomes

\[
(\chi^\lambda)^W = \chi^\lambda_{\lambda'} + \sum_{\mu > \lambda'} a_{\mu} \chi^\mu
\]

for some non-negative integers \(a_{\mu} \).

The theorem we prove is slightly stronger than is required above, and is a special case of the Murnaghan-Nakayama rule ([1] VI, 3.1)

Theorem 2.5.1

Let \(\lambda' \leq 1 \) and \(\lambda' = (\lambda_1) \). Then

\[
(\chi^\lambda)^W = \chi^\lambda_{\lambda'} + \sum_{\mu} \chi^\mu
\]

summed over all those partitions \(\mu \neq \lambda' \) of \(1+1 \) such that the frame for \(\mu \) consists of that of \(\lambda \) with one square added to the end of a row.

In particular, \(\mu > \lambda' \).

Proof

Let \(\mu \) be an arbitrary partition of \(1+1 \). Define a partition \(\overline{\lambda} \) of \(1+1 \) by \(\overline{\lambda} = (\lambda_1, \lambda_2, \ldots, \lambda_r) \) where \(\lambda = (\lambda_1, \ldots, \lambda_r) \). Hence \(\overline{\lambda'} = (\lambda'1) = (\lambda')^* \).

Thus \(W_{\lambda'} = W \lambda' \) and \(W_{\lambda'}^* = W \lambda \).
\[
((\chi^\mu)^W, \chi^\nu) \neq 0 \Rightarrow (\chi^\lambda, (\chi^\nu)^W) \neq 0 \text{ by Frobenius}
\]
\[
\Rightarrow (1^{W}_W, (\chi^\nu)_W) \neq 0 \text{ and } (\varepsilon^{W}_W, (\chi^\nu)_W) \neq 0 \text{ by } 2.2.3
\]
\[
\Rightarrow (1^{W}_{W^*\lambda'}, (\chi^\nu)^W) \neq 0 \text{ and } (\varepsilon^{W}_W, (\chi^\nu)^W) \neq 0 \text{ by Frobenius again}
\]
\[
\Rightarrow (1^{W}_{W^*\lambda'}, (\chi^\nu)^W) \neq 0 \text{ and } (\varepsilon^{W}_W, (\chi^\nu)^W) \neq 0 \text{ once more by Frobenius}
\]
\[
\Rightarrow (1^{W}_{W^*\lambda'}, (\chi^\nu)^W) \neq 0 \text{ and } (\varepsilon^{W}_W, (\chi^\nu)^W) \neq 0 \text{ by Frobenius}
\]
\[
\Rightarrow \lambda^* < \mu < \overline{\lambda^*} \text{ by } 2.3.6
\]
\[\text{i.e. } \mu = (\lambda_i, \ldots, \lambda_i+1, \ldots, \lambda_r) \text{ for some } i \text{ such that }
\]
\[
\lambda_{i-1} > \lambda_i \text{ so that } \mu \text{ has the form required.}
\]
We have left to show that \(\lambda^* < \mu < \overline{\lambda^*} \Rightarrow ((\chi^\lambda)^W, \chi^\nu) = 1 \).

So suppose \(\lambda^* < \mu < \overline{\lambda^*} \), so that \(\mu \) consists of \(\lambda \) with a square added to the \(i \)-th row for some \(i \).
\(\chi^\nu \) is afforded by the minimal left ideal \(Ae_{\mu} \) of \(A = CW \), and \(\chi^\lambda \) is afforded by the minimal left ideal \(A'e_{\lambda} \) of \(A' = CW' \).

Hence \((\chi^\lambda)^W \) is afforded by the (no longer minimal) left ideal \(Ae_{\lambda} \) of \(A \).

We shall show \(Ae_{\mu} \subseteq Ae_{\lambda} \); it will be sufficient to prove \(e_{\mu}e_{\lambda}^* \neq 0 \), \((1.2.7)\), for then \(Ae_{\mu} \subseteq Ae_{\lambda}^* = Ae_{\lambda} \).

Let \(D^\lambda \) be a diagram corresponding to \(\lambda \) then let \(D^\mu \) be the diagram of \(\mu \) given by adding a square containing the symbol 1+1 to the \(i \)-th row of \(D^\lambda \).
Thus \(R(D^\lambda) \leq R(D^\mu) \) and \(C(D^\lambda) \leq C(D^\mu) \) so that \(W^\lambda \leq W^\mu \) and \(W^\lambda \leq W^\mu' \).

It follows easily from this fact, that \(\eta_{\mu} \eta_{\lambda} = \eta_{\mu^*} \). Hence \(e = e_{\mu}e_{\lambda}^* = \xi_{\mu} \eta_{\lambda} \xi_{\lambda} = \xi_{\mu^*} \eta_{\lambda} \xi_{\lambda} \). Therefore the coefficient of 1 in \(e \) is given by \(\sum \xi(q_{\mu^*}) \) summed over all elements
of \(W_\mu \) such that there exist elements \(p_\mu \) of \(W_\mu \) and \(p_\lambda \) of \(W_\lambda \) such that \(p_\mu q p_\lambda = 1 \).

Hence \(q_\mu = p_\mu^{-1} p_\lambda^{-1} \in W_\mu \) (or \(W_\lambda \)) so \(q_\mu \in R(D_\mu) \cap C(D_\mu) = 1 \).

Thus the coefficient of 1 in \(e \) is non-zero so \(e_\mu e_\lambda^* \neq 0 \).

Hence
\[
(\chi^\lambda)^W = \sum_{\chi^\mu \leq \chi^\lambda} a_\mu \chi^\mu
\]
where the \(a_\mu \)'s are non-zero positive integers. By considering the degrees of the characters in this equation, it follows from 2.1.7 that \(a_\mu = 1 \), proving the theorem.

In 2.2.7 we have only given the decomposition of the linear characters 1, \(\xi \) on inducing up to \(W \) from a Weyl subgroup. It is of interest to note what happens when we induce up an arbitrary irreducible character from a Weyl subgroup; since all the Weyl subgroups of \(W \) are direct products of Weyl groups of type \(A \), it will be sufficient to consider inducing irreducible characters up from maximal Weyl subgroups of \(W \), as any Weyl subgroup is contained in a maximal one.

We have already dealt with the maximal Weyl subgroup \(W(A_{1-1}) \) in 2.5.1; the result for the ones of type \(A_1 + A_{1-1-1} \) \((1 \leq 1 \leq 1-2) \) is given in chapter three (3.6.4) where the notation and proof properly belong.
The Weyl group of type C has also been extensively studied (sometimes under the guise of the hyper-octahedral group); Young [20] determined the conjugacy classes and irreducible characters and Osima [16] considered the group as an example of a generalized symmetric group.

Again, we shall be considering this group as the Weyl group of the simple Lie algebra C_1 in much the same way as we studied the Weyl group of A_1.

We shall not be assuming (apart, of course, from the definition) any known results about this group, as nearly all the proofs we give are new (as far as is known).

In particular, we generalize the partial ordering on partitions given in §2.2, to one on pairs of partitions.

The results in this chapter certainly do justify Osima's idea of considering this group as a generalization of the symmetric group.

§3.1 The conjugacy classes and irreducible characters

We shall give some notation which will be used in this and the next two chapters.

Let $G = W(C_1)$ - the Weyl group of rank 1 of type C.

Then G is the group of permutations of the symbols

\[\{1, \ldots, 1, -1, \ldots, -1\} \]

generated by the involutions

\[\{(12), (23), \ldots, (1-1 1), (1,-1)\} \]

where

\[
\begin{align*}
(ab) &: \quad a \mapsto b \quad \text{and} \quad (1,-1) &: \quad l \mapsto -l \\
& \quad b \mapsto a \\
& \quad -a \mapsto -b \\
-1 &: \quad -1 \mapsto l \\
-b &: \quad -a
\end{align*}
\]
We shall express the elements of G as products of cycles of the following form:

(a) positive n-cycles $(a_1 a_2 \ldots a_n)$ for $1 \leq n \leq 1$ and $\pm a_1 \in \{1, \ldots, 1\}$ which maps

$$a_1 \mapsto a_2 \mapsto a_3 \mapsto \ldots \mapsto a_n \mapsto a_1$$

and

$$-a_1 \mapsto -a_2 \mapsto -a_3 \mapsto \ldots \mapsto -a_n \mapsto -a_1$$

(b) negative n-cycles $(a_1 a_2 \ldots a_n)$ for $2 \leq n \leq 1$ and $\pm a_1 \in \{1, \ldots, 1\}$ which maps

$$a_1 \mapsto a_2 \mapsto \ldots \mapsto a_n \mapsto -a_1 \mapsto -a_2 \mapsto \ldots \mapsto -a_n \mapsto a_1$$

(c) negative 1-cycles $(1, -1)$ for $1 \leq i \leq 1$, called sign changes which maps $i \mapsto -1 \mapsto i$

The cycles are multiplied together in much the same way as those in the symmetric group, remembering the fact that $(a_1 a_2 \ldots a_n)$ is shorthand for

$$(a_1 a_2 \ldots a_n -a_1 -a_2 \ldots -a_n) = (a_1 a_2 \ldots a_n)(a_n, -a_n)$$

Thus G is the split extension of N by H, where $N = \mathbb{C}_2 \times \ldots \times \mathbb{C}_2$ is the subgroup of G generated by the sign changes, and $H = S_1$ - the symmetric group on 1 letters, and H acts on N in the obvious way viz. H permutes the 1 cyclic groups of order 2.

Hence $|G| = |N| |H| = 2^1 \cdot 1$

Notation: We let $W(C_1) = \{(1), (1, -1)\}$

As in the symmetric group we may express any element of G as the product of disjoint (positive and negative) cycles.
Definition

Let \(g \in G \). Suppose \(g \) is the product of disjoint cycles \(c_1 \ldots c_r d_1 \ldots d_s \), where, for \(1 \leq i \leq r \), \(c_i \) is a positive \(m_i \)-cycle, and for \(1 \leq j \leq s \), \(d_j \) is a negative \(n_j \)-cycle. Then the signed cycle-type of \(g \) is the set of integers \((m_1, \ldots, m_r ; n_1, \ldots, n_s) \).

Note

The signed cycle-type is ordered in the sense that

\[
(m_1, \ldots, m_r ; n_1, \ldots, n_s) \text{ is not the same as } (n_1, \ldots, n_s ; m_1, \ldots, m_r)
\]

since the first set corresponds to positive cycles and the second to negative cycles.

Lemma 3.1.1

Two elements of \(G \) are conjugate if and only if they have the same signed cycle-type.

Proof

Let \(g \in G \) and let \(g = c_1 \ldots c_r d_1 \ldots d_s \) be the decomposition of \(g \) into disjoint cycles, where \(c_i \) (\(1 \leq i \leq r \)) are positive cycles, \(d_j \) (\(1 \leq j \leq s \)) are negative cycles.

Fix \(c = c_1 = (a_1 \ldots a_m) \) say where \(a_1, \ldots, a_m \in \{ \pm 1, \ldots, \pm 1 \} \)

Then if \(x \in G \),

\[
xox^{-1} = (x(a_1) \ldots x(a_m))
\]
a positive cycle of the same length as \(c \).

Similarly, if \(d = d_j = (b_1 \ldots b_n) = (b_1 \ldots b_n - b_1 \ldots - b_n) \)
then

\[
xdx^{-1} = (x(b_1) \ldots x(b_n) - x(b_1) \ldots - x(b_n))
\]

\[
= (x(b_1) \ldots x(b_n))
\]
a negative cycle of the same length as \(d \).
Thus $xgx^{-1} = xc_1x^{-1} \ldots xc_rx^{-1} \cdot xd_1x^{-1} \ldots xd_sx^{-1}$ has the same signed cycle-type as g.

Conversely, suppose g is as above and that $g' = c_1' \ldots c_r'd_r' \ldots d_s'$ has the same signed-cycle type as g. If $c = (a_1 \ldots a_m)$ and $c' = (a_1' \ldots a_m')$ then c and c' are conjugate via an element $x \in G$ such that $x(a_i) = a_i'$ for $1 \leq i \leq m$.

Similarly, if $d = (b_1 \ldots b_n)$ and $d' = (b_1' \ldots b_n')$ are conjugate via an element $x \in G$ such that $x(b_j) = x(b_j')$ ($1 \leq j \leq n$).

Thus, since all the cycles are disjoint, we can choose an element $x \in G$ such that $g' = xgx^{-1}$.

Definition

A **pair of partitions** $(\lambda; \mu)$ of λ consists of partitions λ, μ such that $|\lambda| + |\mu| = 1$.

Let $g \in G$ have signed cycle-type $(\lambda_1, \ldots, \lambda_r; \mu_1, \ldots, \mu_s)$ where we arrange the cycles so that $\lambda_1 \geq \ldots \geq \lambda_r > 0$, $\mu_1 \geq \ldots \geq \mu_s > 0$. Then this defines a pair of partitions $(\lambda; \mu)$ of λ where $\lambda = (\lambda_1, \ldots, \lambda_r)$ and $\mu = (\mu_1, \ldots, \mu_s)$.

Hence, by 3.1.1, we have shown that the conjugacy classes of G are parameterized by pairs of partitions of λ.

We turn now to the irreducible characters of G. Since G has a fairly large normal subgroup N, we can use the methods of Clifford (see [11] and [12] (17.11)).
Theorem 3.1.2

Let ζ be an irreducible character of N, $G = e \chi_0(\zeta)$ and ψ an irreducible character of C. Then $C = S_m \times S_n$ where $m + n = 1$, and where m is the number of generating sign changes of N on which ζ takes the value 1, and n is the number on which ζ takes the value -1.

Define a map $\phi : NC \rightarrow G$ by $\phi(nc) = \zeta(n) \psi(c)$. Then ϕ is an irreducible character of NC, and we write $\phi = \zeta \psi$. Also

(a) ϕ^G is an irreducible character of G;
(b) if $\phi_1 = \zeta_1 \psi_1$, $\phi_2 = \zeta_2 \psi_2$ then $\phi_1^G = \phi_2^G$ if and only if both $\zeta_1 = h \zeta_2$ and $\psi_1 = h \psi_2$ for some $h \in H$;
(c) every irreducible character of G may be obtained in this way i.e. has the form ϕ^G for some ϕ.

Proof

Since N is abelian, ζ is a linear character. Thus if $(i,-i)$ is a sign change, which therefore has order 2, $\zeta(i,-i) = \pm 1$. Relabel the symbols $[1, \ldots, l]$ so that

\[\zeta(1,-1) = \ldots = \zeta(m,-m) \quad \text{(some m)} \]
\[\zeta(m+1,-(m+1)) = \ldots = \zeta(1,-1) \]

and write

\[N_1 = \langle (1,-1), \ldots, (m,-m) \rangle \]
\[N_2 = \langle (m+1,-(m+1)), \ldots, (l,-1) \rangle \]

so that $N = N_1 \times N_2$.

Let $c \in C$ then $c \zeta(i,-i) = \zeta(c(i),-c(i))$. Thus

\[c \zeta = \zeta \quad \text{if and only if} \quad (i,-i) \in N_1 \Rightarrow (c(i),-c(i)) \in N_1 \]
\[\quad \text{and} \quad (i,-i) \in N_2 \Rightarrow (c(i),-c(i)) \in N_2 \]

Thus the elements of C are precisely those which permute the symbols $[1, \ldots, m]$ and $[m+1, \ldots, l]$ independently. Hence $C = S_m \times S_n$ where $n = 1-m$.
The symbols \(1, \ldots, m\) will be called **symbols of the first type** and \((m+1), \ldots, l\) **symbols of the second type**.

Every element of \(\mathbb{N}\) is uniquely expressible in the form \(nc\) where \(n \in \mathbb{N}, c \in C\), because \(\mathbb{N} \cap C = 1\).

Let \(V_1\) be the \(\mathbb{N}\)-module affording \(\zeta\) and \(V_2\) the \(C\)-module affording \(\phi\). Then \(V_1 \times V_2\) is an \(\mathbb{N}C\)-module with character \(\phi\). For, the module axioms are easy to check, with the one exception which we now prove:

suppose \(n, n' \in \mathbb{N}, c, c' \in C, v_1 \in V_1, v_2 \in V_2\) then we must show

\[
(v_1 \otimes v_2)(nc, n'c') = [(v_1 \otimes v_2)nc, n'c']
\]

\[
(v_1 \otimes v_2)(nc, n'c') = (v_1 \otimes v_2)(nn'c', cc')
\]

\[
= v_1(nn'c') \otimes v_2(cc') \text{ by definition of the tensor product of modules}
\]

\[
= (v_1n)n'c' \otimes (v_2c)c' \quad \ldots \quad (1)
\]

since \(V_1, V_2\) are modules.

But \(c' \in C = C_\Pi(\zeta)\) so that \(\zeta(ncn'^{-1}) = \zeta(n)\) for all \(n \in \mathbb{N}\).

Because \(\zeta\) is linear, \(\zeta\) is the representation of \(\mathbb{N}\) afforded by \(V_1\) i.e. \(v_1n = v_1\zeta(n)\) for all \(n \in \mathbb{N}\).

It follows that

\[
v_1n' = v_1\zeta(n') = v_1\zeta(cn'^{-1}) = v_1(cn'^{-1}) = v_1n'c'
\]

and therefore

\[
(v_1n)n'c' = (v_1n)n' \text{ since } v_1n \in V_1.
\]

Returning to (1)

\[
(v_1 \otimes v_2)(nc, n'c') = (v_1n)n' \otimes (v_2c)c'
\]

\[
= (v_1n \otimes v_2c)n'c'
\]

since \(v_1n \in V_1, v_2 \in V_2\).
as required.

The character afforded by $V_1 \otimes V_2$ is the character \(\phi \) as defined in the theorem. \(\phi \) is irreducible since

\[
\phi(1) = \zeta(1)\psi(1) > 0 \quad \text{and} \quad (\phi, \phi)_{NC} = (\zeta, \zeta)_{N}^{(\psi', \psi')_C} \quad \text{as} \quad N \cap C = 1 \quad \text{as} \quad \zeta, \psi \text{ are irreducible}
\]

(a) We show \(\phi^G \) is irreducible.

Firstly, \(\phi^G(1) = |G:\text{NC}| \phi(1) > 0 \).

Secondly, by Mackey's formula

\[
(\phi^G, \phi^G) = \sum_{y \in \{y_i\}} (\phi_{N \cap (NC)y}, (\psi_{N \cap (NC)}y)
\]

where \(\{y_i\} \) is a set of \((NC, NC)\)-double coset representatives.

Let \(L = NC \cap (NC)y = NC \cap NC^y \) since \(N \triangleleft G \)

\[
= N(C \cap C^y)
\]

\[
\geq N
\]

and suppose \((\phi_L, (\psi_{\alpha})_L) \neq 0 \). Then, by 1.2.6,

\[
(\phi_N, (\psi_{\alpha})_N) \neq 0 \quad \text{so that} \quad (\zeta, \psi) \neq 0 \quad \text{because} \quad \phi_N = \psi(1) \cdot \zeta,
\]

and therefore \(\zeta = \psi \), so \(y \in C_G(\zeta) \).

Now \(NC = NC \cdot H = N(C_G(\zeta) \cap H) = C_G(\zeta) \cap NH \) by the modular law

\[
= C_G(\zeta) \cap N
\]

\[
= C_G(\zeta)
\]

Thus \(y \in C_G(\zeta) = NC \) i.e. \(y = 1 \).

Hence \((\phi^G, \phi^G) = (\phi, \phi) = 1 \), so \(\phi^G \) is an irreducible character of \(G \).

(b) Suppose \(\phi_1^G = \phi_2^G \) and let \(C_1 = C_H(\zeta_1) \), \(C_2 = C_H(\zeta_2) \)

Then, if \(n \in N \)

\[
\phi_1^G(n) = \frac{|G:\text{NC}|}{|C(n)|} \sum_{x \in C(n) \cap NC} \phi_1(x)
\]

(wher \(C(n) \) is the conjugacy class of \(G \) containing \(n \), and
since \(N \triangleleft G, \text{NC}_1 = 1, C(n) \cap \text{NC}_1 = C(n) \cap N\)

\[
= \psi_1(1) \frac{|G : N|}{|C_1|} \sum_{x \in C(n) \cap N} \zeta_1(x)
\]

\[
= |C_1|^{-1} \psi_1(1) \zeta_1^G(n)
\]

Hence

\[
|C_2| \psi_1(1)(\zeta_1^G)_N = |C_1| \psi_2(1)(\zeta_2^G)_N \quad \cdots (2)
\]

Evaluating the degrees of both sides

\[
|C_2| \psi_1(1) |G : N| = |C_1| \psi_2(1) |G : N|
\]

Thus by (2)

\[
(\zeta_1^G)_N = (\zeta_2^G)_N \quad \cdots (3)
\]

Suppose, for a contradiction, that for all \(h \in H\),

\[
\zeta_1 \neq h \zeta_2.
\]

Because \(G = NH\) and \(\zeta_i\) \((i=1,2)\) are characters of \(N\), we have that \(\zeta_1 \neq \zeta_2^g\) for all \(g \in G\). These are irreducible characters so \((\zeta_1, \zeta_2^g) = 0\) for all \(g \in G\).

Now, by Mackey's formula, letting \([y_1]\) be a set of \((N,N)\)-double coset representatives

\[
(\zeta_1^G, \zeta_2^G) = \sum_{y \in [y_1]} ((\zeta_1)_N \cap N y, (\zeta_2)_N \cap N y)
\]

\[
= \sum_{y \in [y_1]} (\zeta_1, y \zeta_2)_N
\]

\[
= 0 \quad \text{by above}
\]

So \((\zeta_1^G, \zeta_1^G) = ((\zeta_1)_N, \zeta_1^G)\) by Frobenius

\[
= ((\zeta_2^G)_N, \zeta_1^G) \quad \text{by (3)}
\]

\[
= (\zeta_2^G, \zeta_1^G) \quad \text{by Frobenius}
\]

\[
= 0 \quad \text{by above}
\]

which is a contradiction, since \(\zeta_1^G\) is a character of \(G\).
Thus there exists an \(h \in H \) such that \(\zeta_1 = h \zeta_2 \).

So \(C_1 = C_H(\zeta_1) = C_H(h \zeta_2) = C_H(\zeta_2)^h = C_2^h \).

Therefore, \(|C_1| = |C_2| \) so by (2) and (3), \(\psi_1(1) = \psi_2(1) \).

It will be sufficient to prove the result for \(h = 1 \)
i.e. that \(\zeta_1 = \zeta_2 \) implies \(\psi_1 = \psi_2 \). For,

\[
\phi_2 = h \phi_2 = \zeta_2 \phi_2 = \zeta_1 \phi_2.
\]

Also \((\phi_2)^G = \phi_2^G = \phi_1^G \) by assumption.

But \(\phi_1 = \zeta_1 \phi_1 \), so by the result for \(h=1 \), we have

\(\psi_1 = h \psi_2 \) as required.

Therefore we let \(\zeta = \zeta_1 = \zeta_2 \), \(C = C_1 = C_2 \), \(T=NC \).

Suppose that \(\psi_1 \neq \psi \), and \(\psi, \psi_1, \ldots, \psi_k \) are all the distinct irreducible characters of \(G \) and let \(\phi_1 = \zeta_1 \psi_1 (1 \leq i \leq k) \) - irreducible characters of \(T \).

Now, \((\zeta^T, \phi_1) = (\zeta, (\phi_1)_N) \) by Frobenius

\[
= (\zeta, \psi_1(1) \zeta) = \psi_1(1) = \phi_1(1)
\]

Thus \(\zeta^T = a_1 \phi_1 + \ldots + a_k \phi_k + \lambda \), where \(\lambda \) is a character of \(T \) such that \((\lambda, \phi_1) = 0 \) for \(i \in \{1, \ldots, k\} \)
and \(a_1 = \psi_1(1) = \phi_1(1) \neq 0 \).

Now because \((\psi_i)_{i=1}^k \) is a complete set of irreducible characters of \(G \),

\[
|G| + \lambda(1) = a_1 \phi_1 + \ldots + a_k \phi_k + \lambda(1)
= a_1 \psi_1(1) + \ldots + a_k \psi_k(1) + \lambda(1)
= \zeta^T(1)
= |T:N| = |G|
\]

Hence \(\lambda(1) = 0 \) so \(\lambda = 0 \). Therefore \(\zeta^T = \sum_{i=1}^k a_1 \phi_1 \)

and it follows by the transitivity of induction that
\[\zeta^G = \sum_{i=1}^{k} a_i \phi_i^G \quad \ldots \quad (4) \]

We now compute \((\zeta^G, \zeta^G)\).

Let \(|G:T| = t\) and the set \(G/T = \{g_1T, \ldots, g_TT\}\).

Hence, if \(n \in \mathbb{N}\)

\[\zeta^G(n) = \frac{1}{|N|} \sum_{g \in G} (g \zeta)(n) \]

\[= \frac{|T|}{|N|} \sum_{i=1}^{t} (g_i \zeta)(n) \quad \text{as} \quad T = C_\zeta(\zeta) \]

Thus \((\zeta^G)_N = |T:N| \sum_{i=1}^{t} g_i \zeta\).

Therefore,

\[(\zeta^G, \zeta^G) = ((\zeta^G)_N, \zeta) \quad \text{by Frobenius} \]

\[= |T:N| \sum_{i=1}^{t} (g_i \zeta, \zeta) \]

\[= |T:N| \]

because \((g_i \zeta, \zeta) \neq 0 \iff g_i \zeta = \zeta \iff g_i \in C_\zeta(\zeta) = T\).

Our contradiction now follows, since by (4) and above

\[|T:N| = (\zeta^G, \zeta^G) = \left(\sum_{i=1}^{k} a_i \phi_i^G, \sum_{i=1}^{k} a_i \phi_i^G \right) \]

\[\geq (a_1 + a_2) + a_3 + \ldots + a_k \]

\[> a_1^2 + \ldots + a_k^2 \]

\[= |G| = |T:N|, \text{ a transparent impossibility.} \]

Thus we have shown \(\psi'_1 = \psi'_2\), completing this part of the theorem.

Now suppose \(c_1 = h c_2\) and \(\psi_1 = h \psi_2\) for some \(h \in H\).

Then \(\phi_1 = h \phi_2 \cdot \psi_2 = h \phi_2\) so \(\phi_1^G = \phi_2^G\), completing (b).

(c) We use a combinatorial argument to show that all the irreducible characters of \(G\) may be obtained in the
manner described.

By (b), \(\phi^G \) determines, up to conjugation by an element of \(H \), an irreducible character \(\zeta \) of \(N \), which in turn determines integers \(m, n \) such that \(m + n = 1 \), and

\[
C = C_H(\zeta) = S_m \times S_n.
\]

But if \(\phi^G \) also gives \(h^\zeta \) then

\[
C_H(h^\zeta) = C_H(\zeta)^h = C_H(\zeta) \text{ so gives rise to the same integers.}
\]

Thus \(\phi^G \) determines uniquely integers \(m, n \) such that \(m + n = 1 \).

Also, \(\phi^G \) determines, up to conjugation by an element of \(H \), an irreducible character \(\psi \) of \(S_m \times S_n \), which is therefore a product of two irreducible characters \(\chi^\lambda, \chi^\mu \) of \(S_m \times S_n \) respectively, where \(\lambda \vdash m, \mu \vdash n \). Because \(h^\psi \) determines the same partitions \(\lambda, \mu \) we see that \(\phi^G \) determines, in a unique way, a pair of partitions \((\lambda; \mu) \) of \(1 \) i.e. given \((\lambda; \mu) \) we can construct, uniquely, \(\phi^G \).

However, the number of irreducible characters of \(G \) is equal to the number of conjugacy classes of \(G \), which by p 42 is the number of pairs of partitions of \(1 \). Thus we have all the irreducible characters of \(G \).

Notation

In 3.1.2(c), we showed how to associate with a given \(\phi^G \) a unique pair of partitions \((\lambda; \mu) \). We therefore write \(\phi^G \) as \(\chi(\lambda; \mu) \).

Hence the irreducible characters of \(G \) are also parameterized by pairs of partitions of \(1 \).

We shall always use the notation of 3.1.2.

We note here, for reference, a technical lemma
Lemma 3.1.3

\[(1) \quad (\phi^G)_N = |G|^{-1} \psi(1)(\phi^G)_N\]
\[(ii) \quad (\phi^G)_H = \psi^H\]

Proof

(1) was proved in 3.1.2

(ii) if \(h \in H \) let \(C^H(h) \) be the conjugacy class in \(H \) containing \(h \), and \(\mathcal{C}^G(h) \) the conjugacy class in \(G \) containing \(h \). Fix \(h \in H \), then

\[\phi^G(h) = \frac{|G:NC|}{|C^G(h)|} \sum_{x \in \mathcal{C}^G(h) \cap NC} \phi(x)\]

Suppose \(x = ghg^{-1} \in NC \) where \(g = nh_1, n \in N, h_1 \in H \).

Then \(x = nh_1hh_1^{-1}h^{-1} = n(h_1hh_1^{-1}n^{-1}h_1h^{-1}h_1^{-1})h_1hh_1^{-1} \)

Since \(x \in NC \) and \(N \triangleleft G \) we have that \(h_1hh_1^{-1} \in C = C_H(\varsigma) \), so \(h_1hh_1^{-1} \) centralizes \(\varsigma \).

Now \(\phi(x) = \varsigma \left[n(h_1hh_1^{-1}n^{-1}h_1h^{-1}h_1^{-1}) \right] \psi(h_1hh_1^{-1}) \) by definition

\[= \varsigma(n)h_1hh_1^{-1} \varsigma(n^{-1})\psi(h_1hh_1^{-1}) \quad \text{since} \ \varsigma \ \text{is linear}\]

\[= \varsigma(n)\varsigma(n^{-1})\psi(h_1hh_1^{-1}) \quad \text{since} \ h_1hh_1^{-1} \in \mathcal{C}_{11}\]

\[= \psi(h_1hh_1^{-1}) \quad \text{again since} \ \varsigma \ \text{is linear}\]

Thus

\[\phi^G(h) = \frac{|G:NC|}{|C^G(h)|} \sum_{nh_1hh_1^{-1}n^{-1} \in NC} \psi(h_1hh_1^{-1})\]

\[= \frac{|H:C_{11}|}{|C^G(h)|} \frac{|C^G(h)|}{|C^H(h)|} \sum_{h_1hh_1^{-1} \in \mathcal{C}_{11}} \psi(h_1hh_1^{-1})\]

\[= \psi^H(h) \quad \text{proving the lemma.}\]
We conclude with the following well-known result

Theorem 3.1.4

Any complex representation of \(G \) may be afforded by a basis with respect to which the matrix entries consist of rational integers. In particular, the characters of \(G \) are rational integral-valued.

Proof

From 3.1.2, we see that the irreducible representations of \(G \) may be obtained from those of the symmetric group by

(i) tensoring these representations together and with representations which only take the values \(+1\);

(ii) inducing up the representations obtained in (i).

The theorem then follows from 2.1.4, since the operations in (i), (ii) clearly preserve the required properties.

§3.2 Two linear characters of \(W(G_1) \)

\(G \) has four linear characters. Let \(w_i = (1 \ i+1) \), \(1 \leq i \leq l-1 \), and \(w_1 = (1,-1) \). Then \(G \) is generated by \(\{ w_1, \ldots, w_1 \} \) subject only to the defining relations

(\[p 279 \])

\[
(w_1 w_2)^3 = (w_2 w_3)^3 = \ldots = (w_{l-2} w_{l-1})^3 = (w_{l-1} w_1)^4 =
\]

It follows that \(G \) can only have the following linear characters:

(a) the **principal character** \(1 \) where \(1(w_1) = 1, 1(w_i) = 1 \)

(b) the **sign character** \(\epsilon \) where \(\epsilon(w_1) = -1, \epsilon(w_i) = -1 \)

(c) the **long sign character** \(\xi \) where \(\xi(w_1) = 1, \xi(w_i) = -1 \)

(d) the **short sign character** \(\eta \) where \(\eta(w_1) = -1, \eta(w_i) = 1 \)
The last two names were chosen because \(w_1 \) corresponds to the long root in the Dynkin diagram for \(W(C_1) \).

Thus

(a) \(1(g) = 1 \) for all \(g \in G \)

(b) \(\varepsilon(\text{permutation}) = \text{sign of permutation, } \varepsilon(\text{sign change}) = -1 \)

(c) \(\xi(\text{permutation}) = 1, \xi(\text{sign change}) = -1 \)

(d) \(\eta(\text{permutation}) = \text{sign of permutation, } \eta(\text{sign change}) = 1 \)

Lemma 3.2.1

(1) \(\xi \eta = \eta \) so \(\xi \eta^G_W = \eta^G_W \) and \(\xi \eta^G_C = \eta^G_C \)

(ii) \(\xi \chi^{(\lambda'; \mu')} = \chi^{(\mu'; \lambda')} \)

(iii) \(\xi \chi^{(\lambda; \mu)} = \chi^{(\mu; \lambda)} \)

(iv) \(\eta \chi^{(\lambda; \mu)} = \chi^{(\lambda'; \mu')} \)

Proof

(i) \(\xi \eta = \eta \) trivially. The rest follows from 1.2.4

(ii) Let \(\chi^{(\lambda; \mu)} = \phi^G \), so \(\xi \chi^{(\lambda; \mu)} = \xi \phi^G = (\xi_{NC} \phi)^G \) by 1.2.4

Now \(\xi_{NC} \phi = (\xi_N \chi_c)(\xi_G \chi) \). Because \(\xi_N \) takes the value -1 on sign changes, it interchanges the symbols of the first and second type so that \(G_n(\xi_N \phi) = S_n \times S_m \).

\(\chi = \chi^\lambda \cdot \chi^\mu \) by definition so

\(\xi \chi = \xi_{S_m} \chi^\lambda \cdot \xi_{S_n} \chi^\mu = \chi^{\lambda'} \cdot \chi^{\mu'} \) (by 2.3.5) = \(\chi^{\mu'} \cdot \chi^{\lambda'} \)

Thus \(\xi \chi^{(\lambda; \mu)} = (\xi_{NC} \phi)^G = \chi^{(\mu'; \lambda')} \)

(iii) \(\xi \chi^{(\lambda; \mu)} = (\xi_{NC} \phi)^G \) and

\(\xi_{NC} \phi = (\xi_N \chi_c)(\xi_G \chi) = (\xi_N \chi_c)_N \cdot \chi \) by definition of \(\xi \).

Because \(\xi_N \) takes the value -1 on sign changes it interchanges the symbols of the first and second type.
Also \(\psi = \chi^\lambda x^\nu \), so \(\xi \chi^{(\lambda; \mu)} = \chi^{(\mu; \lambda)} \)

(iv) follows from the first three parts.

The two linear characters we shall be interested in are \(\xi \) and \(\eta \) rather than \(1 \) and \(\xi \) as in the symmetric group. However, the previous lemma shows that the distinction is more notational than anything else, as we shall point out when we have proved, for \(G \), a result corresponding to that of 2.2.7 for \(S_{1+1} \).

Remark

We shall only be interested in the Weyl subgroups of \(G \) which are Weyl groups of regular root systems (i.e. root systems which are additively closed). This is because, in \(W(C_l) \), any Weyl subgroup is conjugate to a conjectural element of a coset of one of these regular Weyl subgroups (see [5]), and so, for our purposes, may be ignored.

Thus in the rest of this chapter Weyl subgroups will always be assumed to be regular.

The Weyl subgroups of \(G \) are of the form

\[
S_{\lambda_1} \times \cdots \times S_{\lambda_r} \times W(C_{\mu_1}) \times \cdots \times W(C_{\mu_s})
\]

where \(\sum \lambda_i + \sum \mu_j = 1 \).

We shall write this subgroup as \(W(\lambda; \mu) \) putting \(\lambda = (\lambda_1, \ldots, \lambda_r) \), \(\mu = (\mu_1, \ldots, \mu_s) \) and we may assume that \(\lambda_1 \geq \cdots \geq \lambda_r > 0 \), \(\mu_1 \geq \cdots \geq \mu_s > 0 \). Thus the Weyl subgroups of \(G \) may be parameterized by pairs of partitions of \(l \).

Let \(D_{(\lambda; \mu)} \) be a pair of diagrams for \(\lambda \) and \(\mu \) obtained by filling the frames associated with \(\lambda \) and \(\mu \)
with the symbols \(\{1, \ldots, 1, -1, \ldots, -1\} \) (in any order)
such that the moduli of all the numbers appearing are
distinct. We often write \(D_{(\lambda, \mu)} = D_{\lambda} \cup D_{\mu} \).

Definition

A row permutation of a diagram \(D_{(\lambda, \mu)} \) is an element
\(p \) of \(G \) such that \(p \) permutes the symbols in each row of
\(D_{\lambda} \) and in each row of \(D_{\mu} \) and changes the sign of the
symbols in \(D_{\mu} \).

The row stabilizer \(R(D_{(\lambda, \mu)}) \) is the group of row
permutations of \(D_{(\lambda, \mu)} \).

Now \(R(D_{(\lambda, \mu)}) \cong S_{\lambda_1} \times \cdots \times S_{\lambda_r} \times W(C_{\mu_1}) \times \cdots \times W(C_{\mu_s}) \)
\[= W_{(\lambda, \mu)} \]
Thus all the Weyl subgroups of \(G \) can be considered as
the row stabilizer of some diagram \(D_{(\lambda, \mu)} \). As in the
symmetric group, \(G \) acts on a diagram \(D_{(\lambda, \mu)} \) by defining
\(gD_{(\lambda, \mu)} \) for \(g \in G \), to be the diagram obtained by applying
\(g \) to the symbols in \(D_{(\lambda, \mu)} \).

It is then easy to see that \(R(gD_{(\lambda, \mu)}) = gR(D_{(\lambda, \mu)})g^{-1} \)
so that any two isomorphic Weyl subgroups are conjugate
via the element of \(G \) that transforms one associated
diagram into the other.

Comparing 2.3.5 with 3.2.1(ii), it is natural to
make the following definition

Definition

\((\mu', \lambda') \) is called the dual of \((\lambda, \mu) \). Similarly
define the dual of a frame, diagram or Weyl subgroup.
The reason for considering the characters ξ, η is contained in the next few results.

We let $(\lambda; \mu)$ be a pair of partitions of 1 such that $\lambda = (\lambda_1, \ldots, \lambda_r), \mu = (\mu_1, \ldots, \mu_s)$ and $|\lambda| = m, |\mu| = n.$

Theorem 3.2.2

$$(\xi \chi^{(\lambda; \mu)}_{W(\lambda; \mu)} G, \chi^{(\lambda; \mu)}_{W(\lambda; \mu)}) = 1$$

Proof

Let $W = W_{(\lambda; \mu)}$ and adopt the notation of §3.1. Thus

$$(\xi \chi^{(\lambda; \mu)}_{W(\lambda; \mu)} G, \phi^{G}) = \sum_{y \in [Y_1]} (\xi \chi^{W(N_{G})}_{W(\lambda; \mu)} y, (\phi \chi^{W(N_{G})}_{W(\lambda; \mu)}) y)$$

by Mackey's formula, where $[Y_1]$ is a set of (W, N_{G})-double coset representatives.

Suppose $(\xi \chi^{W(N_{G})}_{W(\lambda; \mu)} y, (\phi \chi^{W(N_{G})}_{W(\lambda; \mu)}) y) \neq 0$, then because

$$(W \cap N_{G}) y = W \cap N_{G} \geq W \cap N \text{ as } N < G,$$ we have

$$(\xi \chi^{W(N_{G})}_{W(\lambda; \mu)} y, (\phi \chi^{W(N_{G})}_{W(\lambda; \mu)})) \neq 0.$$ Now $N = N_1 \times N_2$ as in 3.1.2, and we choose $W_{(\lambda; \mu)}$ so that $D_{(\lambda; \mu)}$ is filled with the symbols $[1, \ldots, 1]$ where $[1, \ldots, m]$ occur in D_{λ} and $[m+1, \ldots, l]$ in D_{μ}. It is then immediate that $W \cap N = N_2$. Since $N_2 \leq N$,

$$(\phi)_{N_2} = (\chi_{N_2})_{N_2} \psi(1).$$ Thus $$(\xi_{N_1} \chi^{N_1}_{N_2})_{N_2} \psi(1) \neq 0.$$ so $$(\xi_{N_2} \chi^{N_2}_{N_2}) \neq 0$$ and because the characters are linear $\xi_{N_2} = (\chi_{N_2})_{N_2}$. But by construction of ξ,

$$(\eta)_{N_2} = (\chi_{N_2})_{N_2}.$$ Thus $\eta_{N_2} = (\chi_{N_2})_{N_2}$ and therefore $N_2 \eta_{N_2} = N_2$, by definition of ζ. It follows that $\zeta = \eta_{N_2}$ because ζ.
takes the value 1 on \(N_1 \). Therefore \(y \in G(\zeta) = NC \), and so \(y = 1 \).

Hence \((\xi^G, \chi^{(\lambda;\mu)}) = (\xi_{WNC}, \phi_{WNC}) \).

But \(W = S_{\lambda_1} \times S_{\lambda_2} \times \ldots \times S_{\lambda_r} \times W(C_{\mu_1}) \times \ldots \times W(C_{\mu_s}) = S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times N_{\mu_1} \times \ldots \times N_{\mu_s} S_{\mu_1} \times \ldots \times S_{\mu_s} \) with the obvious notation

\[
= (N_{\mu_1} \times \ldots \times N_{\mu_s})(S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times S_{\mu_1} \times \ldots \times S_{\mu_s})
\]

since the direct factors commute

\[
< N(S_m \times S_n) = NC
\]

Thus \(W < NC \) and \(W \cap N = N_{\mu_1} \times \ldots \times N_{\mu_s} = N_2 \), \(W \cap H = S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times S_{\mu_1} \times \ldots \times S_{\mu_s} = W_\lambda \times W_\mu \),

where \(W_\lambda \) and \(W_\mu \) are the appropriate Weyl subgroups of \(S_m \) and \(S_n \) respectively.

So we see that \(W = (W \cap N)(W \cap H) \). Hence

\[
(\xi^G, \chi^{(\lambda;\mu)}) = (\xi^W, \phi^W) = (\xi^W, \zeta^W)(\xi^W, \psi^W) = (\xi^W, \zeta^W)(\psi^W, \psi^W) = 1 \cdot (1, W_\lambda, (\chi^\lambda)_W, (\chi^\mu)_W) = 1 \cdot (1, W_\lambda, (\chi^\lambda)_W, (\chi^\mu)_W)
\]

since \(\xi^W = \zeta^W \)

\[
= (1, S_m, \chi^\lambda)(1, S_n, \chi^\mu) = 1 \text{ by 2.2.7 , completing the proof of the theorem.}
\]

Corollary 3.2.2

\[
(\eta^G, \chi^{(\lambda;\mu)}) = 1
\]
Proof

\[(\eta^T_G, \chi^{(\lambda'; \lambda)}) = (\xi^T_G, \chi^{(\lambda'; \lambda)}) \text{ by 3.2.1} = (\xi^T_G, \chi^{(\lambda'; \lambda)}) = (\xi^T_G, \chi^{(\lambda'; \lambda)}) \text{ by 3.2.1} = 1 \text{ by 3.2.2}\]

Theorem 3.2.4

\[(\xi^T_G, \eta^T_G) = 1\]

Proof

Write \(W = W_{(\lambda'; \lambda)}\), \(W' = W_{(\mu'; \lambda')}\) and suppose \(D_\lambda\) is filled with the symbols \([1, \ldots, m]\) and \(D_\mu\) with \([m+1, \ldots, 1]\) where \(|\lambda| = m\). Then by Mackey's formula

\[(\xi^T_W, \eta^T_W) = \sum_{y \in \{\gamma_1\}} (\xi^T_{W^W'y}, (\gamma^T_N)_{W^W'y})\]

where \(\{\gamma_1\}\) is a set of \((W, W')\)-double coset representatives.

Now \(W \cap N = N_2\) and similarly \(W' \cap N = N_1\), so

\(N = N_1 \times N_2 < WW'\). Therefore we may assume that, because \(G = NH\), each \(\gamma_1 \in H\).

Suppose \((\xi^T_{W^{W'y}}, (\gamma^T_N)_{W^W'y}) \neq 0\), then since the characters are linear \(\xi^T_{W^{W'y}} = (\gamma^T_N)_{W^W'y}\), so by definition of \(\xi, \eta\), \(W \cap W'y\) does not contain a transposition or a sign change.

\(W'y\) is the row stabilizer of \(yD_{(\mu'; \lambda')} = yD_{\mu'} \cup yD_{\lambda'}\).

We claim that \(yD_{\lambda'}\) contains the same symbols as those in \(D_\lambda\).
For,

suppose not; then there exists a symbol a such that a appears in yD_λ' but not in D_λ. We write $a \in yD_\lambda'$, $a \notin D_\lambda$. Since $a \notin D_\lambda$, we have that $a \in D_\mu$ and hence $(a,-a) \in W$. Similarly $a \in yD_\lambda'$ implies $(a,-a) \in W'Y$ so $(a,-a) \in W \cap W'Y$, a contradiction. The fact that D_λ and yD_λ' both contain m squares proves the claim.

Because $W \cap W'Y$ does not contain any transpositions, no two collinear symbols of D_λ are co-columnar in yD_λ'.

Hence, by 2.1.2, $y|_{S_n} = pq$, where $p \in W_\lambda, q \in W_\lambda$.

Similarly, $y|_{S_n} = p_1q_1$, where $p_1 \in W_\mu, q_1 \in W_\mu$.

Hence $y = pqp_1q_1 = (pp_1)(qq_1)$ since the diagrams D_λ, D_μ are disjoint and therefore $W_\lambda \cap W_\mu = 1$

$$= (pp_1)(q_1q) \in (W_\lambda \times W_\mu)(W_\mu \times W_\lambda) \leq WW'$$

i.e. $y = 1$.

So $(\xi_W^G, \eta_W^G) = (\xi_{W'W'}^G, \eta_{W'W'}^G)$. But it is clear that $W \cap W' = R(D_{(\lambda';\mu')}) \cap R(D_{(\mu';\lambda')}) = 1$. Hence $(\xi_W^G, \eta_W^G) = 1$ as required.

3.2.2, 3.2.3 and 3.2.4 together show that $\chi_{(\lambda';\mu')}$ is

the unique common irreducible constituent of ξ_W^G and

$\eta_W^G_{(\lambda';\mu')}$.
§3.3 An algorithm for $\mathcal{W}(G_1)$

In this section we generalize 2.2.7 (and 2.3.6) to \mathcal{G}, and in so doing define a partial ordering on the pairs of partitions of 1. We first define a reflexive, antisymmetric relation on the pairs of partitions of 1, which will give us an algorithm for determining exactly which irreducible characters occur in ζ^G_w, for a given Weyl subgroup W of G.

Let $(\lambda;\beta)$ and $(\mu;\mu)$ be pairs of partitions of 1. By the usual abuse of notation we shall refer to the frames also as $(\lambda;\beta)$ and $(\mu;\mu)$ respectively.

We write $(\lambda;\mu) \rightarrow (\alpha;\beta)$ (and in later chapters, where we introduce further algorithms, we shall write \rightarrow), if $(\alpha;\beta)$ may be obtained from $(\lambda;\mu)$ by

1. (a) removing connected squares from the end of a row of λ and placing them, in the same order, at the bottom of μ;
2. (b) repeating (a) with squares from different rows of λ;
3. (c) reordering the resulting rows so as to give frames of a pair of partitions $(\delta;\delta)$, say;
4. (d) moving up inside γ and δ, according to the usual partial ordering on partitions, so as to obtain α and β respectively (so $\gamma \leq \alpha$ and $\delta \leq \beta$).

Remark

It is easy to see that \rightarrow is reflexive and anti-
symmetric but is not transitive because e.g.
\((2,0) \rightarrow (1,1)\) and \((1,1) \rightarrow (0,1^2)\) but \((2,0) \not\rightarrow (0,1^2)\).
Later on we shall extend \(\rightarrow\) to a partial ordering.

We can now state the first main result of this section

Theorem 3.3.1

Let \((\alpha;\beta)\) and \((\lambda;\mu)\) be pairs of partitions of 1.

Then, with the usual notation,

\[
(E^G_W, \chi^{(\alpha;\beta)}) \neq 0 \iff (\lambda;\mu) \rightarrow (\alpha;\beta)
\]

Before proving this we need a lemma

Lemma 3.3.2

Let \(W = R(D_{\lambda;\mu})\). Then

(a) \(W = (N \cap W) (H \cap W)\) and \((N \cap W) \cap (H \cap W) = 1\)

If also \(g \in H\) and \(G = G_H(\zeta)\) for some irreducible character \(\zeta\) of \(N\)

(b) \(W^G = (N \cap W^G) (H \cap W^G)\) and \((N \cap W^G) \cap (H \cap W^G) = 1\)

(c) \(NC \cap W^G = (N \cap W^G) (C \cap W^G)\) and \((N \cap W^G) \cap (H \cap W^G) = 1\)

Proof

(a) \(W = S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times W(C_{\mu_1}) \times \ldots \times W(C_{\mu_s})\)

\[= S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times N_{\alpha_1} S_{\alpha_2} \times \ldots \times N_{\alpha_s} S_{\alpha_s},\text{ with the obvious notation}\]

\[= (N_{\alpha_1} \times \ldots \times N_{\alpha_s})(S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times S_{\alpha_2} \times \ldots \times S_{\alpha_s})\]

\[= (WNN)(WNH)\]

(b) \(W^G = (N \cap W)^G (H \cap W)^G\) by (a)

\[\leq (N \cap W^G)(H \cap W^G)\text{ since }N \leq G, \ g \in H\]

\[\leq W^G\text{ hence equality}\]

(c) Let \(x \in NC \cap W^G\) and by (b) \(x = nc = n_1 h\) for some \(n \in N, \ c \in C, \ n_1 \in N \cap W^G, \ h \in H \cap W^G\).
Hence \(n_1^{-1} n = hc^{-1} \in N \cap H = 1 \), so \(n = n_1 \) and \(c = c_1 \) and therefore \(c \in C \cap H \cap W^G = C \cap W^G \) and \(n \in N \cap W^G \).

So \(x = nc \in (N \cap W^G)(C \cap W^G) \) which implies \(W^G \leq (N \cap W^G)(C \cap W^G) \leq W^G \) proving (c).

The trivial intersections all follow from the fact that \(N \cap H = 1 \).

Proof of 3.3.1

Suppose first that \(\xi_{W(\lambda, \mu)} \neq 0 \).

We use the notation of §3.1 and also let \(W = W(\lambda, \mu) \).

Hence
\[
(\xi_W^G, \chi^{(u, \lambda)}) = (\xi_W^G, \phi^G) = \sum_{g \in \{g_1\}} (\xi_{NCW^G}, \phi_{NCW^G})
\]
where \(\{g_1\} \) is a set of \((W, NC)\)-double coset representatives and since \(G = NH \) we may suppose each \(g_1 \in H \).

Thus there exists \(g \in \{g_1\} \) such that \((\xi_{NCW^G}, \phi_{NCW^G}) \neq 0 \).

We let \(\lambda_1 = m, \mu_1 = n \) and let \(N = N_1 \times N_2 \) as in 3.1.2 so that \(\zeta(a, -a) = 1 \) for \((a, -a) \in N_1 \) and \(\zeta(a, -a) = -1 \) for \((a, -a) \in N_2 \). Now by 3.3.2(c)
\[
\xi_{NCW^G} \neq 0 \neq (\xi_{NCW^G}, \phi_{NCW^G}) = (\xi_{NCW^G}, \zeta_{NCW^G})(\xi_{NCW^G}, \psi_{NCW^G})
\]
Hence
\[
(\xi_{NCW^G}, \zeta_{NCW^G}) \neq 0 \text{ and } (\xi_{NCW^G}, \psi_{NCW^G}) \neq 0 \quad \text{(A)}
\]

Since \(\xi, \zeta \) are linear, \(\xi_{NCW^G} = \zeta_{NCW^G} \). But \(\xi \) takes the value \(-1\) on all sign changes in \(G \) and hence on those in \(N \cap W^G \). Thus \(N \cap W^G \leq N_2 \).

Now \(W^G \) defines a diagram \(D_{(\lambda, \mu)} \), so since \(N \cap W^G \leq N_2 \), all the symbols in \(D_{(\lambda, \mu)} \) are of the second type. We may also
assume that the symbols of the second type in \(D_{\lambda} \) lie at
the ends of the rows, since \(W_\Sigma \) only defines \(D_{(\lambda; \mu)} \) up to
row permutations (and sign changes in \(D_{\mu} \)). Hence we may
remove squares from \(D_{\lambda} \) and put them on the bottom of \(D_{\mu} \)
(so that moved squares in the same row remain in the same
row) and then reorder the rows to obtain a diagram \(D_{(\nu; \delta)} \)
of a pair of partitions \((\nu; \delta) \) of \(1 \) such that \(D_{\nu} \) contains
all the symbols of the first type and \(D_{\delta} \) the symbols of
the second type. This corresponds to the operations (a), (b) and (c) on p 59. So to show \((\lambda; \mu) \rightarrow (\alpha; \beta)\)
we only have to show \(\gamma \leq \alpha \), \(\delta \leq \beta \).

By construction \(|\gamma| = m = |\alpha| \), \(|\delta| = n = |\beta| \). By (A) \((\xi^{G_{\text{Conn}}, \psi^{G_{\text{Conn}}}}) \neq 0 \). However, \(\xi \) takes the value
1 on the elements of \(H \), hence \((1_{G_{\text{Conn}}}, \psi^{G_{\text{Conn}}}) \neq 0 \).

Now \(C \cap W_\Sigma = (S_m \cap W_\Sigma) \times (S_n \cap W_\Sigma) \) since \(C = S_m \times S_n \)
and so \(C \cap W_\Sigma \) permutes the symbols of each type
independently, and therefore these actions commute.

Hence, by definition of \(\psi \),

\[
(1_{S_m \cap W_\Sigma}, \chi^\alpha_{s_m \cap W_\Sigma})(1_{S_n \cap W_\Sigma}, \chi^\beta_{s_n \cap W_\Sigma}) \neq 0.
\]

But \(S_m \cap W_\Sigma \) is the group of row permutations of the symbols
of the first type in \(D_{(\lambda; \mu)} \) and thus the group of row
permutations of \(D_{\nu} \). Therefore \(S_m \cap W_\Sigma = R(D_{\nu}) = W_{\nu} \)
- a Weyl subgroup of \(S_m \). Similarly, \(S_n \cap W_\Sigma = R(D_{\delta}) = W_{\delta} \)

Hence,

\[
(1_{W_{\nu}}, \chi^\alpha_{W_{\nu}})(1_{W_{\delta}}, \chi^\beta_{W_{\delta}}) \neq 0
\]

and by Frobenius \((1_{W_{\nu}}, \chi^\alpha_{W_{\nu}}) \neq 0 \) and \((1_{W_{\delta}}, \chi^\beta_{W_{\delta}}) \neq 0 \)

from which it follows by 2.3.6 that \(\gamma \leq \alpha \) and
Thus by the above remarks \((\lambda;\mu) \rightarrow (\alpha;\beta)\).

Conversely, suppose \((\lambda;\mu) \rightarrow (\alpha;\beta)\). Therefore we may move parts of rows of \(\lambda\) across to \(\mu\) to obtain a pair of partitions \((\delta;\gamma)\) of 1 such that \(\delta \leq \alpha\), \(\delta \leq \beta\).

Hence \(|\lambda| \geq |\delta| = |\alpha| = m\) and \(|\mu| \leq |\delta| = |\beta| = n\).

So define \(D_{(\lambda;\mu)}\) to be a diagram of \((\lambda;\mu)\) filled with the symbols \([1, \ldots, m]\) such that \([1, \ldots, m]\) all occur in \(D_\lambda\).

Let \(W = W_{(\lambda;\mu)} = R(D_{(\lambda;\mu)})\). Then
\[N \cap W = N_\lambda \times \ldots \times N_\mu \leq N_2\] by construction. Hence
\[\xi_{N \cap W} = c_{N \cap W}\] and therefore \((\xi_{N \cap W}, c_{N \cap W}) \neq 0\). Also, by 2.3.6, \(\delta \leq \alpha\) \(\Rightarrow ((1_{W_\delta})^{S_m}, \chi^\alpha) \neq 0\)
\(\delta \leq \beta\) \(\Rightarrow ((1_{W_\delta})^{S_n}, \chi^\beta) \neq 0\)

So \((\xi_{N \cap W}, c_{N \cap W})(1_{W_\delta}^{S_m}, \chi^\alpha)(1_{W_\delta}^{S_n}, \chi^\beta) \neq 0\) and this is, by the proof of the first part of the theorem, the first summand in the Mackey formula for \((\xi_W^G, \chi^{(\alpha;\beta)})\).

Hence
\[\xi_W^G, \chi^{(\alpha;\beta)} \neq 0\] proving the theorem.

We now wish to extend \(\rightarrow\) to a partial ordering on the pairs of partitions of 1.

The reason why \(\rightarrow\) is not transitive is that we are not allowed to split up a row when moving it across so that e.g. \((2,0) \not\rightarrow (0,1^2)\). This gives us a hint as to how to define a partial ordering.

Definition

Let \((\alpha;\beta), (\lambda;\mu)\) be pairs of partitions of 1.

Then \((\lambda;\mu) \leq (\alpha;\beta)\) if we may obtain \((\alpha;\beta)\) from \((\lambda;\mu)\) by
(a) removing a square from the end of a row of \(\lambda \) and putting it at the bottom of \(\nu \);
(b) repeating (a) as many times as is necessary to obtain a pair of partitions \((\varphi; \delta)\) of \(1\);
(c) moving up inside \(\varphi \) and \(\delta \) to obtain \(\alpha \) and \(\beta \) respectively (so that \(\varphi \leq \alpha \), \(\delta \leq \beta \)).

It is clear that \((\lambda; \mu) \rightarrow (\alpha; \beta) \rightarrow (\lambda; \mu) \leq (\alpha; \beta) \)
and that \((\lambda; \mu) \leq (\alpha; \beta) \) if and only if there exist pairs of partitions \((\ell; \sigma)\) of \(1\) such that
\[
(\lambda; \mu) \rightarrow (\ell; \sigma) \rightarrow (\ell; \sigma) \rightarrow \cdots \rightarrow (\lambda; \sigma) \rightarrow (\alpha; \beta)
\]

\((\ell; \sigma)\) is obtained from \((\lambda; \sigma)\) by moving across one square at a time and letting \((\ell; \sigma) = (\varphi; \delta)\).

Lemma 3.3.3

\(\leq \) is a partial ordering

Proof

This is clear

Lemma 3.3.4 (Duality Relation for \(\leq \))

\((\lambda; \mu) \leq (\alpha; \beta) \iff (\beta'; \alpha') \leq (\mu'; \lambda') \)

Proof

It will be sufficient to prove the implication in one direction. We may also suppose \((\alpha; \beta)\) is obtained from \((\lambda; \mu)\) by moving only one square from \(\lambda\) to \(\mu\).

For, we may write

\((\lambda; \mu) \leq (\ell; \sigma) \leq \cdots \leq (\lambda; \sigma) \leq (\alpha; \beta) \)

where each term is obtained from the previous one by moving one square across except that \(\ell \leq \alpha \) and \(\sigma \leq \beta \).

By assumption,
Now by 2.3.2, \(\alpha' \leq \beta' \leq \sigma' \), so \(\beta' \leq \sigma' \leq \alpha' \).

So suppose we have moved one square from \(\lambda \) to \(\mu \) to obtain \((\alpha; \beta) \). Hence we may move one square from \(\beta \) to \(\alpha \) to obtain \((\mu; \lambda) \) from \((\alpha; \beta) \). Therefore, we may move one square from \(\beta' \) to \(\alpha' \) to obtain \((\mu'; \lambda') \) from \((\beta'; \alpha') \) i.e. \((\beta'; \alpha') \leq (\mu'; \lambda') \) as required.

This enables us to prove the same result for \(\rightarrow \)

Lemma. 3.3.5 (Duality Relation for \(\rightarrow \))

\[
(\lambda; \mu) \rightarrow (\alpha; \beta) \iff (\beta'; \alpha') \rightarrow (\mu'; \lambda')
\]

Proof.

Suppose \((\lambda; \mu) \rightarrow (\alpha; \beta) \) then \((\lambda; \mu) \leq (\alpha; \beta) \) so \((\beta'; \alpha') \leq (\mu'; \lambda') \) by 3.3.4.

We must show \((\beta'; \alpha') \rightarrow (\mu'; \lambda') \), so by definition of the operations defined by \(\leq \) and \(\rightarrow \) it will be enough to show that when we move rows from \(\beta' \) to \(\alpha' \) we do not split these rows up. It will be easier to prove this diagramatically. We must show that

\[
\begin{array}{c|c}
\hline
\hline
\end{array}
\quad \rightarrow \quad
\begin{array}{c|c}
\hline
\hline
\end{array}
\]

in moving across from \(\beta' \) to \(\alpha' \). But since \((\lambda; \mu) \rightarrow (\alpha; \beta) \) we have that

\[
\begin{array}{c|c}
\hline
\hline
\end{array}
\quad \rightarrow \quad
\begin{array}{c|c}
\hline
\hline
\end{array}
\]

in moving across from \(\lambda \) to \(\mu \), and in doing the reverse operation to obtain \((\mu'; \lambda') \) from \((\beta'; \alpha') \) we see that the
first diagram must indeed be the case.

Theorem 3.3.6

\[
\begin{align*}
\xi_{(\lambda; \mu)}^G &= \chi^{(\lambda; \mu)} + \sum_{(\lambda; \mu) < (\alpha; \beta)} a_{(\alpha; \beta)} \chi^{(\alpha; \beta)} \\
\eta_{(\mu'; \lambda')}^G &= \chi^{(\lambda; \mu)} + \sum_{(\lambda; \mu) > (\alpha; \beta)} b_{(\alpha; \beta)} \chi^{(\alpha; \beta)}
\end{align*}
\]

where \(a_{(\alpha; \beta)}\) and \(b_{(\alpha; \beta)}\) are non-negative integers

Proof

The first equation follows from 3.2.2 and 3.3.1. The second equation comes from the first by multiplying it by \(\xi\) and using 3.2.1 and 3.3.4 (after relabelling).

Remark

If in 3.3.6 we replace \(\leq\) by \(\rightarrow\), using 3.3.5, we will then have non-zero coefficients by 3.3.7 below.

As promised in §3.2, we shall show that, by a change of notation, we could use the linear characters \(1, \xi\) instead of \(\xi, \eta\).

Theorem 3.3.7

\[
(\xi_{(\lambda; \mu)}^G, \chi^{(\alpha; \beta)}) \neq 0 \iff (\lambda; \mu) \rightarrow (\alpha; \beta)
\]

\[
(\eta_{(\mu'; \lambda')}^G, \chi^{(\alpha; \beta)}) \neq 0 \iff (\alpha; \beta) \rightarrow (\alpha; \beta)
\]

Proof

The first part is 3.3.1. The second follows from
the first by \(3.2.1 \) from which we obtain

\[
(\eta^G_{\mu', \lambda'}, \chi^{(\alpha; \beta)}) \leftrightarrow (\mu' \leq \lambda') \rightarrow (\beta' \leq \alpha')
\]

\[
\leftrightarrow (\alpha \leq \beta) \rightarrow (\lambda \leq \mu') \quad \text{by} \quad 3.3.5
\]

So by multiplying the results in \(3.3.7 \) by \(\xi \) and using \(3.2.1 \) we have

Theorem 3.3.8

\[
(1^G_{\lambda'; \mu}, \chi^{(\alpha; \beta)}) \neq 0 \leftrightarrow (\lambda ; \mu) \rightarrow (\beta ; \alpha)
\]

\[
(\varepsilon^G_{\mu', \lambda'}, \chi^{(\alpha; \beta)}) \neq 0 \leftrightarrow (\mu ; \alpha) \rightarrow (\lambda ; \mu)
\]

Similarly, using \(3.3.6 \) we obtain

Theorem 3.3.9

\[
1^G_{\lambda'; \mu} = \chi^{(\mu; \lambda)} + \sum_{(\lambda ; \mu) < (\beta ; \alpha)} a_{(\beta ; \alpha)} \chi^{(\beta; \alpha)}
\]

\[
\varepsilon^G_{\mu', \lambda} = \chi^{(\mu; \lambda)} + \sum_{(\lambda ; \mu) > (\beta ; \alpha)} b_{(\beta ; \alpha)} \chi^{(\beta; \alpha)}
\]

where \(a_{(\beta ; \alpha)} \) and \(b_{(\beta ; \alpha)} \) are non-negative integers.

So we may replace \(\xi, \eta \) by \(1, \varepsilon \) if we write \(\chi^{(\beta; \alpha)} \) instead of \(\chi^{(\alpha; \beta)} \) as defined in \(\S 3.1 \).

We now define a bijection between the Weyl subgroups and irreducible characters of \(G \).

Define a map

\(X : \text{set of Weyl subgroups} \rightarrow \text{set of irreducible characters} \) by

\[
X(W_{(\lambda ; \mu)}) = \left\{ \begin{array}{l}
\chi \text{irred. character} : (\chi, \xi^G_{W_{(\lambda ; \mu)}}) \neq 0 \text{ and } \\
(\chi, \xi^G_{W_{(\lambda ; \mu)}}) = 0 \text{ for all Weyl subgroups}
\end{array} \right\}
\]
Theorem 3.3.10

\[X(W_{(\lambda;\mu)}) = \{ \chi^{(\lambda;\mu)} \} \text{ for all pairs of partitions } (\lambda;\mu) \text{ of } 1. \]

Proof

This follows from 3.3.6 with the same proof as in 2.2.8.

§3.4 Decomposition of the group algebra into minimal left ideals

This section is a generalization to G of some of the results in §2.1, especially 2.1.3 and 2.1.5.

Let \(A = CG \) - the complex group algebra of G. Let \((\lambda;\mu)\) be a pair of partitions of \(1 \) and \(W_{(\lambda;\mu)} \) a Weyl subgroup of G. We define two essential idempotents of G

\[
P_{(\lambda;\mu)} = \sum_{w \in W_{(\lambda;\mu)}} w \xi(w)
\]

\[
q_{(\lambda;\mu)} = \sum_{w \in W_{(\mu';\lambda')}} w \eta(w)
\]

and let \(e_{(\lambda;\mu)} = p_{(\lambda;\mu)} q_{(\lambda;\mu)} \)

(note that \(W_{(\lambda;\mu)} \cap W_{(\mu';\lambda')} = 1 \))

Then \(Aq_{(\lambda;\mu)} \) affords the character \(\xi_{W_{(\lambda;\mu)}}^G \) of G, and \(Aq_{(\lambda;\mu)} \) affords \(\omega_{W_{(\mu';\lambda')}}^G \).

Theorem 3.4.1

\(A e_{(\lambda;\mu)} \) is a minimal left ideal of A affording \(\chi^{(\lambda;\mu)} \)

Proof

Let \(e = e_{(\lambda;\mu)} \). To show that \(e \) is a multiple of
a primitive idempotent we may follow the proof in the
symmetric group for e_{λ} ([6] 28.15); this is purely
routine.

Alternatively, we may use the first two lemmas in
[4] and 3.3.6, from which the result immediately follows.

Hence Ae is a minimal left ideal and is isomorphic
(using the *-map) to a submodule of both $A_{\rho}(\lambda;\mu)$ and
$A_{\eta}(\lambda;\mu)$. Hence Ae affords an irreducible character
which is a component of both $\xi_{\rho}(\lambda;\mu)$ and $\eta_{\rho}(\mu;\lambda)$, so by
§3.2 affords $\chi^{(\lambda;\mu)}$.

Because $\chi^{(\lambda;\mu)} = \chi^{(\mu;\lambda)}$ implies $\lambda = \mu$ and $\mu = \lambda$
we see that ideals of the form $Ae_{(\lambda;\mu)}$ coming from different
diagrams with the same frame are isomorphic but ideals
from diagrams with different frames are not; so the
ideals $[Ae_{(\lambda;\mu)}]$ where $(\lambda;\mu)$ ranges over all pairs of
partitions of 1, gives a full set of non-isomorphic
irreducible A-modules.

Frame [8] has already introduced standard tableaux
for G and given the formula for the number of standard
tableaux of a given frame.

Definition

A standard tableau is a diagram $D_{(\lambda;\mu)}$ filled with
the symbols $[1, \ldots, l]$ such that both D_{λ} and D_{μ} are
standard tableaux for the appropriate symmetric groups.

Let H_{λ} be the hook product of a frame of λ.

Define the hook product of $(\lambda;\mu)$ to be $H_{(\lambda;\mu)} = H_{\lambda}H_{\mu}$.
Lemma 3.4.2

The number of standard tableaux of the frame associated with \((\lambda;\mu)\) is given by

\[
\frac{\prod}{H(\lambda;\mu)}
\]

Proof

Let \(|\lambda| = m, |\mu| = n\) and let \(D_{(\lambda;\mu)}\) be a standard tableau. Then there are \(\binom{m+n}{m}\) ways of assigning the symbols \([1, \ldots, n]\) to each half of \(D_{(\lambda;\mu)}\). Now by 2.1.6 there are \(\frac{m!}{H_\lambda}\) ways of ordering the symbols in \(D_\lambda\) to give a standard tableau and similarly \(\frac{n!}{H_\mu}\) ways of obtaining a standard tableau \(D_\mu\). Hence the number of standard tableau corresponding to \((\lambda;\mu)\) is

\[
\left(\frac{1}{m+n}\right) \frac{m!}{H_\lambda} \frac{n!}{H_\mu} = \frac{1!}{H(\lambda;\mu)}
\]

Lemma 3.4.2

\(\chi^{(\lambda;\mu)}(1) = \frac{1!}{H(\lambda;\mu)} = \text{number of standard tableaux}\)

Proof

With the usual notation \(\chi^{(\lambda;\mu)} = \phi^G\) where \(\phi = \zeta \psi\) and \(\psi = \chi^\lambda \chi^\mu\). Let \(|\lambda| = m, |\mu| = n\). Thus \(\chi^{(\lambda;\mu)}(1) = |G:NG/\zeta(1)\chi^\lambda(1)\chi^\mu(1)|\)

\[= \frac{|H:C| \cdot m! \cdot n!}{H_\lambda \cdot H_\mu} \text{ by 2.1.6}
\]

\[= \frac{1!}{m! \cdot n!} \cdot \frac{m! \cdot n!}{H_\lambda \cdot H_\mu} \text{ since } C = S_m \times S_n
\]

\[= \frac{1!}{H(\lambda;\mu)}
\]
A splits up into a number of simple rings A_i, $A = A_1 + A_2 + \ldots + A_n$, where each A_i consists of a direct sum of isomorphic minimal left ideals of A, which are not isomorphic to any that occur in A_j, $j \neq i$.

The next theorem is proved in exactly the same way as that in the symmetric group ([1] IV,4.6) utilizing the previous two lemmas, and is routine so we shall not give the proof.

Theorem 3.4.4

The minimal left ideals which arise from the standard tableaux belonging to a given frame are linearly independent and span a simple ring A_i. Thus A is the direct sum of the minimal left ideals which arise from the standard tableaux belonging to any frame associated with a pair of partitions of 1.

§3.5 **Solomon's decomposition of the group algebra of $W(G_1)$**

As in §2.4 we interpret Solomon [17] for the Weyl group $W(G_1)$. Again we may assume that all modules, representations and characters are over the field of complex numbers.

The main feature distinguishing G from the symmetric group is that not all Weyl subgroups of G are conjugate to a parabolic subgroup. Indeed it is easy to see that the parabolic subgroups of G are the Weyl subgroups $W_{(\kappa; \beta)}$ such that β has only 1 or 0 parts (since $W_{(\kappa; \beta)}$ must include sign changes $(a, -a)$ for every symbol a.
The generating set I for G is the set of 1-1 transpositions and one sign change, \{(12),(23),\ldots,(1-1 1),(1,-1)\}

Let $J \subseteq I$, then the parabolic subgroup $W_J = W_{(\xi;\sigma)}$ for some pair of partitions $(\xi;\sigma)$ of 1 such that σ has only 1 or 0 parts. We therefore write $p(J) = (\xi;\sigma)$.

We fix an arbitrary subset J of I. Let \hat{J} be the complement of J in I, and $p(J) = (\xi;\sigma)$, $p(\hat{J}) = (\rho';\alpha')$ (again, we use the dual for convenience only).

Define
\[
\xi_J = \sum_{w \in W_J} w, \quad \eta_J = \sum_{w \in W_J} \varepsilon(w)w
\]
as in §2.4 (which should not be confused with the linear characters ξ, η of G). Then $A\xi_J \eta_J$ affords the character
\[
\psi_J = \sum_{J = K \subseteq I} (-1)^{|K-J|} 1_{W_K} \text{ of } G, \text{ by } [17].
\]

Theorem 3.5.1

Let $(\lambda;\mu)$ be a pair of partitions of 1. Then

\[(\psi_J, \chi^{(\mu';\lambda)}) \neq 0 \Rightarrow (\xi;\sigma) \rightarrow (\lambda;\mu) \rightarrow (\alpha;\beta)
\]

Proof

Since $A\xi_J$ affords $1_{W_J}^G = 1_{W_b}^G$ and $A\eta_J$ affords
\[
E_{W_{(\rho';\alpha')}}^G \text{ we have (1.2.8)}
\]

\[(\psi_J, \chi^{(\mu';\lambda)}) \neq 0 \Rightarrow (1_{W_b}^G, \chi^{(\mu';\lambda)}) \neq 0 \quad \text{and} \quad (1_{W_{(\rho';\alpha')}}^G, \chi^{(\mu';\lambda)}) \neq 0
\]

\[\Rightarrow (\xi;\sigma) \rightarrow (\lambda;\mu) \rightarrow (\alpha;\beta) \text{ by 3.3.8}
\]
Lemma 3.5.2

\[(\psi_J, \chi^{(\sigma'; \ell')}) = (\psi_J, \chi^{(\alpha'; \lambda')}) = 1 \]

Hence \((\gamma; \sigma) \rightarrow (\alpha; \beta)\)

Proof

Suppose \(J \neq K \leq I\) and let \(p(K) = (\delta; \lambda)\), so that
\((\gamma; \sigma)\) is obtained from \((\gamma; \sigma)\) by moving whole rows up inside \(J\), and moving whole rows of \(\sigma\) across to the end of \(\sigma\). In particular, \((\gamma; \sigma) \neq (\delta; \lambda)\) so \((\delta; \lambda) \not\rightarrow (\gamma; \sigma)\)

since \(\rightarrow\) is anti-symmetric. Hence by 3.3.8

\[(1_{W_{(\delta'; \lambda')}}^G, \chi^{(\sigma'; \ell')}) = 0 \text{ i.e. } (1_{W_{(\delta'; \lambda')}}^G, \chi^{(\sigma'; \ell')}) = 0. \]

Thus \((\psi_J, \chi^{(\sigma'; \ell')}) = \sum_{J \leq K \leq I} (1_{W_{(\delta'; \lambda')}}^G, \chi^{(\sigma'; \ell')}) \]

\[= (1_{W_J}^G, \chi^{(\sigma'; \ell')}) \]

\[= 1 \text{ by 3.3.9} \]

Similarly, \((\psi_J^{'}, \chi^{(\alpha'; \lambda')}) = 1 \) since \(p(\delta') = (\beta'; \lambda')\).

Now by [17] lemma 7, \(e \psi_J = \psi_J^{'}\). Hence

\[(\psi_J, \chi^{(\alpha'; \lambda')}) = (e \psi_J, \chi^{(\alpha'; \lambda')}) = (\psi_J, \chi^{(\alpha'; \lambda')}) \text{ by 3.2.1} \]

\[= 1 \]

It follows from 3.5.1 that \((\gamma; \sigma) \rightarrow (\alpha; \beta)\).

We now identify the irreducible module \(\Lambda^P V\)

defined in [17], and in this case \(V = R^1 ([3], \text{table III}).\)

Suppose \(|\delta'| = p\).

Definition

Let \((\lambda'; \mu')\) be the pair of partitions of \(1\) given by
\[(\lambda;\mu) = (1^p; 1-p)\]. We call \((\lambda;\mu)\) the \textit{hook graph} for \(J\) and \(\chi(\lambda;\lambda)\) the \textit{hook character} of \(J\).

Notice that the hook graph \((\lambda;\mu)\) depends only on the order of \(J\) and that \(\chi(\lambda;\lambda) = (1)\) by 3.4.3.

As in §2.4, let \(r(v) = \text{the number of rows of (the frame of) a partition } v\).

Lemma 3.5.3

(i) \(r(\emptyset) = p\)

(ii) \(\chi(J;\emptyset) = 1\)

Proof

(i) Since \(p(J) = (\emptyset;\emptyset)\) we have that \(J = J_1 \cup J_2\)
where \(p(J_1) = \emptyset\) and \(p(J_2) = \sigma\), (writing \(p(\emptyset) = (0)\)).

Let \(|J_1| = m, |J_2| = n\). Then \(|\hat{J}| = 1 - |J|\). But if

\((1,-1) \in J\) then \((1,-1) \notin \hat{J}\), hence \(\sigma \neq 0 \Rightarrow \alpha = 0\)

\((p(\hat{J}) = (\beta';\alpha'))\) and conversely, \(\alpha \neq 0 \Rightarrow \sigma = 0\).

So \(|\hat{J}| = m - |J_1|\). By 2.4.3, because \(p(J_1) = \emptyset\),

\(r(\emptyset) = m - |J_1| = |\hat{J}| = p\) as required.

(ii) Move across to \(\sigma\) all but the squares which do not lie in the first column of \(\emptyset\) and then move up to the first row of \(\sigma\). Since \(r(\emptyset) = p\), we obtain \((1^p;1-p) = (\lambda;\mu)\). Thus \((\emptyset;\sigma) \rightarrow (\lambda;\mu)\).

Now suppose \(J \nsubseteq K \subseteq I\) and \(p(K) = (\emptyset;\emptyset)\). Then \((\emptyset;\emptyset)\)

is obtained from \((\emptyset;\sigma)\) by moving whole rows up in \(\emptyset\) and also across to \(\sigma\). Hence \(r(\emptyset) < r(\emptyset) = p = r(\lambda)\), so

\((\emptyset;\emptyset) \not< (\lambda;\mu)\) and therefore by 3.3.8

\[(1_{\hat{J}}^G, \chi(r;\lambda)) = 0\]. Hence

\[(\emptyset, \chi(r;\lambda)) = (1_{\hat{J}}^G, \chi(r;\lambda)) = 0\] by 3.3.8 since

\((\emptyset;\emptyset) \rightarrow (\lambda;\mu)\).
So $|\mathcal{J}| = p \Rightarrow (\psi^\mathcal{J}, \chi^{(\mu, \lambda)}) \neq 0$. Because there are
$\binom{1}{p}$ subsets of I of order p and $\chi^{(\mu, \lambda)}(1) = \binom{1}{p}$, we have
as in 2.4.3 $(\psi^\mathcal{J}, \chi^{(\mu, \lambda)}) = 1$ (and $(\psi_K, \chi^{(\mu, \lambda)}) = 0$ if
$|\mathcal{K}| \neq p$).

Theorem 3.5.4

Let χ be the irreducible character of G afforded
by $\Lambda^p V$. Then $\chi = \chi^{(\lambda, \lambda)}$.

Proof

χ is irreducible so $\chi = \chi^{(\delta, \delta)}$ for some pair of
partitions $(\delta; \delta)$ of I.

Let $\mathcal{J} = \{(p+1, p+2), \ldots, (1-1, 1), (1, -1)\}$
hence $\mathcal{J} = \{(12), (23), \ldots, (p, p+1)\}$
so that $|\mathcal{J}| = p$.

Then $(\delta; \sigma) = p(J) = (\lambda^P; 1-p) = (\lambda; \lambda')$.

By [17] $\Lambda^p V$ is an irreducible submodule of $\Lambda^p V$ and
therefore $(\psi^\mathcal{J}, \chi^{(\delta, \delta)}) \neq 0$. So by 3.5.1 $(\psi^\mathcal{J}, \chi^{(\delta, \delta)})$
i.e. $(\lambda; \lambda') \rightarrow (\delta; \delta)$.

Now let $\mathcal{J} = \{(12), \ldots, (1-p, 1-p+1)\}$
so $\mathcal{J} = \{(1-p+1, 1-p+2), \ldots, (1-1, 1), (1, -1)\}$, $|\mathcal{J}| = p$.

Then $(\lambda; \lambda') = p(J) = (1-1, p) = (\lambda; \lambda')$. Hence
$(\delta; \delta) \rightarrow (\lambda; \lambda')$. Again $(\psi^\mathcal{J}, \chi^{(\delta, \delta)}) \neq 0$ so by 3.5.1,
$(\delta; \delta) \rightarrow (\lambda; \lambda')$, i.e. $(\delta; \delta) \rightarrow (\lambda; \lambda')$.

So $(\lambda; \lambda') \rightarrow (\delta; \delta) \rightarrow (\lambda; \lambda')$ and since \rightarrow is anti-symmetric
$(\lambda; \lambda') = (\delta; \delta)$ as required.

We now show that there are only two subsets \mathcal{J} of
I such that $\Lambda^p V$ is irreducible, so that Solomon's
decomposition is a long way from being a complete
decomposition of A.
Theorem 3.5.5

\[A \epsilon J \eta J \text{ is irreducible if and only if } J = \emptyset \text{ or } J = I \]

Proof

Suppose \(A \epsilon J \eta J \) (and therefore \(\psi_J \)) is irreducible.

Let \(|J| = p\), then by 3.5.2, 3.5.3

\[(\varphi; \sigma) = (\lambda; \alpha) = (\lambda; \mu) = (1^p; 1-p) \]

therefore \(\sigma = (1-p) \) and \(\alpha' = (p) \). But \(J \cap \hat{J} = \emptyset \), so

either \(\sigma = 0 \) or \(\alpha = 0 \). Hence \(p = 0 \) or \(p = 1 \). Therefore

\[(\varphi; \sigma) = (-; 1) \text{ or } (\varphi; \sigma) = (1^1; -) \text{ so } J = I \text{ or } J = \emptyset. \]

Conversely, suppose \(J = I \), then \(A \epsilon J \eta J = A.1 \) which

affords the unit character of \(G \). If \(J = \emptyset \), \(A \epsilon J \eta J = A \epsilon \)

which affords the sign character \(\epsilon \) of \(G \). In both cases,

therefore, \(A \epsilon J \eta J \) is irreducible.

§3.6 Maximal and other Weyl subgroups of \(W(C_1) \)

In §3.3 we defined a bijection \(X \) from the set of

Weyl subgroups of \(G \) to the set of irreducible characters

of \(G \). We want to prove this is consistent in much the

same way as in §2.5, and this is done in 3.6.1.

The maximal Weyl subgroups of \(G \) are of type \(A_{l-1} \)

and \(C_1 + C_{l-1} \) for \(1 < i < l-1 \). Thus \(W(C_{l-1}) \) is not a

maximal Weyl subgroup of \(G \), and we consider the maximal

ones later on in this section.

Define (as in §2.5) \(\lambda^* = (\lambda^1) \) where \(\lambda \) is a partition

Theorem 3.6.1

Let \((\lambda; \mu)\) be a pair of partitions of \(l-1 \) and let

\((\lambda; \mu)^* = (\lambda^*; \mu)\) - a pair of partitions of \(l \). Then
\[(\chi^{(\lambda;\mu)})^G = \chi^{(\lambda;\mu)*} + \sum \chi^{(\kappa;\beta)}\]

summed over all those pairs of partitions \((\kappa;\beta)\) \((\neq (\lambda;\mu)*)\)
of 1 obtained from \((\lambda;\mu)\) by adding a square to the end of a row of \(\lambda\) or by adding a square to the end of a row of \(\mu\). In particular, \((\kappa;\beta) > (\lambda;\mu)*\).

Proof

Notation: \(G^i = W(C_{l-1})\) so \(G^i = N'H^i\), \(H^i = S_{l-1}\).

\(\chi^{(\kappa;\beta)} = \phi^G\) with the usual notation, and

\(\chi^{(\lambda;\mu)} = \phi^G\) with the notation as in §3.1, except that we dash the appropriate symbols. We shall also assume \(H^i\) is the symmetric group on the letters \([1,\ldots, l-1]\).

Let \(\Gamma' = (\chi^{(\lambda;\mu)})^G, \chi^{(\kappa;\beta)})\). Then

\[\Gamma \neq 0 \Rightarrow 0 \neq \sum_{y \in [y_1]} (\phi^{N'C'\cap \hat{NC}Y}) \cdot \chi^{N'C'\cap \hat{NC}Y}\]

where \([y_1]\) is a set of \((N'C', NC)\)-double coset representatives and each \(y_1 \in H\). Hence for some \(y \in [y_1]\),

\[(\phi^{N'C'\cap \hat{NC}Y}) \cdot \chi^{N'C'\cap \hat{NC}Y} \neq 0.\]

It is easy to see that \(N'C' \cap (NC)\hat{Y} = N'C' \cap NC\hat{Y} = N'(C' \cap \hat{c}\hat{y})\).

Hence \((\zeta')^\dagger, (\zeta')^{N'C'NC\hat{Y}} \cdot (\hat{Y})^{C'NC\hat{Y}})^\dagger \neq 0\)

So \((\zeta')^\dagger, (\zeta')^{N'C'} \neq 0\) and therefore \(\zeta' = (\hat{Y})^{N'C'}\).

Let \(|\lambda| = m\), \(|\mu| = n\), \(|\kappa| = m\), \(|\beta| = n\).

Now \(\zeta'\) takes the value 1 (resp. -1) on the sign changes given by the \(m\) (resp. \(n\)) symbols of the first (resp. second) type. Similarly for \(\zeta\). Thus \(\zeta\) takes the value
1 (resp. -1) on m (resp. n) sign changes.

Since \(z' = (Yz)_N' \) we have \(m' \leq m \) and \(n' \leq n \). But

\[m + n = 1, \quad m' + n' = 1 - 1 \]

so \(m = m' + 1 \) and \(n = n' + 1 \) or \(n' \). Therefore we may assume that in \(G' \)

\[\{1, \ldots, m'\} \] are the symbols of the first type and

\[\{m' + 1, \ldots, l - 1\} \] are the symbols of the second type. So

we have that in \(G \), by rearranging the symbols, \(\{1, \ldots, m'\} \)

are also of the first type and \(\{m' + 1, \ldots, l - 1\} \) are also

of the second type and the symbol 1 is undetermined.

It follows immediately that \(z' = z_N' \) so

\[(Yz)_N' = z_N', \quad ... \quad (A) \]

We now show that \(y = 1 \).

Let \((b, -b) \in N \) and \(y^{-1}(b) \neq 1 \) so \((y^{-1}(b), -y^{-1}(b)) \in N' \)

Then

\[y^{-1} z(b, -b) = z(y^{-1}(b), -y^{-1}(b)) = y z(y^{-1}(b), -y^{-1}(b)) \quad \text{by} \quad (A) \]

\[= z(b, -b) \]

Now consider \((1, -1) \notin N' \). Then if

(i) \(y^{-1} 1 = 1 \) then \(y^{-1} z(1, -1) = z(y^{-1} 1, -y^{-1} 1) = z(1, -1) \)

(ii) \(y^{-1} 1 \neq 1 \) then \((y^{-1} 1, -y^{-1} 1) \in N' \) so as for \(b \) above

\[y^{-1} z(1, -1) = z(1, -1) \]

Finally,

suppose \(y(1) = a \neq 1 \), so \((a, -a) \in N' \). Then

\[z(a, -a) = y z(a, -a) \quad \text{by} \quad (A) \]

\[= z(ya, -ya) \]

\[= \ldots \]

\[= z(y^{r-1}a, -y^{r-1}a) \quad \text{by applying} \quad (A) \]

where \(y \) includes the \(r \)-cycle \((1, ya, \ldots, y^{r-1}a) \)

\[= z(1, -1) \quad \text{by applying} \quad (A) \ \text{again} \]

\[= z(y^{-1}a, -y^{-1}a) \]

\[= y^{-1} z(a, -a) \]
Hence for all symbols \(d \in \{1, \ldots, l\} \),
\[
y^{-1} \zeta(d, -d) = \zeta(d, -d) \quad \text{i.e. } y^{-1} \in C_H(\zeta) = C,
\]
so \(y \in C \)
and therefore \(y \) is in the first double coset \(N^iC'NC \)
so \(y = 1 \).

Hence \(\Gamma' \neq 0 \quad \Rightarrow \quad \Gamma = (\phi_{N'C'NC}, \phi_{N'C'NC}) \)
\[
= (\phi_{N'C'}, \phi_{N'C'})
\]
since by construction \(C' \leq C \)
\[
= (\zeta', \zeta_N')(\psi', \psi_C')
= 1(\psi', \psi_C')
= (\chi', \chi_N)(\chi^\alpha, \chi^\beta)_{S_m, S_n}
\]
because \(C' = S_m, S_n \) and \(S_m < S_m, S_n < S_n \).

So \((\chi^m, \chi^\alpha) \neq 0 \) and \((\chi^N, \chi^\beta) \neq 0 \) by Frobenius

If (a) \(m = m' + 1 \) and \(n = n' \), then \(\mu = \beta \) and by
2.5.1, \(\alpha \) is obtained by adding a square to the end of
a row of \(\lambda \); or if (b) \(m = m' \) and \(n = n' + 1 \) then \(\lambda = \alpha \)
and by 2.5.1, \(\beta \) is obtained by adding a square to the end of a row of \(\mu \) . Hence \((\alpha; \beta) \) is obtained by adding
a square to the end of a row of \(\lambda \) or \(\mu \). In either
case, by 2.5.1, \(((\chi^m, \chi^\alpha) = 1 = ((\chi^N, \chi^\beta)) \),
so \(\Gamma = 1 \).

Finally, if \((\alpha; \beta) \) is obtained by adding a square to
the end of a row of \(\lambda \) or \(\mu \) we see by 2.5.1 that
\(((\chi^m, \chi^\alpha) = 1 = ((\chi^N, \chi^\beta)) \) and \(\zeta' = \zeta_N' \) so the
first term in the summand of \(\Gamma' \) is non-zero i.e. \(\Gamma' \neq 0 \).
Hence \(\chi^{(\alpha; \beta)} \) occurs in the decomposition of \((\chi^{(\lambda; \rho)})^G \).

We now give the decomposition for inducing an
irreducible character up from a maximal Weyl subgroup of \(G \).
Theorem 3.6.2 (Inducing up from A_{l-1})

Let $\lambda \vdash l$ and $(\alpha; \beta)$ a pair of partitions of l.

Then

$$(\chi^{\lambda'})^G, \chi^{(\alpha; \beta)} \neq 0 \implies (\lambda; \gamma) \to (\beta; \alpha) \to (-; \lambda)$$

and

$$(\chi^{\lambda})^G, \chi^{(\lambda; -)} = 1$$

Proof

Suppose $0 \neq ((\chi^{\lambda})^G, \chi^{(\alpha; \beta)}) = (\chi^{\lambda}, \chi^{(\alpha; \beta)})$ by Frobenius. Hence by 2.2.7

$$(1^H, \chi^{(\alpha; \beta)}) \neq 0 \text{ and } (e^H, \chi^{(\alpha; \beta)}) \neq 0.$$

Now $W_\lambda = W_{(\lambda; -)}$ and $W_{\lambda'} = W_{(\lambda'; -)}$ as Weyl subgroups of G, so using Frobenius again

$$(1^G, \chi^{(\alpha; \beta)}) \neq 0 \text{ and } (e^G, \chi^{(\alpha; \beta)}) \neq 0$$

and by 3.3.8 $(\lambda; -) \to (\beta; \alpha) \to (-; \lambda)$. It follows that $(\lambda; -) \to (\alpha; \beta) \to (-; \lambda)$ by moving across a complementary set of squares.

Also $((\chi^{\lambda})^G, \chi^{(\lambda; -)}) = (\chi^{\lambda}, \chi^{(\lambda; -)})$ by Frobenius

$$= (\chi^{\lambda}, \chi^{H}) \text{ by } 3.1.3$$

and by definition $G = H$, $\psi = \chi^{\lambda}$

$$= (\chi^{\lambda}, \chi^{\lambda})$$

$$= 1 \text{ since } \chi^{\lambda} \text{ is irreducible.}$$

Theorem 3.6.3 (Inducing up from $C_1 + C_{l-1}$)

Let $(\lambda; \lambda)$ be a pair of partitions of i and $(\alpha; \beta)$ a pair of partitions of j, where $i + j = l$; let $(\alpha; \beta)$ be a pair of partitions of l. Then
\[((\chi^{(\lambda;\rho)}, \chi^{(\mu;\nu)}), \chi^{(\alpha;\beta)}) \neq 0 \text{ implies} \]

\[(\alpha;\beta) \rightarrow (\lambda;\rho) \rightarrow (-\lambda;\alpha) \text{ and } (\beta;\gamma) \rightarrow (\mu;\nu) \rightarrow (-\beta;\gamma) \]

Proof

We let \(G_i = W(C_i) \), \(G_j = W(C_j) \) and \(G_i = H_i H_i \), \(G_j = N_j H_j \) and use the obvious notation for characters.

Let \(Z = H_i \times H_j \) and \(Y = G_1 \times G_j \). Then \(N = N_i \times N_j \)

and \(Y = NZ \).

Let \(\Delta = ((\chi^{(\lambda;\rho)}, \chi^{(\mu;\nu)}), \chi^{(\alpha;\beta)}) \)

\[= ((\phi_i^{G_1} \cdot \phi_j^{G_j} G, \rho^G) \]

\[= (((\phi_i \cdot \phi_j)^{G_1 \times G_j} G, \rho^G) \quad \text{by } 1.2.5(11) \]

\[= ((\phi_i \cdot \phi_j)^G, \rho^G) \quad \text{by transitivity of} \]

induction

\[= \sum_{g \in [g_1]} ((\phi_i \cdot \phi_j)^G, \rho^G) \]

where \([g_1] \) is a set of \((G_i, G_j)\)-double coset representatives

\(g_i \in H_i \quad \text{and} \quad G_i = C_i \times C_j = C_h(\zeta_i) \times C_h(\zeta_j) \).

Hence \(\Delta \neq 0 \) implies that there exists \(g \in [g_1] \)

such that

\[((\phi_i \cdot \phi_j)^G, \rho^G) \neq 0. \]

But \(NC_i \cap NC_j = N(C_i \cap C_j) \) since \(g \in H \). Thus

\[0 \neq ((\phi_i \cdot \phi_j)^G, (\rho^G)) = ((\phi_i)^{N_1} \cdot (\phi_j)^{N_j}, (\rho^G)_N) \]

\[\Rightarrow (c_i \cdot c_j, c) \neq 0 \]

\[\Rightarrow (c_i, (\xi_i)^{N_1}, (\xi_j)^{N_j}, (\xi_c)^{N_j}) \neq 0, \quad \text{since } N = N_i \times N_j \]

and \(\xi_c \) is linear

\[\Rightarrow c_i = (\xi_i)^{N_1} \quad \text{and} \quad c_j = (\xi_j)^{N_j} . \]
Let $|\lambda| = m_1$, $|\mu| = n_1$, $|\ell| = m_j$, $|\sigma| = n_j$, $|\alpha| = m$, $|\delta| = n$.

It follows, as in 3.6.1, that $m_1 + m_j = m$, $n_1 + n_j = n$, so by ordering the symbols correctly we have

$c_1 = c_{N_1}$, $c_j = c_{N_j}$.

Hence

$$
E_\zeta = (E_\zeta)_{N_1} \cdot (E_\zeta)_{N_j} = c_1 \cdot c_j = c_{N_1} \cdot c_{N_j} = c.
$$

So $g \in C_H(\zeta) = C$ which is in the first double coset, i.e. $g = 1$.

Therefore $\Delta = ((g_i \cdot g_j)_{NC} \cdot \sigma_{NC} \cdot \sigma_{NC} \cdot \sigma_{NC})$.

Now we have ensured that $G' = C_i \times C_j$

$$
= S_{m_1} \times S_{n_1} \times S_{m_j} \times S_{n_j}
$$

$$
= S_{m_1} \times S_{m_j} \times S_{n_1} \times S_{n_j}
$$

$$
< S_m \times S_n = C
$$

Therefore $NC' < NC$. So

$$
\Delta = ((g_i \cdot g_j), \sigma_{NC})
$$

$$
= (c_i \cdot c_j, c)(\psi_i \cdot \psi_j, \psi_{C_i})
$$

$$
= (c, c)(\psi_i \cdot \psi_j, \psi_{C_i}) \text{ by above}
$$

$$
= (\{\chi^\lambda, \chi^\mu\} \cdot (\chi^\ell, \chi^\sigma), (\chi^\alpha, \chi^\delta)_{C_i}) \text{ since } c \text{ is irreducible}
$$

$$
= ((\chi^\lambda, \chi^\mu), (\chi^\alpha, \chi^\sigma), (\chi^\delta, \chi^\delta))
$$

$$
= (S_{m_1} \times S_{m_j}) \times (S_{n_1} \times S_{n_j})
$$

$$
= (S_{m_1} \times S_{m_j}) \times (S_{n_1} \times S_{n_j})
$$

$$
= (\chi^\lambda, \chi^\mu, \chi^\alpha)_{S_{m_1} \times S_{m_j}} \times (\chi^\delta, \chi^\delta)_{S_{n_1} \times S_{n_j}}
$$

$$
= ((\chi^\lambda, \chi^\mu), (\chi^\alpha, \chi^\sigma)) (\chi^\delta, \chi^\delta)
$$

$$
= (\chi^\lambda, \chi^\mu, \chi^\alpha)_{S_m \times S_n} \times (\chi^\delta, \chi^\delta)_{S_n \times S_n}
$$

$$
= (\chi^{(\lambda'; \ell)}_{S_m}, \chi^\alpha) (\chi^{(\mu; \sigma)}_{S_n}, \chi^\delta)
$$

by 3.1.3(ii)
\[(X^{(\lambda; \rho)}, (X^\alpha)^{G_m}(X^{(\mu; \sigma)}, (X^\beta)^{G_n}) \]

where \(G_m = W(C_m) \), \(G_n = W(C_n) \).

So \(\Delta \neq 0 \implies ((X^\alpha)^{G_m}, X^{(\lambda; \rho)}) \neq 0 \) and \(((X^\beta)^{G_n}, X^{(\mu; \sigma)}) \neq 0 \)
and therefore by 3.6.2
\[(\alpha; -) \rightarrow (\lambda; \rho) \rightarrow (-; \alpha) \quad \text{and} \quad (\beta; -) \rightarrow (\mu; \sigma) \rightarrow (-; \beta), \]
proving the theorem.

We shall now give the theorem, mentioned at the end of chapter two, about inducing up the irreducible characters from the maximal Weyl subgroup \(A_1 + A_{1-1} \) of \(W(A_1) \).

Theorem 3.6.4

Suppose \(\lambda \vdash 1+1 \), \(\alpha \vdash 1+1 \), \(\beta \vdash 1-1 \). Let \(W = S_{1+1} \).

Then
\[((X^\alpha X^\beta)^W, X^\lambda) \neq 0 \implies (\lambda; -) \rightarrow (\alpha; \beta) \rightarrow (-; \lambda) \]

Proof

Regard \(W \leq G' = W(C_{1+1}) \).

\[((X^\alpha X^\beta)^W, X^\lambda) \neq 0 \implies (X^{(\alpha; \beta)^W}, X^\lambda) \neq 0 \] by 3.1.3(ii)
\[\implies (X^{(\alpha; \beta)}, (X^\lambda)^{G_1}) \neq 0 \]
by Frobenius
\[\implies (\lambda; -) \rightarrow (\alpha; \beta) \rightarrow (-; \lambda) \]
by 3.6.2.
Chapter four WEYL GROUPS OF TYPE D

The Weyl group of type D has been rather less well studied, and poses problems that do not occur in either the symmetric group or Weyl groups of type C.

Young [20] determined the conjugacy classes and irreducible characters. We shall be considering this group in the same manner as the groups in the previous two chapters, although we cannot expect to get such 'nice' results. However, we can give an algorithm to determine the decomposition of \(W(D_1) \), where \(W \) is a Weyl subgroup of \(W(D_1) \).

§4.1 The conjugacy classes and irreducible characters

Throughout this chapter we shall be using the notation of chapter three.

Let \(K = W(D_1) \) - the Weyl group of rank 1 of type D. Then \(K \) is a subgroup of \(G = W(C_1) \) of index 2, hence \(K \triangleleft G \). We can describe \(K \) by considering it as a subgroup of \(G \); viz. an element \(g \in G \) lies in \(K \) if and only if the cycle decomposition of \(g \) into disjoint cycles contains an even number of cycles.

It is then clear that \(|G:K| = 2 \) so \(|K| = 2^{1-1}.1! \)

\(K \cap N \) is the subgroup of index 2 of \(N \), generated by pairs of sign changes. If we remember that a negative cycle is a positive cycle multiplied by a sign change (p 40) we see that \(K = (K \cap N)H \).

Notation: we let \(W(D_2) = \{(1),(12),(1,-1)(2,-2),(1,-2)\} \) which is isomorphic to the non-cyclic group of order 4.
The conjugacy classes of K were given by Carter [5]

Lemma 4.1.1

Two elements of K are conjugate if and only if they have the same signed cycle-type, except that if all the cycles are even and positive there are two conjugacy classes.

In the latter case, the conjugacy classes consist of elements in which the total number of negative signs appearing in the cycles is even or in which the total number is odd.

We turn now to the irreducible characters, where we find a similar situation to that in 4.1.1.

Theorem 4.1.2

With the usual notation, let $(\lambda; \mu)$ be a pair of partitions of 1. Then

(i) $\chi^{(\lambda; \mu)}_K$ is an irreducible character of K if $\lambda \neq \mu$;

(ii) $\chi^{(\lambda; \mu)}_K = \chi^{(\mu; \lambda)}_K$;

(iii) $\chi^{(\lambda; \lambda)}_K$ is the sum of 2 distinct irreducible characters of K of the same degree;

(iv) every irreducible character of K has the form $\chi^{(\lambda; \mu)}_K (\lambda \neq \mu)$ or is a component of $\chi^{(\lambda; \lambda)}_K$ for some λ, μ;

(v) all the irreducible characters of K mentioned in (iv) are distinct.

Before proving 4.1.2, we prove the following, more general, result

Lemma 4.1.3

For the purposes of this lemma only, let G, K be
arbitrary finite groups such that K is a subgroup of G of index 2.

(a) Let θ be an irreducible character of K. Then either (i) θ^G is irreducible and $(\theta^G)_K = \theta + \theta'$, where θ' is an irreducible character of K such that $\theta \neq \theta'$ and $\theta^G = \theta' G$;
or (ii) $\theta^G = \chi_i + \chi_i$ where χ_i, χ_i are distinct irreducible characters of G such that
$(\chi_i)_K = \theta = (\chi_i)_K$.

(b) Let χ be an irreducible character of G. Then either (i) χ_K is irreducible and $(\chi_K)^G = \chi + \chi'$ where χ' is an irreducible character of G, $\chi \neq \chi'$, and $\chi_K = \chi'_K$;
or (ii) $\chi_K = \theta_1 + \theta_2$ where θ_1, θ_2 are distinct irreducible characters of K such that $\theta_1 = \chi = \theta_2$.

Proof

(a) Let $T = C_G(\theta)$ so $K \leq T \leq G$ (θ is a class function on K) hence either (i) $T = K$ or (ii) $T = G$.

(1) $T = K$

Therefore $(\theta^G, \theta^G) = \sum_{y \in \{y_1\}} (\theta_{K \cap K^y}, (\gamma \theta)_{K \cap K^y})$

where $\{y_1\}$ is a set of (K, K)-double coset representatives.

Hence $(\theta_{K \cap K^y}, (\gamma \theta)_{K \cap K^y}) \neq 0$ \Rightarrow $(\theta, \gamma \theta) \neq 0$ ($K < G$)

$\Rightarrow \theta = \gamma \theta$

$\Rightarrow y \in T$ $\Rightarrow y = 1$

Therefore $(\theta^G, \theta^G) = (\theta, \theta) = 1$, hence θ^G is irreducible.

So $(\theta^G)_K \cdot \theta = (\theta^G, \theta^G)$ by Frobenius
Let \((\theta^G)^K = \theta + \theta'\) where \(\theta'\) is a character of \(K\) such that \((\theta, \theta') = 0\). Thus
\[
(\theta^G, \theta'^G) = ((\theta^G)^K, \theta') = (\theta + \theta', \theta') = (\theta', \theta') \neq 0.
\]
So since \(\theta^G\) is irreducible, \(\theta'^G = (\theta', \theta')\theta^G + \chi\) where \(\chi\) is a character of \(G\) such that \((\chi, \theta^G) = 0\).

Now \(\theta'(1) = (\theta^G)^K(1) - \theta(1) = 2\theta(1) - \theta(1) = \theta(1)\). So
\[
2\theta(1) = 2\theta'(1) = \theta^G(1) = (\theta', \theta')\theta^G(1) + \chi(1)
\]
i.e. \(2\theta(1) = 2(\theta', \theta')\theta(1) + \chi(1)\). Hence \(\chi(1) = 0\), so \(\chi = 0\), and \((\theta', \theta') = 1\) and so \(\theta'\) is irreducible and \(\theta'^G = \theta^G\) and \((\theta, \theta') = 0\) implies \(\theta \neq \theta'\), which proves (1).

(ii) \(T = G\)

Let \(\theta^G = \sum_{i=1}^{r} n_i \chi_i\) where \(\chi_i\) are distinct irreducible characters of \(G\). Since \(G = C_G(\theta)\) it follows that for all \(k \in K\)
\[
\theta^G(k) = \frac{1}{|K|} \sum_{g \in G} \theta(gkg^{-1}) = \frac{1}{|K|} \sum_{g \in G} \theta(k) = 2\theta(k)
\]
i.e. \((\theta^G)^K = 2\theta\). Hence
\[
\sum_{i=1}^{r} n_i (\chi_i)^K = 2\theta \quad \ldots \quad (1)
\]
Also, by Frobenius, \((\theta^G, \theta^G) = ((\theta^G)^K, \theta) = (2\theta, \theta) = 2\) since \(\theta\) is irreducible. Thus \(r = 2\) and \(n_1 = n_2 = 1\), so \(\theta^G = \chi_1 + \chi_2\) and from (1), \((\chi_1)^K + (\chi_2)^K = 2\theta\). Because \(\theta\) is irreducible we see that \((\chi_1)^K = \theta = (\chi_2)^K\), proving (ii).

(b) Let \(\chi_K = \sum_{i=1}^{s} m_i \theta_i\) where \(\theta_i\) are distinct irreducible characters of \(K\). By (a), \(\theta_i^G\) is either irreducible or the sum of two distinct irreducibles.

Hence \(m_i = (\chi_K, \theta_i) = (\chi, \theta_i^G)\) by Frobenius
\[
= 0 \text{ or } 1.
\]
Therefore we may write \(\chi_K = \sum_{i=1}^{t} \theta_i \) where \(\theta_i \) are distinct irreducible characters of \(K \) such that \((\theta_i^G, \chi) = 1 \).

So \(\theta_1^G = \chi + \chi_1 \) where either \(\chi_1 \) is an irreducible character of \(G \) such that \(\chi_1 \neq \chi \) and \(\chi_K = (\chi_1)^K \) or \(\chi_1 = 0 \). Hence

\[
(\chi_K)^G = \sum_{i=1}^{t} \theta_i^G = \sum_{i=1}^{t} (\chi + \chi_1)
\]

So \(2\chi(1) = t\chi(1) + \sum_{i=1}^{t} \chi_1(1) \) and therefore

either (i) \(t = 1 \) and \(\chi_K = \theta_1 \) which is irreducible and

\[(\chi_K)^G = \chi + \chi_1, \quad \chi_K = (\chi_1)^K \]

or (ii) \(t = 2 \) and \(\chi_K = \theta_1 + \theta_2 \) and \(\theta_1^G = \chi = \theta_2^G \)

completing the lemma.

We revert to the notation in chapter three

Lemma 4.1.4

Let \(\chi = \phi^G \) be an irreducible character of \(G \), then

\[\chi_K = (\phi_L)^K \] where \(L = (K \cap N)C. \)

Proof

\(NC.K = NK \) since \(G = C_H(\zeta) < H < K \)

\[\Rightarrow NH = G \]

So \(G = NC.K \). Since \(\phi \) is an irreducible character of \(NC \), it follows, by Mackey's subgroup formula 1.2.2, that

\[(\phi^G)_K = (\phi_L)^K \]

The following combinatorial result is of independent interest and was proved by Young ([20] §8)

Lemma 4.1.5

Let

\[A \] be the number of ordered pairs of partitions \((\lambda; \mu)\) of \(1 \) such that the number of parts of \(\mu \) are even;
B be the number of partitions \(\lambda \) of 1 such that all the parts of \(\lambda \) are even;

C be the number of unordered pairs \((\lambda; \mu)\) of partitions of 1;

D be the number of partitions \(\lambda \) of \(1/2 \) (define \(D = 0 \) if 1 is odd).

Then \(A + B = C + D \)

This will turn out to be the statement that the number of conjugacy classes of \(K \) is equal to the number of irreducible characters of \(K \). Indeed, from 4.1.1, we see that the number of conjugacy classes of \(K \) is precisely \(A + B \).

We are now in a position to prove 4.1.2

Proof of 4.1.2

We first prove (ii)

With the usual notation let \(\chi^{(\lambda; \nu)} = \phi_1^G, \chi^{(\mu; \lambda)} = \phi_2^G \)

where \(\phi_1 = \zeta_1 \psi_1 \), \(\phi_2 = \zeta_2 \psi_2 \).

By definition \(\zeta_1 (a, -a) = -\zeta_2 (a, -a) \) for all \(a \in \{1, \ldots, 1\} \).

Since \(K \cap N \) is generated by pairs of sign changes

\[
(\zeta_1^H)^{K \cap N} = (\zeta_2^H)^{K \cap N}
\]

Also \(C = C^H (\zeta_1) = C^H (\zeta_2) = S_m \times S_n \), and

\[
\psi_1 = \chi^\lambda, \psi^\nu = \chi^\nu, \psi^\lambda = \psi_2 = \psi, \text{ say. Thus letting}
\]

\[
L = (K \cap N) G, (\phi_1)_L = (\zeta_1)^{K \cap N}, \psi = (\zeta_2)^{K \cap N}, \psi = (\psi_2)_L
\]

Hence by 4.1.4

\[
\chi^{(\lambda; \nu)}_K = ((\phi_1)_L)_K = ((\phi_2)_L)_K = \chi^{(\mu; \lambda)}_K.
\]

(1) By 4.1.3, \(\chi^{(\lambda; \mu)}_K \) \((\lambda \neq \mu)\) is either irreducible or is the sum of 2 irreducibles.
Suppose the latter is the case; then \(\chi^{(\lambda;\mu)}_k = \theta_1 + \theta_2 \)
where \(\theta_1, \theta_2 \) are distinct irreducible characters of \(K \), and
\[
\theta_1^G = \chi^{(\lambda;\mu)} = \theta_2^G.
\]
But by (ii)
\[
\chi^{(\mu;\lambda)}_k = \theta_1 + \theta_2 \text{ so that } \theta_1^G = \chi^{(\mu;\lambda)} = \theta_2^G. \quad \text{Hence}
\]
\[
\chi^{(\lambda;\mu)} = \chi^{(\mu;\lambda)} \text{ and therefore } (\lambda;\mu) = (\mu;\lambda), \quad \text{a}
\]
contradiction since \(\lambda \neq \mu \).
Therefore \(\chi^{(\lambda;\mu)}_k (\lambda \neq \mu) \) is irreducible. It follows from
4.1.3 that if \(\theta = \chi^{(\lambda;\mu)}_k (\lambda \neq \mu) \)
\[
= \chi^{(\mu;\lambda)}_k
\]
then \(\theta^G = \chi^{(\lambda;\mu)} + \chi^{(\mu;\lambda)} \).

(iii), (iv), (v) We use the notation in 4.1.5.
The irreducible characters \(\chi^{(\lambda;\mu)}_k (\lambda \neq \mu) \) have not been
shown to be distinct, but there are at most \(C - D \) of
them (by (ii)). Also the number of irreducible
characters of \(K = \) the number of conjugacy classes of \(K \)
\[
= A + B
\]
\[
= C + D \text{ by 4.1.5}
\]
Hence we have unaccounted for at least \((C + D) - (C - D) \)
\(= 2D \) irreducible characters of \(K \). The only case we have
not considered is that of \(\chi^{(\lambda;\mu)}_k \), of which there can be
at most \(D \) of them. By 4.1.3, \(\chi^{(\lambda;\mu)}_k \) is a sum of one or
two irreducible characters of \(K \).

The only way we can reconcile all these inequalities
is for \(\chi^{(\lambda;\mu)}_k \) to be the sum of two irreducible characters
of \(K \) for all pairs of partitions \((\lambda;\mu) \) of 1; for all
the irreducible characters so far obtained to be distinct;
and for all the irreducible characters of \(K \) to be of the
form \(\chi^{(\lambda;\mu)}_k (\lambda \neq \mu) \) or the component of some \(\chi^{(\lambda;\mu)}_k \).
We shall return to an investigation of the irreducible components of $\chi^{(\lambda,\lambda)}_K$ (which only occur when l is even) in a later section.

§4.2 An algorithm for $W(D_l)$

The Weyl subgroups of K have the form

$$S_{\lambda_1} \times \ldots \times S_{\lambda_r} \times W(D_{\lambda_1}) \times \ldots \times W(D_{\lambda_s})$$

where

$$\sum \lambda_i + \sum \mu_i = 1 \quad \text{and} \quad \mu_i \neq 1.$$

We shall write this subgroup as $W_{(\lambda;\mu)}$ putting $\lambda = (\lambda_1, \ldots, \lambda_r)$, $\mu = (\mu_1, \ldots, \mu_s)$ and we may assume that $\lambda_1 \geq \ldots \geq \lambda_r > 0$, $\mu_1 \geq \ldots \geq \mu_s > 1$. Thus the Weyl subgroups may be parameterized by pairs of partitions $(\lambda;\mu)$ of l such that no part of μ is 1.

Just as in §3.2, we may consider $W_{(\lambda;\mu)}$ as the row stabilizer of a diagram $D_{(\lambda;\mu)}$, where in this case a row permutation of $D_{(\lambda;\mu)}$ is an element of K which permutes the symbols in each row of D_{λ} and in each row of D_{μ} and also changes the signs of an even number of symbols in D_{μ}.

Definition

A pair of partitions $(\lambda;\mu)$ of l is called bad if $\mu = 0$ and all the parts of λ are even.

Otherwise $(\lambda;\mu)$ is called good.

It is evident from 4.1.1 and the fact that

$$R(gD_{(\lambda;\mu)}) = gR(D_{(\lambda;\mu)})g^{-1}$$

for all $g \in G$ that (see [5])

Lemma 4.2.1

(a) If $(\lambda;\mu)$ is good, Weyl subgroups isomorphic
to $W_{(\lambda;\mu)}$ are conjugate to it in K. In particular, if $x = (1,-1) \in G \setminus K$ then $W_{(\lambda;\mu)}^x$ is conjugate, in K, to $W_{(\lambda;\mu)}$.

(b) If $(\lambda;\mu)$ is bad, then the set of Weyl subgroups isomorphic to $W_{(\lambda;\mu)}$ splits up into two conjugacy classes. In particular, with x as above, $W_{(\lambda;\mu)}^x$ is not conjugate in K to $W_{(\lambda;\mu)}$.

We now wish to describe an algorithm for determining for a given pair of partitions $(\lambda;\mu)$ of 1, which pair of partitions $(\alpha;\beta)$ of 1 satisfy

$$\chi^{(\alpha;\beta)}_{K} \neq 0.$$

However, since the Weyl subgroups of K are parameterized by ordered pairs of partitions $(\lambda;\mu)$ such that no part of μ is 1, and the characters of K of the form $\chi^{(\alpha;\beta)}_{K}$ by unordered pairs of partitions (4.1.2), we cannot expect to get any sort of relation.

Definition

Let $(\lambda;\mu)$ be an ordered pair of partitions of 1 such that no part of μ is 1, and $(\alpha;\beta)$ an unordered pair. Write $(\lambda;\mu) \rightarrow (\alpha;\beta)$ if $(\alpha;\beta)$ may be obtained from $(\lambda;\mu)$ by

(a) removing connected squares from the end of a row of λ and placing them, in the same order, at the bottom of μ;

(b) repeating (a) with squares from different rows of λ;

and at the same time, but independently, (so no square is
moved twice)

(c) transferring complete rows of \(\mu \) and placing them at the bottom of \(\lambda \);

then

(d) reordering the resulting rows so as to give frames of a pair of partitions \((\gamma; \delta)\) say;

and finally

(e) moving up inside \(\gamma \) and \(\delta \), according to the usual partial ordering on partitions, so as to obtain \(\alpha \) and \(\beta \) respectively (so \(\gamma \preceq \alpha \) and \(\delta \preceq \beta \)).

By moving across a complementary set of squares between \(\lambda \) and \(\mu \) we see that

\[
(\lambda; \mu) \xrightarrow{D} (\alpha; \beta) \iff (\lambda; \mu) \xrightarrow{D} (\beta; \alpha)
\]

which is consistent with our choice of \((\alpha; \beta)\) to be unordered.

The algorithm introduced in chapter three for \(G \) will from now on be written as \(\xrightarrow{G} \). It is clear that (provided no part of \(\mu \) is 1)

\[
(\lambda; \mu) \xrightarrow{G} (\alpha; \beta) \Rightarrow (\lambda; \mu) \xrightarrow{D} (\alpha; \beta)
\]

We can now state

Theorem 4.2.2

Let \((\lambda; \mu), (\alpha; \beta)\) be ordered (resp. unordered) pairs of partitions of 1 such that no part of \(\mu \) is 1. Then

\[
(1, W_{(\lambda; \mu)}^{(\kappa; \beta)}) \neq 0 \iff (\lambda; \mu) \xrightarrow{D} (\alpha; \beta)
\]

The following lemma is proved in precisely the same way as 3.3.2
Lemma 4.2.3

Let \(W = R(D_{\lambda;\mu}) \). Then

(a) \(W = (NnW)(HnW) \) and \((NnW) \cap (HnW) = 1 \)

If also \(y \in H \), \(C = C_H(\zeta) \) for some irreducible character \(\zeta \) of \(N \) and \(L = (KNW)C \)

(b) \(\bar{W}^Y = (NnW)^Y(HnW)^Y \) and \((NnW)^Y \cap (HnW)^Y = 1 \)

(c) \(L \cap W^Y = (NnW)^Y(C\cap W^Y) \) and \((NnW)^Y \cap (C\cap W^Y) = 1 \)

Proof of 4.2.2

Suppose first that \((1, \kappa, W) \neq 0 \) and let

\[W = W_{(\lambda;\mu)} \]

Then by 4.1.4 and Mackey's formula,

\[\bar{\phi} = \phi_{W_{(\lambda;\mu)}} \neq 0 \]

\[\phi_{W_{(\lambda;\mu)}} \]

\[= (1, \kappa, W) = (1, \kappa, \phi_{L}) = \sum_{y \in \{y_1\}} (\gamma_1_{W^YnL}, \phi_{W^YnL}) \]

\[\gamma \in \{y_1\} \]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
the signs of symbols in D_{μ}. Thus in any one row of D_{μ} the symbols must either all be of the first type or all of the second type (otherwise $C_{MN\overline{W}} \neq 1$). Hence we may transfer those complete rows of D_{μ} which contain symbols of the first type to D_λ, and independently move the squares of D_λ (so that moved squares in the same row stay in the same row) containing the symbols of the second type to D_{μ}. On reordering the rows we obtain a diagram $D_{(\gamma;\delta)}$ of a pair of partitions $(\gamma;\delta)$ of 1 such that D_γ contains all the symbols of the first type and D_δ contains all the symbols of the second type. This corresponds to operations (a), (b), (c), (d) on p 92-3. So to show $(\lambda;\mu) \rightarrow (\alpha;\beta)$ we have only to show $\gamma \leq \alpha$, $\delta \leq \beta$.

By construction $|\gamma| = m = |\alpha|$, $|\delta| = n = |\beta|$. By (A) above

$$\left(C_{MN\overline{W}}, \bigcup C_{MN\overline{W}} \right) \neq 0$$

But this is exactly the same stage that we reached in the proof of 3.3.1. So by precisely the same argument

$$0 \neq \left(C_{MN\overline{W}}, \bigcup C_{MN\overline{W}} \right) = ((1^m W_\gamma, \chi^\gamma)((1^m W_\delta, \chi^\delta$$

and therefore by 2.3.6, $\gamma \leq \alpha$ and $\delta \leq \beta$.

So $(\lambda;\mu) \rightarrow (\alpha;\beta)$.

Conversely, suppose $(\lambda;\mu) \rightarrow (\alpha;\beta)$. Therefore we may move parts of rows of λ across to μ and complete rows of μ across to λ to obtain a pair of partitions $(\gamma;\delta)$ of 1 such that $\gamma \leq \alpha$, $\delta \leq \beta$. Hence we may define a diagram $D_{(\lambda;\mu)}$ filled with the symbols $\{1, \ldots, 1\}$ such that each row of D_{λ} contains only symbols of one type.

Then let $W = W_{(\lambda;\mu)} = R(D_{(\lambda;\mu)})$, so all pairs of sign changes in $\mathbb{N} \cap W$ consist of symbols which are of
the same type i.e. \(\tilde{c}_{NW} = 1 \). So \((\tilde{c}_{NW}, 1) \neq 0 \).

Also by 2.5.6, since \(\gamma \leq \alpha \) and \(\delta \leq \beta \)

\[
\left(1_{NW} \cdot c_{NW} \right) \left((1_{W}^{S_{M}} , \chi^{\alpha}) (1_{W}^{S_{N}} , \chi^{\delta}) \right) \neq 0
\]

and this is, by the proof of the first part of the theorem, the first summand in the Mackey formula for

\[
(1_{W}^{K} , \chi^{(\alpha, \beta)}) . \text{ Hence } (1_{W}^{K} , \chi^{(\alpha, \beta)}) \neq 0 ,\text{ proving the theorem.}
\]

Remark

If \(\mu = 0 \) then \(W_{(\lambda_{;} -)} \) is a Weyl subgroup of \(G \) and as such is also written \(W_{(\lambda_{;} -)} \). Now

\[
(1_{W}^{K} , \chi^{(\alpha, \beta)}) = (1_{W}^{K} , \chi^{(\alpha, \beta)}) = (1_{W}^{G} , \chi^{(\alpha, \beta)})
\]

So by 3.3.8 and 4.2.2

\[
(\lambda ; -) \to (\alpha ; \beta) \iff (\lambda ; -) \to (\alpha ; \beta)
\]

a result which can be seen to be true from the definitions of \(\to \) and \(\to \).

Before we can strengthen 4.2.2 and find which irreducible components of \(\chi^{(\alpha, \beta)} \) occur in \(1_{W}^{K} \) where \((\lambda ; \mu) \to (\alpha ; \beta) \) we shall need to study these components more carefully.

§4.3 The remaining irreducible characters

In this section we shall assume that \(l \) is even, so that characters of the form \(\chi^{(\lambda_{;} \lambda)} \) do occur.
Let \(x = (1, -1) \) — a single sign change, so \(x \in G \setminus K \).

Hence \(G/K = [K, xK] = [K, Kx] \)

For the whole of this section \(\lambda = 1/2 \).

Lemma 4.3.1

\[
\chi^{(\lambda; \mu)}_k = \theta_\lambda + \chi^\mu_\lambda
\]

where \(\theta_\lambda, \chi^\mu_\lambda \) are distinct irreducible characters of \(K \).

Proof

By 4.1.3, \(\chi^{(\lambda; \mu)}_k = \theta_\lambda + \theta^\mu_\lambda \) where \(\theta_\lambda \neq \theta^\mu_\lambda \) and from the proof of 4.1.3(a) we see that \(C_G(\theta_\lambda) = K \).

Because \(\chi^{(\lambda; \mu)} \) is a class function on \(G \)

\[
\theta_\lambda + \theta^\mu_\lambda = \chi^{(\lambda; \mu)}_k = x \chi^{(\lambda; \mu)}_k = x \theta_\lambda + x \theta^\mu_\lambda
\]

Now \(\theta_\lambda, \theta^\mu_\lambda, \chi^\mu_\lambda, \chi^\mu_\lambda \) are all irreducible so either \(\theta_\lambda = \chi^\mu_\lambda \) or \(\theta^\mu_\lambda = \chi^\mu_\lambda \).

But \(x \) generates \(G/K \) so, since \(\theta_\lambda \) is a class function on \(K \), \(\theta_\lambda = \chi^\mu_\lambda \Rightarrow \theta_\lambda = \xi \theta_\lambda \) for all \(g \in G \)

\[
\Rightarrow C_G(\theta_\lambda) = G, \text{ a contradiction.}
\]

Hence \(\theta^\mu_\lambda = \chi^\mu_\lambda \) proving the lemma.

We would like to obtain \(\theta_\lambda \) and \(\chi^\mu_\lambda \) in the form of induced characters in much the same way as we did for \(\chi^{(\lambda; \mu)} \).

By definition of \(\chi^{(\lambda; \mu)} \) the number of symbols of the first type is the same as the number of symbols of the second type viz. \(1/2 \). So we arrange the symbols so that

\[
\zeta(a, -a) = 1 \quad \text{for } a \in \{1, \ldots, 1/2\}
\]

and \(\zeta(a, -a) = -1 \quad \text{for } a \in \{1/2 + 1, \ldots, 1\} \)

We now define an involution in \(H \) which interchanges the symbols of the first type into those of the second
type and vice-versa.

Let \(y = (1 \, 1/2 \, +1)(2 \, 1/2 \, +2) \ldots (l/2 \, l) \) and note that \(y \in K \).

Lemma 4.3.2

Let \(T = C_K(z_{K\cap N}) \). Then \(T = \langle y \rangle \) and \(L \cap \langle y \rangle = 1 \).

Proof

Let \(t \in L \) then \(t \in (K \cap N) \cap \) by the modular law

\[= K \cap NC \]

\[= K \cap C_G(z) = C_K(z) \]

\[t \cdot z = z \quad \text{and hence} \quad t \cdot z_{K\cap N} = z_{K\cap N} \quad \text{and therefore} \quad t \in T. \]

Since \(L \leq T \).

By definition of \(y \), \(y_z(a, -a) = -z(a, -a) \) for all \(a \in [1, \ldots, l] \) and so \(y_z(a, -a)(b, -b) = z(a, -a)(b, -b) \)

for all \(a, b \in [1, \ldots, l] \). Since \(K \cap N \) is generated by sign changes \(y_z_{K\cap N} = z_{K\cap N} \) and therefore \(y \in T \). Thus \(\langle y \rangle \leq T \).

Also \(y \notin C_K(z) = L \) so \(L \cap \langle y \rangle = 1 \).

Conversely, let \(t \in T \) so that \(t \cdot z_{K\cap N} = z_{K\cap N} \). Suppose \(\notin L \), then there exists \((a, -a) \in N \) such that

\[(a, -a) = -z(a, -a) \quad \text{Let} \quad \{a_1, \ldots, a_r\} \quad \text{be the subset of} \]

\(1, \ldots, l \) such that \(t \cdot z(a_i, -a_i) = -z(a_i, -a_i) \) for \(1 \leq i \leq r \),

and \(t \cdot z(b, -b) = z(b, -b) \) for \(b \notin \{a_1, \ldots, a_r\} \).

Then \(t \cdot z(b, -b)(a_i, -a_i) = -z(b, -b)(a_i, -a_i) \), a contradiction, since \(t \cdot z_{K\cap N} = z_{K\cap N} \). Thus \(t \cdot z(a, -a) = -z(a, -a) \)

for all \(a \in [1, \ldots, l] \) so \(t \cdot y_z(a, -a) = z(a, -a) \) and

therefore \(ty \in C_K(z) = L \). Hence \(t \in L \langle y \rangle \).

Lemma 4.3.3

\(\phi_L \) is irreducible
Proof

\[\phi = \psi \] so \[\phi_L = \zeta_{KnN} \psi \]. Therefore

\[(\phi_L, \phi_L) = (\zeta_{KnN}, \zeta_{KnN})(\psi, \psi) = 1 \] since \(\zeta_{KnN} \) is linear

and \(\psi \) is irreducible.

The group \(\langle y \rangle \) has two irreducible characters \(1, \gamma \)

say where \(\gamma(y) = -1 \).

Define maps \(\omega_i : T \to \mathbb{C} \) \(i = 1, 2 \)

by \(\omega_i(ly) = \phi(l) \) and \(\omega_i(ly) = \phi(l)\gamma(y) = -\phi(l) \) for all \(l \in L \).

We can write \(\omega_i = \phi_L \gamma_i \) where \(\gamma_i = 1, \gamma_i = \gamma \)

Lemma 4.3.4

\(\omega_i, \omega_2 \) are irreducible characters of \(T \)

Proof

Let \(V_i \) be the \(\langle y \rangle \)-module affording \(\gamma_i \) where \(\gamma_i = 1 \)

\(\gamma_i = \gamma \), and let \(U \) be the \(L \)-module affording \(\phi_L \).

Then \(U \otimes V_i \) are \(T \)-modules affording characters \(\omega_i \) \(i = 1, 2 \)

For, the module axioms are easy to check with the one exception which we now prove.

Suppose \(l_1 y', l_2 y'' \in T \) \(l_1, l_2 \in L \) and \(y', y'' = 1 \) or \(y \)

and \(u \in U, v \in V_i \). Then we must show

\[(u \otimes v_i)(l_1 y', l_2 y'') = [(u \otimes v)l_1 y']l_2 y'' \]

Let \(U \) afford the representation \(R \) of \(L \), \(P \) the representation of \(KnN \) affording \(\zeta_{KnN} \) (so \(P = \zeta_{KnN} \)) and \(Q \) the representation of \(C \) affording \(\psi \). Then by definition of \(\phi \),

\[R = P \otimes Q \]. Hence \(u_1 l_2 y' = u_1 R(l_2 y') \) for all \(u_1 \in U \).

Let \(l_2 = nc \) \(n \in KnN, c \in C \). But by definition of \(y \),

\(y \) interchanges the symbols of each type so that \(y \in C \gamma_{H}(C) \)

i.e. \(c\gamma = c \) for all \(c \in C \). Therefore \(l_2 y = n\gamma c\gamma = n\gamma c \).
So
\[u_1 l_2 y = u_1 R(l_2 y) = u_1 R(n^y c) = u_1 P(n^y)Q(c) = u_1\zeta_{K\Omega N}(n^y)Q(c) = u_1\zeta_{K\Omega N}(n)Q(c) \text{ since } y \in T = u_1 P(n)Q(c) = u_1 R(l_2) = u_1 l_2 \]

But \(u_1 l_2 \in U \), so \((u_1 l_2) l_2 y = (u_1 l_2) l_2 \)

Hence
\[
(u \otimes v_1)(l_1 y' l_2 y'') = (u \otimes v_1)(l_1 l_2 y' y'') = u(l_1 l_2 y') \otimes v_1(y' y'') = (u_1 l_2 y') \otimes (v_1 y') y'' = (u_1 l_2 \otimes (v_1 y')) y'' \text{ by above} = (u_1 \otimes v_1 y')(l_2 y'') = [(u \times v_1)l_1 y'] l_2 y''
\]
as required.

It is clear that \(U \otimes V_1 \) affords \(\omega_i \), therefore \(\omega_i \), \(\omega_{L} \) are characters of \(T \).

Finally,
\[
(\omega_i , \omega_j) = (\rho_L \tau_i , \rho_L \tau_j) = (\rho_L , \rho_L)(\tau_i , \tau_j) = 1 \text{ by 4.3.3}
\]

Thus \(\omega_i , \omega_{L} \) are irreducible characters of \(T \).

Lemma 4.3.5

\(\omega_{i}^{K} \) are irreducible characters of \(K \), \(i = 1, 2 \)

Proof

Let \(\{ k_1 \} \) be a set of \((T,T)-\)double coset representatives then by Mackey's formula
\[(\omega_i^k, \omega_i^k) = \sum_{k \in [k_1]} ((\omega_i)_{TNk}, (\omega_i^k)_{TNk})\]

Suppose \(((\omega_i)_{TNk}, (\omega_i^k)_{TNk}) \neq 0\) for some \(k \in [k_1]\)

Then \(T \cap T^k = L<y> \cap L^k<y> = (K \cap N)C<y> \cap (K \cap N)C^k<y> \quad (K \cap N < K) \supset K \cap N\)

Therefore \(((\omega_i)_{K \cap N}, (\omega_i^k)_{K \cap N}) \neq 0\) by 1.2.6

But \((\omega_i)_{K \cap N} = \zeta_{K \cap N} \psi(1) = \zeta_{K \cap N}\) . Hence

\((\zeta_{K \cap N}, \zeta_{K \cap N}) \neq 0\) which implies \(\zeta_{K \cap N} = k\zeta_{K \cap N}\), so

\(k \in T\) i.e. \(k = 1\)

Thus \((\omega_i^1, \omega_i^1) = (\omega_i, \omega_i) = 1\) by 4.3.4

We can now prove the result we are after

Theorem 4.3.6

\(\theta_\lambda = \omega_i^k\) and \(\chi_{\theta_\lambda} = \omega_i^k\) or vice-versa

Proof

Let \(\chi = \chi^{(\lambda;)}\). Then

\((\chi_i^k, \omega_i^k) = ((\phi_L)^k, \omega_i^k) = \sum_{k \in [k_1]} ((\phi_L)_{TNk}, (\omega_i^k)_{TNk})\)

where \([k_1]\) is a set of (L,T)-double coset representatives.

Now

\((\phi_L)_{TNk}, (\omega_i^k)_{TNk}) \neq 0 \Rightarrow (\phi_L, (\omega_i^k)_{TNk}) \neq 0\)

since \(LNT^k \supset K \cap N\)

\(\Rightarrow (\zeta_{K \cap N}, \zeta_{K \cap N}) \neq 0\)

\(\Rightarrow k \in T \Rightarrow k = 1\)

Thus

\((\chi_i^k, \omega_i^k) = (\phi_L, (\omega_i^k)_{TN}) = (\phi_L, (\omega_i^k)_{L}) = (\phi_L, \phi_L) = 1\) by 4.3.3
Thus \(\chi_k = \omega_i^k + \omega_L^k + \theta \) where \(\theta \) is a character of \(K \) such that \((\theta, \omega_i) = 0, i = 1, 2\).

But \(\chi_k(1) = (\phi_L)^K(1) = |K:L|\phi(1) \)
and \((\omega_i^k + \omega_L^k)(1) = |K:T|(\omega_i(1) + \omega_L(1))
\[
= |K:T|2\phi(1) = |K:L|\phi(1)
\]
since \(|T:L| = |\langle y \rangle| = 2 \).

Hence \(\theta(1) = 0 \) so \(\theta = 0 \). Therefore \(\chi_k = \omega_i^k + \omega_L^k \)
But \(\omega_i^k, \omega_L^k \) are irreducible and also \(\chi_k = \theta_\lambda + \chi_{\theta_\lambda} \)
is a decomposition into irreducible characters of \(K \).
So \(\omega_i^k = \theta_\lambda \) and \(\omega_L^k = \chi_{\theta_\lambda} \) or vice-versa.

Notation

Since our choice of \(\theta_\lambda, \chi_{\theta_\lambda} \) is completely
arbitrary \((x^2 = 1)\) we shall assume from now on that
\(\theta_\lambda = \omega_i^k \) and \(\chi_{\theta_\lambda} = \omega_L^k \).

The following is well-known, but it will be
convenient to prove it here.

Corollary 4.3.7

Any complex representation of \(K \) may be afforded by
a basis with respect to which the matrix entries consist
of rational integers. In particular, the characters of
\(K \) are rational integral-valued.

Proof

From 4.1.2 and 4.3.6 we see that the irreducible
representations of \(K \) may be obtained from those of the
symmetric group by

(i) tensoring these, and various restrictions of
these, representations together and with representations
which take the values \(\pm 1 \);
(ii) inducing up representations in (i).

The theorem then follows by 2.1.4, since the operations in (i), (ii) clearly preserve the required properties.

§4.4 Completion of the decomposition of the induced principal character

We now return to the problem of determining which of θ_α and $x\theta_\alpha$ occur in $1^{K}_{W(\lambda;\mu)}$. Of course these may only occur if $\chi^{(\alpha;\nu)}_{\lambda} \neq 0$ so that $(\lambda;\mu) \rightarrow (\alpha;\nu)$ by 4.2.2.

So throughout this section assume that l is even, that $(\lambda;\mu)$ and $(\alpha;\nu)$ are pairs of partitions of l (therefore $\alpha + 1/2$) such that no part of μ is 1, and $(\lambda;\mu) \rightarrow (\alpha;\nu)$.

There will be two cases: $(\lambda;\mu)$ good or bad.

Theorem 4.4.1

Suppose $(\lambda;\mu)$ is good. Then

$$(1^{K}_{W(\lambda;\mu)}, \theta_\alpha) = (1^{K}_{W(\lambda;\mu)}, x\theta_\alpha) = \frac{1}{E} (1^{K}_{W(\lambda;\mu)}, \chi^{(\alpha;\nu)}_{\lambda}) \neq 0$$

Proof

Let $W = W(\lambda;\mu)$. Since $(1^{K}_{W}, \chi^{(\alpha;\nu)}_{\lambda}) \neq 0$, θ_α or $x\theta_\alpha$ occur in 1^{K}_{W}. We shall assume without loss of generality that

$$(1^{K}_{W}, \theta_\alpha) = a_\alpha \neq 0.$$ By 4.2.1, $W^x = W^k$ for some $k \in K$.

Hence

$$x(1^{K}_{W}) = (x1^{K}_{W}) (K \triangleleft G) = (1^{K}_{W^x}) (x^2 = 1)$$

$$= (1^{K}_{W^k}) = k(1^{K}_{W})$$

similarly
104

Thus \(1_{W}^{K} = a_{\kappa} \theta_{\kappa} + \ldots \) so \(1_{W}^{K} = x_{\kappa}^{1} K = a_{\kappa} x_{\kappa} + \ldots \)

i.e. \((1_{W}^{K}, x_{\kappa}) = a_{\kappa} \neq 0 \).

Since \(\chi_{\kappa}^{(\kappa; \kappa)} = \theta_{\kappa} + x_{\kappa} \), the theorem follows immediately.

Theorem 4.4.2

\[\lambda \neq \mu \Rightarrow (1_{W}^{K}, \chi_{\kappa}^{(\lambda; \kappa)}) = 1 \]

\[\lambda = \mu \Rightarrow (1_{W}^{K}, \chi_{\kappa}^{(\lambda; \lambda)}) = 2 \]

and \((1_{W}^{K}, \theta_{\lambda}) = 1 = (1_{W}^{K}, x_{\theta_{\lambda}}) \)

Proof

Let \(W = W_{(\lambda; \mu)} \), \(\chi = \chi_{\kappa}^{(\lambda; \kappa)} \), \(|\lambda| = m \), \(|\mu| = n \).

We shall assume that \(W = R(D_{(\lambda; \mu)}) \) where \(D_{(\lambda; \mu)} \) is a diagram, where \(D_{\lambda} \) is filled with the symbols \{1,...,m\} which are of the first type and \(D_{\mu} \) is filled with \{m+1,...,1\} which are of the second type. Hence \(H \cap W \subseteq \mathcal{O} \). So \(W = (N \cap W)(H \cap W) \) (4.2.3)

\[\subseteq (N \cap K)(W \subseteq K) \]

\[= \mathcal{L} \]

Also we have that \(c_{W}^{ON} = 1 \) so \((1_{W}^{ON}, c_{W}^{ON}) = 1 \).

Now

\[(1_{W}^{ON}, \theta_{W}^{ON}) = (1_{W}^{ON}, c_{W}^{ON})(1_{W}^{ON}, \psi_{W}^{ON}) \] (4.2.3)

\[= (1_{W}^{ON}, c_{W}^{ON})(1_{W}^{ON}, \chi_{W}^{\lambda})(1_{W}^{ON}, \chi_{W}^{\mu}) \]

But \(W \cap S_{m} = W_{\lambda} \) and \(W \cap S_{n} = W_{\mu} \).

So

\[(1_{W}^{ON}, \theta_{W}^{ON}) = (1_{W}^{ON}, c_{W}^{ON})(1_{W}^{ON}, \chi_{W}^{\lambda})(1_{W}^{ON}, \chi_{W}^{\mu}) \]
by Frobenius

= 1 by 2.2.7

By Mackey's formula, if \([k_1]\) is a set of \((L,W)\)-double

coset representatives, where each \(k_1 \in H\),

\[
(1_W^K, \chi_k) = (1_W^K, (\rho_L)^K) = \sum_{k \in \{k_1\}} (1_{W^k \cap L}, \rho_{W^k \cap L})
\]

Thus the first summand is \((1_{W^k \cap L}, \rho_{W^k \cap L}) = 1\), by above

Suppose now that \((1_{W^k \cap L}, \rho_{W^k \cap L}) \neq 0\) for some \(k \in \{k_1\}\).

Because \(W^k \cap L \geq W^k \cap N\) (4.2.3) we have that

\((1_{W^k \cap N}, \rho_{W^k \cap N}) \neq 0\) and hence \((1_{W^k \cap N}, \zeta_{W^k \cap N}) \neq 0\),

therefore \(\zeta_{W^k \cap N} = 1\) i.e. \(k_\zeta = 1\) since \(N \triangleleft G\)

But we know that \(N = N_1 \times N_2\) (defined by \((\lambda; \zeta)\)) and by

construction of \(W, W \cap N = K \cap N_2\). Hence \(k_\zeta = 1\)

Thus if \((a,-a), (b,-b) \in N_2\) we have that \(\zeta [(a,-a)(b,-b)]^k = 1\).

Therefore

either \((a,-a)^k \in N_1\) and \((b,-b)^k \in N_1\)

or \((a,-a)^k \in N_2\) and \((b,-b)^k \in N_2\)

It follows that \(N^k_1 = N_1\) or \(N^k_2 = N_2\)

(a) Suppose \(|\lambda| \neq |\mu|\) i.e. \(m \neq n\)

If \(N^k_1 = N_2\) then \(|N_1| = |N_2|\). But \(|N_1| = 2^m, |N_2| = 2^n\)

so \(m = n\), a contradiction. Therefore \(N^k_1 = N_1\) and so

\(N^k_2 = N_2\) i.e. \(k \in C = C_H(\zeta) < L\). So \(k = 1\) and

\[
(1_W^K, \chi_k) = (1_{W^k \cap L}, \rho_{W^k \cap L}) = 1
\]

(b) Suppose \(|\lambda| = |\mu|\)

If \(N^k_1 = N_2\) then \(N^k_2 = N_1\). Therefore \(N^k\gamma = N_1\) and
\[N_2^\mathsf{ky} = N_2, \text{ so } \mathsf{ky} \in C \text{ which implies } k \in C^{<y>} \leq L^{<y>}. \]

Thus \(k \) is in the same \((L,W)\)-double coset as \(y \), and so we may assume that \(k = y \).

So we have shown that at most two summands in the Mackey formula are non-zero and are given by the double coset representatives \(1 \) and \(y \). By 4.2.3

\[0 \neq (1_{W^k \cap L}^\mathsf{a}, \psi_{W^k \cap L}^\mathsf{c}) = (1_{W^k \cap N}^\mathsf{a}, \phi_{W^k \cap N}^\mathsf{c})(1_{W^k \cap C}^\mathsf{a}, \psi_{W^k \cap C}^\mathsf{c}) = (1_{W^k \cap C}^\mathsf{a}, \psi_{W^k \cap C}^\mathsf{c}) \text{ for } k = 1 \text{ or } y. \]

But \(W^k \cap C = (W^k \cap S_m) \times (W^k \cap S_n) \) and \(|\lambda| = |\mu| \)

so \(y \) just interchanges the symbols in \(D_\lambda \) and \(D_\mu \). It follows that \(W^\mathsf{\lambda} \cap S_m = W_\mu \) and \(W^\mathsf{\lambda} \cap S_n = W_\lambda \). Therefore

\[0 \neq (1_{W^\mathsf{\lambda} \cap C}^\mathsf{b}, \psi_{W^\mathsf{\lambda} \cap C}^\mathsf{c}) = (1_{W_\mu}^\mathsf{a}, \chi^\mathsf{a} \chi^\mathsf{c})(1_{W_\lambda}^\mathsf{b}, \chi^\mathsf{b} \chi^\mathsf{c}) = (1_{W_\mu}^\mathsf{a}, \chi^\mathsf{a})(1_{W_\lambda}^\mathsf{b}, \chi^\mathsf{b}) \]

by Frobenius.

Therefore, by 2.3.6, \(\mu \leq \lambda \leq \mu \) so \(\lambda = \mu \)

Hence

\((i) \lambda \neq \mu \) implies that the summand with \(k = y \) is zero so that only the first summand is non-zero and as in (a), \((1_{W_\mathsf{a}}^\mathsf{a}, \chi^\mathsf{a}) = 1 \)

\((ii) \lambda = \mu \), the summand with \(k = y \) is

\[((1_{W_\mathsf{a}}^\mathsf{a}, \chi^\mathsf{a}))(1_{W_\mathsf{a}}^\mathsf{a}, \chi^\mathsf{a}) = 1 \text{ by } 2.2.7 \]

Thus both the summands with \(k = 1 \) and \(k = y \) contribute the value 1 i.e. \((1_{W_\mathsf{a}}^\mathsf{a}, \chi^\mathsf{a}) = 2 \).

(N.B. the double cosets \(L^W \) and \(Ly^W \) are not equal, for, if they were then \(y \in L^W \leq L \) (p 104) = \(C_k(\zeta) \), a contradiction).
Finally, \((1^W, \theta_\lambda) = 1 = (1^W, x_\theta_\lambda)\) by 4.4.1, since
\(\lambda = \mu\) implies \((\lambda; \mu)\) is good.

We now deal with the cases in which \((\lambda; \mu)\) is bad.
So for the rest of this section we suppose that \(\mu = O\) and all parts of \(\lambda\) are even, and \(\lambda \not< 1\). Hence
\[\lambda = (2\nu_1, \ldots, 2\nu_r)\] for some partition \(\nu = (\nu_1, \ldots, \nu_r)\) of \(1/2\). We shall write \(\nu = \frac{1}{2} \lambda\) and \(\lambda = 2\nu\).

We shall continue to suppose that \(\alpha \not< 1/2\) and
\[\lambda ; - \iff (\alpha; \alpha)\]

Theorem 4.4.3

With the above notation and the remark below
\[\left(1^W, \theta_\lambda\right) \iff \left(1^W, x_\theta_\lambda\right) = \left(1^{S1/2}, \chi^{\alpha}\right)^2 \neq 0\] \(W_{(\lambda; -)}\)

Proof

Let \(W = W_{(\lambda; -)}\); \(C = C_H(\zeta)\) corresponds to \(\chi = \chi^{(\alpha; \alpha)}_\kappa\)

We choose \(W = R(D_{(\lambda; -)}) = R(D_{\lambda})\) where \(D_{\lambda}\) is filled with the symbols \(\{1, \ldots, 1\}\) in the following way:

because \(\lambda = 2\nu\), we may write \(D_{\lambda} = D_{\nu} + D_{\nu}^\prime\), \(D_{\nu}\) corresponding to the left-half of \(D\) and \(D_{\nu}^\prime\) to the right.

Fill \(D_{\nu}\) with the symbols \(\{1, \ldots, 1/2\}\) in the natural ordering and then fill \(D_{\nu}^\prime\) with the symbols \(\{1/2 + 1, \ldots, 1\}\) in the natural ordering.

It follows that \(W \in H\) and \(y \in W\).

Remark

We have two choices for \(W_{(\lambda; -)} (4.2.1)\), either \(W\) as defined above or \(W^x (x = (1, -1))\). But if we use
Then the only effect on the theorem is to interchange \(\theta_x \) and \(x_\theta \), giving the negative of the left-hand side of the equation in the statement of the theorem. The proof of the theorem, using \(W^x \), will be exactly the same as the proof we give below for \(W \), and so we might as well suppose \(W_{(\lambda; -)} = W \). In fact as using \(W^x \) only leads to a change in notation, we will in future assume \(W_{(\lambda; -)} = W \leq H \) the symmetric group on \([1, \ldots, l] \).

Before continuing with the proof of the theorem, we will prove a couple of preliminary lemmas.

Lemma 4.4.4 (compare with 2.1.2)

Let \(z \in H, c \in C, w \in W \). Then \(cy = zwz^{-1} \) implies \(z \in CW \).

Proof

Since all the elements in the statement of the lemma are inside \(H \), we can work in the symmetric group. Now \(W = R(D_\lambda) \), so by 2.1.1, \(zwz^{-1} \in R(zD_\lambda) \). Also \(cy \) does not have a fixed point in \([1, \ldots, l]\) because \(cy(D_v) = c(D_v') = D_v' \).

Consider first, the top row of \(zD_\lambda \). Let \((a_1 \ldots a_r) \) be a cycle in the decomposition of \(cy \) such that \(a_1, \ldots, a_r \) occur in the top row of \(zD_\lambda \). As \(cy(D_v) = D_v' \), either \(a_1 \) or \(a_2 \) \(\in D_v \) and, by writing \((a_2 \ldots a_r a_1) \) if necessary, we may suppose \(a_1 \in D_v \).

Hence \(a_1 \in D_v, a_2 \in D_v', a_3 \in D_v, \ldots \) and because \(cy(a_r) = a_1 \), we have \(a_r \in D_v' \) so that \(r \) is even. Thus

\[
\begin{align*}
 a_1, a_3, \ldots, a_{r-1} &\in D_v \\
 a_2, a_4, \ldots, a_r &\in D_v'
\end{align*}
\]
Now we also have, by construction,
\[1, 2, \ldots, \frac{r}{2} \in D_v \]
\[\frac{1}{2} + 1, \frac{1}{2} + 1, \ldots, \frac{1}{2} + \frac{r}{2} \in D_v \]

Set \(c_1 = (1 \ a_1)(2 \ a_2) \ldots (\frac{r}{2} \ a_{r-1})(\frac{1}{2} + 1 \ a_2)(\frac{1}{2} + 2 \ a_4) \ldots (\frac{1}{2} + \frac{r}{2}) \). Then \(c_1 \in C \).

So the top row of \(c_1 D_\lambda \) contains the symbols
\[\{ 1, 2, \ldots, \frac{r}{2}, \frac{1}{2} + 1, \frac{1}{2} + 2, \ldots, \frac{1}{2} + \frac{r}{2} \} \]
in some order.

Let \(z_1 = c_1 z \) then \(R(z_1 D_\lambda) = c_1 R(z D_\lambda) c_1^{-1} \), so
\(c_1 (cy) c_1^{-1} \in R(z_1 D_\lambda) \). But \(c_1 (cy) c_1^{-1} = (c_1 cy c_1^{-1} y) y \).

Then set \(c_2 = c_1 cy c_1^{-1} y \in C \) (as \(cy = c \)) so
\(c_2 y \in R(z_1 D_\lambda) \), and therefore
\(c_2 y = z_1 w' z_1^{-1} \) for some \(w' \in W \).

But \(c_2 y \) is easily seen to contain the cycle
\((1 \ \frac{1}{2} + 1 \ldots \frac{r}{2} \ \frac{1}{2} + \frac{r}{2}) \) and therefore we may apply the same process as before to the rest of the elements in the top row.

Repeating this process enough times we obtain a diagram \(z_2 D_\lambda \) with \(z_2 = c_3 z \), \(c_3 \in C \), and such that \(z_2 D_\lambda \) has the same symbols in its top row (in some order) as \(D_\lambda \). Remembering that \(cy \) has no fixed points, we may repeat the process with the other rows to obtain a diagram \(z^* D_\lambda \) such that \(z^* = c^* z \), \(c^* \in C \) and \(z^* D_\lambda \) has the same symbols (in some order) in each of its rows as \(D_\lambda \). Therefore there exists \(w^* \in W \) such that \(w^* z^* D_\lambda = D_\lambda \) i.e. \(w^* z^* = 1 \) which implies \(z^* \in W \).

Finally, \(z = c_3^{-1} z^* \in CW \) as required.

We let \(T = C_K(\zeta_{K^0 N}) = L<y> \) as usual.

Lemma 4.4.5

If \(z \in H \) then
\[T \cap zW^{-1} = (C \cap zW^{-1})(<y> \cap zW^{-1}) \]
\[= (L \cap zW^{-1})(<y> \cap zW^{-1}) \]

Proof

Firstly, \(L \cap zW^{-1} = (K \cap N)C \cap zW^{-1} \)
\[\leq (K \cap N)C \cap H \quad \text{as } W \leq H, \ z \in H \]
\[= C \]

Because also \(C \leq L, \ L \cap zW^{-1} = C \cap zW^{-1} \). Thus it is sufficient to prove the first equality. Trivially
\[(C \cap zW^{-1})(<y> \cap zW^{-1}) \leq T \cap zW^{-1}. \]

Conversely, let \(t \in T \cap zW^{-1} = L<y> \cap zW^{-1} \)

Therefore \(t = ly^1 = zwz^{-1} \), where \(y^1 = y \) or \(1, \ w \in W, \ l \in L \)

But \(L = (KN)C \) so \(l = nc, \ n \in N, \ c \in C \).

Hence \(ncy^1 = zwz^{-1} = n = (zwz^{-1})y^1c^{-1} \in H \)
\[= n \in N \cap H = 1 \]

Thus \(cy^1 = zwz^{-1} \). If

(a) \(y^1 = 1 \) then \(c = zwz^{-1} \) so that \(t = c = zwz^{-1} \in C \cap zW^{-1} \)
which is a subgroup of \((C \cap zW^{-1})(<y> \cap zW^{-1})\)

(b) \(y^1 = y \) then \(cy = zwz^{-1} \), so by 4.4.4, \(z \in CW \).

Hence \(z = c_1w_1, \ c_1 \in C, \ w_1 \in W \). Therefore
\[cy = c_1w_1ww_1^{-1}c_1^{-1} = c = yc_1w_1ww_1^{-1}c_1^{-1} \]
\[= c_1(yw_1ww_1^{-1})c_1^{-1} \text{ as } y \in C_{W}^{1}(C) \]
\[\in c_1Wc_1^{-1} \]
\[= zwz^{-1} \]

Thus \(c \in C \cap zW^{-1} \). As \(cy \in zW^{-1} \) and \(c \in zW^{-1} \)
we have \(y \in <y> \cap zW^{-1} \) so that
\[t = cy \in (C \cap zW^{-1})(<y> \cap zW^{-1}) \]
proving the lemma.

We return now to the proof of the theorem.

Let \(\theta = \theta_\kappa \) or \(x\theta_\kappa \) and \(\gamma_1 \), \(\gamma_2 \), \(\gamma \), \(\kappa \), \(\kappa_1 \), \(\kappa_2 \), \(\kappa \) therefore
\(\omega_i = \phi_L \gamma_i \quad (i=1,2) \)

\[
(1_W, \theta) = (1_W, \omega_K) \quad (4.3.6)
\]

\[
= \sum_{z \in \{z_1\}} (z_1 Lwz, (\omega_i) Lwz)
\]

where \(\{z_1\} \) is a set of \((T,W)\)-double coset representatives and each \(z_1 \in H \). So by 4.4.5

\[
(1_W, \theta) = \sum_{z \in \{z_1\}} (z_1 Lwz, \rho Lwz)(z_1 \ y \ nWz, (\gamma_i) \ y \ nWz)
\]

... (A)

by definition of \(\omega \).

But \(<y> \cap zWz^{-1} = 1 \) \(\implies y \in zWz^{-1} \)

\(\implies y = zw^{-1} \) some \(w \in W \)

\(\implies z \in CW \leq TW \) by 4.4.4

\(\implies z = 1 \)

Conversely, as \(y \in W, z = 1 \) \(\implies <y> \cap zWz^{-1} \neq 1 \)

Now

\[
(\gamma_i)_{<y> \ nWz} = z_1_{<y> \ nWz} \quad \text{for all} \quad z
\]

\[
(\gamma_i)_{<y> \ nWz} = z_1_{<y> \ nWz} \quad \text{for} \quad <y> \ nWz = 1 \implies z = 1
\]

Hence

\[
(z_1_{<y> \ nWz}, (\gamma_i)_{<y> \ nWz}) = \begin{cases}
0 & \text{if} \ z = 1 \text{ and } i = 2 \\
1 & \text{otherwise}
\end{cases}
\]

So from (A)

\[
(1_W^K, \theta_\alpha) - (1_W^K, x_\theta_\alpha) = (1_L^N, \rho_L^N)
\]

(i.e. the decompositions of the Mackey formula only differ in the first summand)

However, as in the proof of 4.4.5, \(L \cap W = C \cap W \).
We let \(B = (1 \cdot \kappa, \theta) - (1 \cdot \kappa, x_{\theta}) = (1 \cdot \kappa, \phi) \)

Then we only have to show \(B = (1 \cdot \kappa, \chi^x)^2 \neq 0 \).

\[
B = (1 \cdot \kappa, \phi) \\
= (1 \cdot \kappa, \chi^\kappa) (1 \cdot \kappa, \chi^\kappa)
\]

as \(\cap W = (S \cap W) \times (S \cap W) \) where \(m = 1/2 \)

\[
B = (1 \cdot \kappa, \chi^\kappa)^2
\]

But by the construction of \(W \), \(S \cap W = W_V \), so

\[
B = (1 \cdot \kappa, \chi^\kappa)^2
\]

Finally, in order to show \(B \neq 0 \) it is sufficient, by 2.3.6, to show that \(v \ll \alpha \).

By assumption, \((\lambda; \lambda) \rightarrow (\alpha; \alpha) \) so \((\lambda; \lambda) \rightarrow (\alpha; \alpha) \) as on p 96. Therefore \((\lambda; \lambda) \rightarrow (\alpha; \alpha) \rightarrow (-; 2\alpha) \) so that

\((\lambda; \lambda) \ll (-; 2\alpha) \) which implies \(\lambda < 2\alpha \) by moving the whole of \(\lambda \) across to the right-hand side.

Now \(2\alpha = (2\alpha_1, \ldots, 2\alpha_n) \) and \(\lambda = (2\nu_1, \ldots, 2\nu_n) \) so that

\[
\lambda < 2\alpha \Rightarrow \sum_{i=1}^{\alpha} 2\nu_i < \sum_{i=1}^{\alpha} 2\alpha \quad \text{for all } m \\
\Rightarrow \sum_{i=\nu_1}^{\alpha} \nu_i < \sum_{i=\nu_1}^{\alpha} \alpha \quad \text{for all } m \\
\Rightarrow v < \alpha \quad \text{, completing the theorem.}
\]

Finally, we prove

Theorem 4.4.6

With the notation of 4.4.3

\[
(1 \cdot \kappa, \theta) \neq 0 \iff v \ll \alpha \iff (1 \cdot \kappa, \chi^{\kappa}) \neq 0
\]

and \((1 \cdot \kappa, \chi^\kappa) \neq 0 \iff v < \alpha \).
Again we need a preliminary lemma, which uses the same notation as the theorem

Lemma 4.4.7

\[
(1_K_{\varphi}^{(\lambda, \gamma)}) = 1
\]

Proof

Let \(W = W_{\lambda, \gamma} \) be the Weyl subgroup of \(K \) defined in 4.4.3 so that \(W \leq H \).

\[
(1_K_{\varphi}^{(\lambda, \gamma)}) = \sum_{z \in \{z_1\}} (1_{L \cap W}^{(\varphi)} , \varphi_{L \cap W})
\]

where \(\{z_1\} \) is a set of \((L, W)\)-double coset representatives, with \(z_1 \in H \). Hence, as in 4.4.5, \(L \cap W^z = G \cap W^z \).

Thus

\[
(1_K_{\varphi}^{(\lambda, \gamma)}) = \sum_{z \in \{z_1\}} (1_{G \cap W}^{(\varphi)} , \varphi_{G \cap W})
\]

Suppose \((1_{G \cap W}^{(\varphi)} , \varphi_{G \cap W}) \neq 0 \) for some \(z \in \{z_1\} \).

We may as well assume that in \(zD_{(\lambda, \gamma)} \) (where \(W = R(D_{(\lambda, \gamma)}) \)) all the symbols of the second type lie at the ends of rows of \(zD_{(\lambda, \gamma)} \) as this only has the effect of multiplying \(z \) by an element \(w \in W \), which is in the same \((L, W)\)-double coset as \(z \).

Thus \(G \cap W^z = W_\gamma \times W_\delta \) where \((\gamma, \delta)\) is a pair of partitions of \(l \) with \(\gamma, \delta \vdash \frac{l}{2} \), and \(D_{(\gamma, \delta)} \) is obtained by moving the squares in \(D_{(\lambda, \gamma)} \) containing symbols of the second type over to the right-hand side, and reordering the two resulting diagrams. Therefore

\[
0 \neq (1_{G \cap W}^{(\varphi)} , \varphi_{G \cap W}) = (1_{W_\gamma}^{(\gamma, \varphi)} , \chi_{W_\gamma}^{(\gamma, \varphi)}) (1_{W_\delta}^{(\delta, \varphi)} , \chi_{W_\delta}^{(\delta, \varphi)})
\]
so by 2.3.6, \(\forall \leq \nu \) and \(\delta \leq \nu \).

We shall show that \(\delta = \nu \) and \(\delta = \nu \). Hence

\[
zD(\lambda; \nu) = D_{\delta} + D_{\delta} = D_{\nu} + D_{\nu}' = D(\lambda; \nu) \cdot \text{So } z = 1.
\]

i.e. \((1_{\mathcal{V}}^K, \chi^{(\cdot; \cdot)}) = (1_{\mathcal{V}}^{CNW}, \psi_{CNW}) \)

\[
= (1_{\mathcal{V}}^{{S_1/2}}, \chi^\nu) (1_{\mathcal{V}}^{{S_1/2}}, \chi^\nu)
\]

\[= 1 \text{ by 2.2.7, as required.}
\]

So we have only left to show \(\delta = \delta = \nu \).

By construction of \(\delta, \delta \), for all \(k \) there exist

\(i_k, j_k \) such that \(\lambda_k = 2\nu_k = \delta_i + \delta_j \)

where

\(\gamma = (\gamma_1, \ldots, \gamma_s) \) and \(\delta = (\delta_1, \ldots, \delta_s) \)

(add zeros to ensure that \(\gamma \) and \(\delta \) have the same number

of parts) and \(\lambda = (2\nu_1, \ldots, 2\nu_s) \) (automatically \(\lambda \) has

\(s \) parts).

Putting \(k = 1 \), \(\gamma_i + \delta_j = 2\nu_1 \).

But \(\delta_i < \gamma_i < \nu_1 \) since \(\gamma < \nu \) and similarly

\(\delta_i < \delta_i < \nu_1 \) since \(\delta < \nu \).

Therefore \(\delta_i = \delta_i = \nu_1 \) and \(\gamma_i = \delta_i = \nu_1 \). This starts

off the induction.

Suppose, for \(k < r \), we have \(\gamma_k = \delta_k = \nu_k \). Since \(\delta < \nu \)

\[
\sum_{i=1}^{r} \gamma_i < \sum_{i=1}^{r} \nu_i \text{ we have } \gamma_r < \nu_r \text{ and similarly } \delta_r < \nu_r.
\]

Now \(\gamma_r + \delta_r = 2\nu_r \) and we already have \(\gamma_k = \delta_k = \nu_k \)

for \(k < r \). So \(i_r > r \) and \(j_r > r \). Hence

\(\gamma_r < \gamma_r < \nu_r \) and \(\delta_r < \delta_r < \nu_r \) and so \(\gamma_r = \delta_r = \nu_r \).

Therefore by induction, \(\gamma_k = \delta_k = \nu_k \) for all \(k \)

i.e. \(\gamma = \delta = \nu \), proving the lemma.
Proof of 4.4.6

\((1^K_W, \chi^{(\alpha;\alpha)}_\kappa) \neq 0 \iff (\lambda;\lambda) \overset{D}{\rightarrow} (\alpha;\alpha)\) (4.2.2)

\(\iff \nu < \alpha\) as in the proof of 4.4.3

\(\iff ((1^K_W)^{S_m}, \chi^{\kappa})^2 \neq 0\) by 2.3.6

\(\iff (1^K_W, \theta_\kappa) = (1^K_W, \chi^{\kappa}) \neq 0\) by 4.4.3

\(\iff (1^K_W, \theta_\kappa) \neq 0\)

proving the first part of the theorem.

Now let \(\nu = \alpha\). Then

\((1^K_W, \theta_\nu) + (1^K_W, \chi^{\kappa}_\nu) = (1^K_W, \chi^{(\alpha;\alpha)}_\kappa) = 1\) by 4.4.7

By the first part \((1^K_W, \theta_\nu) \neq 0\). Hence

\((1^K_W, \theta_\nu) = 1\) and \((1^K_W, \chi^{\kappa}_\nu) = 0\). Therefore

\((1^K_W, \chi^{\kappa}_\nu) \neq 0 \implies \nu \neq \alpha\) and \((1^K_W, \chi^{(\alpha;\alpha)}_\kappa) \neq 0\)

\(\implies \nu \neq \alpha\) and \(\nu < \alpha\) as above

Finally, suppose \(\nu < \alpha\) then we show \((1^K_W, \chi^{\kappa}_\nu) \neq 0\)

which will finish the theorem.

By the proof of 4.4.3 (p 96)

\((1^K_W, \chi^{\kappa}_\nu) = \sum_{z \in [z_1]} (\chi_1^{L_{N^W}Z}, \phi_{L_{N^W}Z})(z_1^{<y>N^WZ}, (\tau_1)^{<y>N^WZ})\)

where \([z_1]\) is a set of \((T,W)\)-double coset representatives, \(z_1 \in H\), and

\((\chi_1^{<y>N^WZ}, (\tau_1)^{<y>N^WZ}) = \begin{cases} 1 & \text{if } z \neq 1 \\ 0 & \text{if } z = 1 \end{cases}\)

Also

\((1_{L_{N^W}Z}, \phi_{L_{N^W}Z}) = (1_{C_{N^W}Z}, \psi_{C_{N^W}Z})\) by 4.4.5
where $S_m \cap zWz^{-1} = W_y$, $S_n \cap zWz^{-1} = W_d$ and $m = \frac{1}{2} = n$.

We shall choose a $z \notin TW$ (below) such that $\gamma < \alpha$ and

$\delta < \alpha$ (γ, δ depend on z). Then by 2.3.6,

$(1, K, \mathbb{X}_0) \neq 0$ as $z \neq 1$.

It will be sufficient to choose $z \notin CW$. We have

that $\nu < \alpha$. Let $\nu = \mu^{(0)} < \mu^{(1)} < \ldots < \mu^{(r)} = \alpha$

where $\mu^{(i)}$ is obtained from $\mu^{(r-1)}$ by moving up one square.

Let $\nu = (v_1, \ldots, v_r)$. Then

$\mu^{(i)} = (v_1, \ldots, v_{i+1}, \ldots, v_{j-1}, \ldots, v_r)$

some $i < j$ (rearranged to give a partition).

Let $\beta = (v_1, \ldots, v_{i-1}, \ldots, v_{j+1}, \ldots, v_r)$ rearranged
to give a partition of $\frac{1}{2}$.

It is easy to see that $\beta < \mu^{(i)} < \alpha$. Thus $\mu^{(i)} < \alpha$

and $\beta < \alpha$.

Now $D_{(\lambda : -)} = D_{\lambda} = D_{\nu} + D_{v}$, where D_{ν} is filled

with $\{1, \ldots, \frac{1}{2}\}$ in the natural order, and D_{v} is filled

with $\{\frac{1}{2}, \ldots, l\}$ in the natural order. We may therefore

obtain a diagram $D_{\mu^{(i)}}$ from D_{ν} by moving a square

containing the symbol $a \in \{1, \ldots, \frac{1}{2}\}$ and D_{β} may be

obtained from D'_{v} by moving a square containing the

symbol $b \in \{\frac{1}{2}, \ldots, l\}$. Then a, b lie in rows j and

1 respectively, of D_{λ}.

Let $z = (ab) \in H$. Then to form zD_{λ} we just swap

the symbols a and b. It follows then that $\nu = \mu^{(i)}$

and $\delta = \beta$, so $\nu < \alpha$ and $\delta < \alpha$, and therefore $\nu < \alpha$

and $\delta < \alpha$. We have left to show $z \notin CW$.

Suppose, for a contradiction, $z \in CW$. Then

$z = c_1w$ with $c_1 \in C$, $w \in W$, and so $c(ab) = w$ where
c = c_1^{-1} \in G$. Express c as a product of disjoint cycles. One of these cycles must contain b, otherwise $w(a) = b$, an impossibility, as we have chosen a and b to lie in different rows of D_λ. Therefore c contains a cycle $(b \ d_1 \ldots d_t)$, and since the cycles are disjoint $c = x(b \ d_1 \ldots d_t)$ where x does not contain any of the symbols b, d_1, \ldots, d_t. Suppose $a = d_k, 1 \leq k \leq t$. Then $w = x(b \ d_1 \ldots d_t)(ab) \in W$. Thus $w(a) = d_1, w(d_1) = d_2, \ldots, w(d_t) = b$, and so all the symbols $a, d_1, d_2, \ldots, d_t, b$ are collinear in D_λ, again an impossibility.

Thus for some $k, a = d_k$. However, $G = S_{\frac{1}{2}} \times S_{\frac{1}{2}}$, so we can assume each cycle lies in one of the symmetric groups and is therefore in G. Thus $(b \ d_1 \ldots d_t) \in G$ and because $a = d_k$ some k, $z = (ab) \in C$, a contradiction since $a \in [1, \ldots, \frac{1}{2}]$ and $b \in [\frac{1}{2}+1, \ldots, 1]$. This contradiction shows that $z \in CW$ and completes the theorem.

§4.5 Solomon's decomposition of the group algebra of $W(D_1)$

We interpret Solomon [17] for the Weyl group $W(D_1)$. As usual, we may assume that all modules, representations and characters are over the field of complex numbers.

The generating set I for $K = W(D_1)$ is
\[
\{(12),(23),\ldots,(1\ldots -1),(1\ldots -1,1)\}
\] and the parabolic subgroups of K are the Weyl subgroups $W_{\alpha, \beta}$ such that β has only 1 or 0 parts.

The results for K are more complicated than those for G, as will be illustrated in the examples below.
We shall therefore confine ourselves to determining Λ^{P_V} of [17] where $V = \mathbb{R}^1$ ([3], table IV).

Let $J \subseteq I$, then the parabolic subgroup $W_J = W(\ell;\sigma)$ for some pair of partitions $(\ell;\sigma)$ of 1 such that σ has only 1 or 0 parts and $\sigma \neq (1)$. We can then write $p(J) = (\ell;\sigma)$.

Fix an arbitrary subset J of I, let \hat{J} be the complement of J in I, and $p(J) = (\ell;\sigma), p(\hat{J}) = (\beta';\alpha')$.

Define

$$\xi_J = \sum_{w \in W_J} \varepsilon(w) w \quad \text{and} \quad \eta_J = \sum_{w \in W_J^\circ} \varepsilon(w) w$$

so that $A^J \xi_J \eta_J$ affords the character

$$\psi_J = \sum_{J \subseteq M \subseteq I} (-1)^{|M-J|} 1_{W_M}^K$$ (17)

Theorem 4.5.1

Let $(\lambda;\mu)$ be a pair of partitions of 1. Then

$$(\psi_J, \chi^{(\lambda;\mu)}_k) \neq 0 \Rightarrow (\ell;\sigma) \quad \Rightarrow (\lambda;\mu) \quad \text{and} \quad (\beta';\alpha') \quad \Rightarrow (\mu';\lambda')$$

Proof

As in previous chapters

$$(\psi_J, \chi^{(\lambda;\mu)}_k) \neq 0 \Rightarrow (1_{W(\ell;\sigma)}^K, \chi^{(\lambda;\mu)}_k) \neq 0 \quad \text{and} \quad (\varepsilon_{W(\beta';\alpha')}^K, \chi^{(\lambda;\mu)}_k) \neq 0$$

$$\Rightarrow (1_{W(\ell;\sigma)}^K, \chi^{(\lambda;\mu)}_k) \neq 0 \quad \text{and} \quad (1_{W(\alpha';\beta')}^K, \chi^{(\mu';\lambda')}_k) \neq 0 \quad \text{by 3.2.1}$$

$$= (\ell;\sigma) \quad \Rightarrow (\lambda;\mu) \quad \text{and} \quad (\beta';\alpha') \quad \Rightarrow (\mu';\lambda') \quad \text{by 4.2.2}$$

Examples

(a) It is possible that $(\psi_J, \chi^{(\ell;\sigma)}_k) = 0$ (cf. 3.5.2)
Let $J = [(12), (23), \ldots, (1-1 1)]$ so $(\epsilon; \epsilon) = p(J) = (1;-).$

Thus $M \supset J$ implies $M = J$ or $M = I,$ and $W_J \leq H \leq G.$

Hence

$$
(\psi_J, \chi^{(\epsilon; \epsilon)}_k) = (1^K_{W_J}, \chi^{(\epsilon; \epsilon)}_k) - (1^K_{W_I}, \chi^{(\epsilon; \epsilon)}_k)
$$

$$
= (1^K_{W_J}, \chi^{(\epsilon; \epsilon)}_k) - (1^K_{W_I}, \chi^{(\epsilon; \epsilon)}_k) = (4.1.2)
$$

$$
= (1^G_{W_I}, \chi^{(\epsilon; \epsilon)}_k) - (1^K_{W_I}, \chi^{(\epsilon; \epsilon)}_k)
$$

by Frobenius

$$
= 1 - (1^K_{W_I}, 1^K_{W_I}) \text{ by } 3.3.9 \text{ and the fact that } \chi^{(\epsilon; \epsilon)}_k = 1_G \text{ from the definition in } \S 3.1
$$

$$
= 1 - 1 = 0.
$$

(b) Similarly, it is possible that $(\psi_J, \chi^{(\epsilon; \epsilon)}_k) = 0$

(cf. 3.5.2).

Let $\hat{J} = [(12), (23), \ldots, (1-1 1)]$ so $(\beta'; \alpha') = p(J) = (1;-).$

As for (a), $(\psi_{\hat{J}}, \chi^{(\beta'; \alpha')}_k) = 0.$ Now by [17] lemma 7,

$$
\psi_{\hat{J}} = \epsilon \psi_{\hat{J}}, \text{ and so by } 3.2.1 \quad (\psi_{\hat{J}}, \chi^{(\alpha'; \beta')}_k) = 0.
$$

We now wish to identify $\Lambda^p V$ so we suppose $|\hat{J}| = p.$

Definition

Let $(\lambda; \mu)$ be the pair of partitions of 1 given by $(\lambda; \mu) = (1^p; 1-p).$ We call $(\lambda; \mu)$ the

hook graph for J

and $\chi^{(\lambda; \mu)}_k$ the

hook character of $J.$

The hook graph $(\lambda; \mu)$ depends only on the order of J and $\chi^{(\lambda; \mu)}_k(1) = (1^p)$ by 3.4.3.

Now $\lambda \neq \mu$ and hence $\chi^{(\lambda; \mu)}_k$ is irreducible, unless $l = 2$ and $p = 1.$ However, when $l = 2,$ K is a decomposable Coxeter group and therefore excluded from Solomon's consideration ([17] theorem 4), and in this case $\Lambda^1 V = V$
is reducible. We shall therefore assume for the purposes
of this section that \(l \geq 3 \).

The following lemma may be proved in precisely the
same way as 3.5.3

Lemma 4.5.2

(i) The number of rows of \(\rho = r(\rho) = p \)
(ii) \((\psi_J, \chi^{(\lambda, \rho)}_\kappa) = 1 \)

Theorem 4.5.3

Let \(\chi \) be the irreducible character of \(K \) afforded
by \(\Lambda^P \Gamma \). Then \(\chi = \chi^{(\lambda, \rho)}_\kappa \)

Proof

The proof is somewhat more complex than that for
\(G \).

\(\chi \) is irreducible, so \(\chi = \chi^{(\lambda, \rho)}_\kappa \) for some pair of
partitions \((\gamma, \delta)\) of \(K \) such that \(\rho \neq \delta \), or \(\chi = \theta_\kappa \) or
\(\chi^{(\alpha)}_\Theta_\kappa \) for some partition \(\alpha \) of \(1/2 \).

Let \(J = \{(p+1, p+2), \ldots , (l-1, l), (l-1, -1)\} \)
hence \(3 = \{(12), (23), \ldots , (p, p+1)\} \) so that \(|J| = p \).
Then \((\rho; \sigma) = p(J) = (1^P, l-p) = (\lambda, \mu) \) . By [17] \(\Lambda^P \Gamma \)
is an irreducible submodule of \(A_1^\gamma \eta^J \) and therefore
\((\psi_J, \chi) \neq 0 \) . So \((\psi_J, \chi^{(\gamma, \delta)}_\kappa) \neq 0 \) or \((\psi_J, \theta_\kappa) \neq 0 \) or
\((\psi_J, \chi^{(\alpha, \sigma)}_\Theta_\kappa) \neq 0 \) . In the last two cases \((\psi_J, \chi^{(\alpha, \sigma)}_\kappa) \neq 0 \).
Therefore by 4.5.1, \((\rho; \sigma) \xrightarrow{D} (\delta; \delta) \) or \((\rho; \sigma) \xrightarrow{D} (\alpha; \alpha) \).
If we allow \(\rho = \delta = \alpha \) then we can put these results
together as \((\rho; \sigma) \xrightarrow{D} (\delta; \delta) \)
1.e. \((1^P, l-p) \xrightarrow{D} (\delta; \delta) \).

Now let \(J_1 = \{(12), \ldots , (l-p, l-p+1)\} \)
so \(\bar{J}_1 = \{(l-p+1, l-p+2), \ldots , (l-1, l), (l-1, -1)\} \)
Then \((\beta';\alpha') = (1^{1-p}; p) = (\mu';\lambda')\).

Again \((\nabla_{J_1}, \chi) \neq 0\) so (allowing \(\delta = \delta = \kappa\)) by 4.5.1

\((\rho';\alpha') \xrightarrow{D} (\delta';\delta').\) Thus \((1^{1-p}; p) \xrightarrow{D} (\delta';\delta').\)

Hence

\[(1^P; 1-p) \xrightarrow{D} (\chi; \delta) \text{ and } (1^{1-p}; p) \xrightarrow{D} (\delta';\delta').\]

We break the proof up into four cases:

(a) Suppose \((1^P; 1-p) \xrightarrow{C} (\chi; \delta) \text{ and } (1^{1-p}; p) \xrightarrow{C} (\delta';\delta').\)

Then by 3.3.5, \((\gamma; \delta) \xrightarrow{C} (1^P; 1-p)\) and since \(C\) is antisymmetric

\[(\gamma; \delta) = (1^P; 1-p) \quad \text{(so } \gamma \neq \delta\text{)}\]

and \(\chi = \chi^{(\lambda; \gamma)}\) as required.

(b) Suppose \((1^P; 1-p) \xrightarrow{C} (\chi; \delta) \text{ and } (1^{1-p}; p) \xrightarrow{C} (\delta';\delta').\)

Then the right-hand row must be moved to the left in both cases. Therefore \(|\delta| < p\) and \(|\gamma| = |\delta'| \leq 1-p\).

However \(|\gamma| + |\delta| = 1\), therefore \(|\delta| = p\), \(|\gamma| = 1-p\).

It follows that \(\delta = 1^P\), \(\gamma' = 1^{1-p}\). Therefore

\[(\gamma; \delta) = (1-p; 1^P).\] So \(\chi = \chi^{(\lambda; \gamma)} = \chi^{(1^P; 1-p)} = \chi^{(\lambda; \gamma)}\)

(c) Suppose \((1^P; 1-p) \xrightarrow{C} (\chi; \delta) \text{ but } (1^{1-p}; p) \xrightarrow{C} (\delta';\delta').\)

Therefore by 3.3.5, \((\gamma; \delta') \xrightarrow{C} (1^{1-p}; p)\) so that \(r(\delta') \leq 1-p\).

Also \((1^{1-p}; p) \xrightarrow{C} (\delta';\delta')\) means we have to move the row of length \(p\) over to the left-hand side. Thus

either \(\gamma' = 1\) and \(\delta' = (p,1^{1-p-1})\)

or \(\delta' = 0\) and \(\delta' \geq (p,1^{1-p})\) and because \(r(\delta') \geq 1-p\)

\(\delta' = (p,1^{1-p})\) or \((p+1,1^{1-p-1})\)

or \((p,2,1^{1-p-2})\).

Hence

\[(\gamma; \delta) = \begin{cases} (1; (1-p),1^{p-1}) & \\
(-; (1-p+1),1^{p-1}) & \\
(-; (1-p),1^P) & \\
(-; (1-n),2,1^{p-2}) & \end{cases}\]
We see from this that \(\delta \neq \delta' \) therefore \(\chi = \chi^{(\delta'; \delta)}_k \).

Now \((\psi_j', \chi^{(\delta'; \delta)}_k) \neq 0 \) so \((\psi_j^K, \chi^{(\delta'; \delta)}_k) \neq 0 \) (1.2.8).

But \(W_{J_1} \leq H \) so \(W_{J_1} = W_{(l-p+1, 1^p-1)} \) as a Weyl subgroup of \(H \). Suppose that \(\gamma = 0 \). Therefore

\[
0 \neq (\psi_j^K, \chi^{(\delta'; \delta)}_k) = (\psi_j^H, \chi^{(\delta'; \delta)}_H)
\]

by Frobenius

\[
= (\psi_j^{(l-p+1, 1^p-1)}, \chi^\delta)
\]

using 3.1.3(ii).

Therefore by 2.2.7, \(\delta \geq (l-p+1, 1^p-1) \). But we have already restricted \(\delta \) above.

Thus \(\gamma = 0 \Rightarrow \delta = (l-p+1, 1^p-1) \).

So \((\delta; \delta) = (1; 1-p, 1^p-1) \) or \((-; 1-p, 1^p-1) \).

But \(\chi \) is afforded by \(\wedge^p V \) so \(\chi(1) = \dim \wedge^p V = \frac{1}{p} \).

i.e. \(\chi^{(\delta; \delta)}(1) = \frac{1}{p} \).

If \(\delta = 0 \) then \(\chi^{(\delta; \delta)}(1) = \frac{1}{1(1-p)!(p-1)!} \) using 3.4.3.

Equating this with \(\frac{1}{p} \), we see that \(p = 1 \), so \((\delta; \delta) = (-; 1^1) \) and therefore \(\chi = \chi^{(\delta; \delta)}_k = \chi^{(\delta'; \delta)}_k = \chi^{(\lambda; \lambda)}_k \) for \(p = 1 \).

If \(\delta = 1 \) then \(\chi^{(\delta; \delta)}(1) = \frac{1}{(1-1)(1-p-1)!p!} \)

and equating this with \(\frac{1}{p} \), we find \(p = 1-1 \) or \(p = 1 \).

Hence \((\delta; \delta) = (1; 1^{-1}) \) or \((1; 1-1) \)

\(= (\lambda; \lambda) \) or \((\mu; \lambda) \) respectively.

and again

\(\chi = \chi^{(\delta; \delta)}_k = \chi^{(\delta'; \delta)}_k = \chi^{(\lambda; \lambda)}_k \)

Finally,

(d) Suppose \((1^p; 1-p) \not\rightarrow (\delta; \delta) \) but \((1^{1-p}; p) \not\rightarrow (\delta'; \delta') \).

Therefore by 3.3.5, \((\delta; \delta) \not\rightarrow (1^p; 1-p) \) so that \(r(\delta) \geq p \).
Also \((1^P; 1-p) \not\in \mathfrak{S}(\gamma'; \delta)\) means we have to move the row of length \(1-p\) over to the left-hand side. Thus

either \(\delta = 1\) and \(\gamma = (1-p, 1^{p-1})\)
or \(\delta = 0\) and \(\gamma = (1-p, 1^p)\) or \((1-p+1, 1^{p-1})\)
or \((1-p, 2, 1^{p-2})\)

and so \(\gamma \neq \delta\).

But \(\chi = \chi_{K}^{(\delta'; \delta)} = \chi_{K}^{(\delta'; \delta)}\) and these were exactly the cases covered in (c). So the same argument shows \(\chi = \chi_{K}^{(\delta'; \delta)}\).

\[\text{§4.6 The maximal Weyl subgroups of } W(D_1)\]

The maximal Weyl subgroups of \(K\) are of type

\(D_{l-1}, A_{l-1}\) and \(D_1 + D_{l-1} (2 \leq l \leq 1-2)\).

In this section we give the decomposition for inducing an irreducible character up from a maximal Weyl subgroup of \(K\). We can usually reduce the problem to considering \(\mathcal{G}\) by using Frobenius reciprocity.

Theorem 4.6.1 (Inducing up from \(D_{l-1}\))

Let \((\lambda; \mu)\) be a pair of partitions of \(l-1\) and \((\kappa; \beta)\) a pair of partitions of \(l\). Then if \(K' = W(D_{l-1})\)

\[\left(\chi_{K}^{(\lambda; \mu)}, \chi_{K}^{(\kappa; \beta)}\right) \neq 0 \iff (\kappa; \beta)\) may be obtained from \((\lambda; \mu)\) or \((\mu; \lambda)\) by adding a square to the end of a row of \(\lambda\) or \(\mu\); i.e. \((\kappa; \beta) \in Y_{(\lambda; \mu)}\), say.

Furthermore,

\[(1)\) \(l\) odd;

Suppose \((\kappa; \beta) \in Y_{(\lambda; \mu)}\), then

\[\lambda \neq \mu \implies \left(\chi_{K'}^{(\lambda; \mu)}, \chi_{K}^{(\kappa; \beta)}\right) = 1\]
\[\lambda = \rho \quad \Rightarrow \quad (\chi_{(\lambda;\lambda)}^{(\lambda;\lambda)} K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) = 2 \]

and if \(\theta = \theta_{\lambda} \) or \(x^t_{\theta} \), where \(x^t = ((-1, -1), (1, -1)) \), then

\[(\theta K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) \neq 0 \quad \Leftrightarrow \quad (\alpha; \beta) \in Y_{(\lambda;\lambda)}^{(\alpha;\beta)} \]

in which case

\[(\theta K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) = 1 \]

(ii) \(\lambda \) even:

Suppose \((\alpha; \beta) \in Y_{(\lambda;\mu)}^{(\alpha;\beta)} \), then

\[\alpha \neq \beta \quad \Rightarrow \quad (\chi_{(\lambda;\mu)}^{(\lambda;\mu)} K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) = 1 \]

\[\alpha = \beta \quad \Rightarrow \quad (\chi_{(\lambda;\mu)}^{(\lambda;\mu)} K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) = 2 \]

and in this case

\[(\chi_{(\lambda;\mu)}^{(\lambda;\mu)} K, \theta) = 1 \]

where \(\theta = \theta_{\alpha} \) or \(x_{\theta_{\alpha}} \), \(x = (1, -1) \).

Proof

Let \(G^I = W(G_{1-1}) \).

\[(\chi_{(\lambda;\mu)}^{(\lambda;\mu)} K, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)}) = \big[(\chi_{(\lambda;\mu)}^{(\lambda;\mu)} K) G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big] \]

by Frobenius

\[= \big[(\chi_{(\lambda;\mu)}^{(\lambda;\mu)}) G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big] \]

by transitivity of induction

\[= \big[(\chi_{(\lambda;\mu)}^{(\lambda;\mu)}) G^I G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big] \]

as \(K < G^I < G \)

\[= \big((\chi_{(\lambda;\mu)}^{(\lambda;\mu)}) G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big) \quad \text{by 4.1.3} \]

\[= \big((\chi_{(\lambda;\mu)}^{(\lambda;\mu)}) G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big) + \big((\chi_{(\mu;\mu)}^{(\mu;\mu)}) G, \chi_{(\kappa;\kappa)}^{(\kappa;\kappa)} \big) \quad \text{... (A)} \]

Thus the first part of the theorem follows from 3.6.1.

(1) \(\lambda \) odd:

If \(\lambda \neq \mu \), then \((\alpha; \beta) \) cannot be obtained by adding a square,
from both \((\lambda;\mu)\) and \((\mu;\lambda)\) (as 1 odd implies \(|\alpha| \neq |\beta|\))

Therefore one of the terms in (A) is zero and the other takes the value 1, by §6.1

i.e. \(\left(\chi^{(\lambda;\mu)}_{K'}, \chi^{(\kappa;\delta)}_{K'}\right) = 1\)

If \(\lambda = \mu\) then \((\alpha;\beta)\) can be obtained by adding a square to both \((\lambda;\mu)\) and \((\kappa;\lambda)\), so both terms in (A) take the value 1 i.e. \(\left(\chi^{(\lambda;\mu)}_{K}, \chi^{(\kappa;\delta)}_{K}\right) = 2\)

Let \(\theta = \theta_{\lambda}\) or \(\sum_{\lambda}^{}\theta_{\lambda}\) so

\[
\left(\theta_{K}^{K}, \chi^{(\kappa;\delta)}_{K}\right) = \left(\theta_{G}^{G}, \chi^{(\kappa;\delta)}_{K}\right) \text{ by Frobenius}
\]

\[
= \left(\left(\theta_{G}^{G'}\right)^{G}, \chi^{(\kappa;\delta)}_{K}\right) \text{ as } K' \leq G' \leq G
\]

\[
= \left(\left(\chi^{(\lambda;\mu)}_{K'}\right)^{G}, \chi^{(\kappa;\delta)}_{K}\right) \text{ by } 4.1.3
\]

which takes the value 1 if and only if \((\kappa;\delta) \in Y_{(\lambda;\mu)}\)

by §6.1.

(ii) 1 even:

If \(\kappa \neq \beta\) then \((\alpha;\beta)\) cannot be obtained by adding a square, from both \((\lambda;\mu)\) and \((\mu;\lambda)\) (as 1-1 odd implies \(|\lambda| \neq |\mu|\)). Therefore, as in (1),

\[
\left(\chi^{(\lambda;\mu)}_{K'} \chi^{(\kappa;\delta)}_{K}\right) = 1.
\]

If \(\alpha = \beta\) then \((\alpha;\beta)\) can be obtained by adding a square, from both \((\lambda;\mu)\) and \((\mu;\lambda)\) so, as in (1),

\[
\left(\left(\chi^{(\lambda;\mu)}_{K'}\right)^{G}, \chi^{(\kappa;\delta)}_{K}\right) = 2.
\]

Finally, since the elements of \(K^i\) can be chosen so as not to involve the symbol 1, \((\sum_{\lambda}^{}\theta_{\lambda})_{K^i} = (\theta_{\alpha})_{K^i} (x = (1,-1))\)

Therefore

\[
\left(\chi^{(\lambda;\mu)}_{K'}, \theta_{\alpha}\right) = \left(\chi^{(\lambda;\mu)}_{K'}, (\sum_{\lambda}^{}\theta_{\lambda})_{K^i}\right)
\]

by Frobenius

\[
= \left(\chi^{(\lambda;\mu)}_{K'}, \left(\sum_{\lambda}^{}\theta_{\lambda}\right)_{K^i}\right)
\]

\[
= \left(\chi^{(\lambda;\mu)}_{K'}, \chi^{(\kappa;\delta)}_{K}\right) \text{ by Frobenius}
\]

by Frobenius
and \[\left(\chi^{(\lambda;\alpha)}_{k'} \right)^{K}, \theta \right) = \frac{1}{2} \left(\chi^{(\lambda;\alpha)}_{k'}, \chi^{(\kappa;\pi)}_{k} \right) = 1 \] by above, where \(\theta = \theta_{\alpha} \) or \(X_{\theta_{\kappa}} \).

Theorem 4.6.2 (Inducing up from \(A_{l-1} \))

Let \(\lambda \vdash 1 \) and \((\alpha;\beta)\) a pair of partitions of 1. Then

\[(\chi^{(\lambda;\alpha)}_{k'}, \chi^{(\kappa;\pi)}_{k}) \neq 0 \Rightarrow (\lambda;\alpha) \xrightarrow{G} (\alpha;\beta) \xrightarrow{G} (-;\lambda) \]

and

\[(\chi^{(\lambda;\alpha)}_{k'}, \chi^{(\kappa;\pi)}_{k}) = 1 \]

Proof

This follows immediately from 3.6.2 using Frobenius reciprocity.

Theorem 4.6.3 (Inducing up from \(D_{i} + D_{l-1} \))

Let \((\lambda;\mu)\) be a pair of partitions of \(i \) and \((\nu;\sigma)\) a pair of partitions of \(j \), where \(i + j = 1 \); let \((\kappa;\lambda)\) be a pair of partitions of \(l \). Let \(K_{1} = W(D_{i}) \), \(K_{j} = W(D_{j}) \). Then

\[(\chi^{(\lambda;\alpha)}_{k}, \chi^{(\kappa;\pi)}_{k}; \chi^{(\nu;\sigma)}_{k}) \neq 0 \] implies one of the following holds:

(i) \((\lambda;\alpha) \xrightarrow{G} (\lambda;\beta) \xrightarrow{G} (-;\kappa) \) and \((\beta;\alpha) \xrightarrow{G} (\nu;\sigma) \xrightarrow{G} (-;\beta) \)

(ii) \((\lambda;\alpha) \xrightarrow{G} (\lambda;\beta) \xrightarrow{G} (-;\kappa) \) and \((\beta;\alpha) \xrightarrow{G} (\nu;\sigma) \xrightarrow{G} (-;\beta) \)

(iii) \((\lambda;\alpha) \xrightarrow{G} (\mu;\kappa) \xrightarrow{G} (-;\alpha) \) and \((\beta;\alpha) \xrightarrow{G} (\lambda;\beta) \xrightarrow{G} (-;\beta) \)

(iv) \((\lambda;\alpha) \xrightarrow{G} (\mu;\kappa) \xrightarrow{G} (-;\alpha) \) and \((\beta;\alpha) \xrightarrow{G} (\lambda;\beta) \xrightarrow{G} (-;\beta) \)

Proof

Let \(G_{1} = W(G_{1}) \), \(G_{j} = W(G_{j}) \). Then
\[\Gamma = (\chi_{k_i}^{(\lambda; \rho)}) \cdot \chi_{k_j}^{(\tau; \pi^\vee)}, \chi_{k_j}^{(\kappa; \delta)} \]

\[= ((\chi_{k_i}^{(\lambda; \rho)}) \cdot \chi_{k_j}^{(\tau; \pi^\vee)})^G, \chi_{k_j}^{(\kappa; \delta)}) \text{ by Frobenius} \]

\[= \left(\left[(\chi_{k_i}^{(\lambda; \rho)}) \cdot \chi_{k_j}^{(\tau; \pi^\vee)} \right]^{G_1 \times G_j} \right)^G, \chi_{k_j}^{(\kappa; \delta)}) \]

as \(K_1 \times K_j \leq G_1 \times G_j \leq G \)

\[= \left(\left[(\chi_{k_i}^{(\lambda; \rho)}) \cdot \chi_{k_j}^{(\tau; \pi^\vee)} \right]^{G_1 \times G_j} \right)^G, \chi_{k_j}^{(\kappa; \delta)}) \text{ by } 1.2.5(11) \]

\[= \left(\left(\chi_{k_i}^{(\lambda; \rho)} + \chi_{k_i}^{(\mu; \lambda)} \right) \cdot \left(\chi_{k_j}^{(\tau; \pi^\vee)} + \chi_{k_j}^{(\sigma; \pi^\vee)} \right)
ight)^G, \chi_{k_j}^{(\kappa; \delta)}) \text{ by } 4.1.3 \]

\[= \left(\left(\chi_{k_i}^{(\lambda; \rho)} \cdot \chi_{k_j}^{(\tau; \pi^\vee)} \right)^G, \chi_{k_j}^{(\kappa; \delta)}) \right) + \left(\left(\chi_{k_i}^{(\lambda; \rho)} \cdot \chi_{k_j}^{(\sigma; \pi^\vee)} \right)^G, \chi_{k_j}^{(\kappa; \delta)}) \right) \]

Thus if \(\Gamma \neq 0 \) then one of the summands is non-zero.

The theorem then follows from 3.6.3.

§4.7 Some remarks on Weyl groups of type D

The situation in \(W(D_1) \) is not quite so good as in \(W(A_1) \) and \(W(C_1) \). In both of the latter cases we were able to find a bijection between the irreducible characters and the Weyl subgroups, and gave a partial ordering on partitions or pairs of partitions which parameterized both of these sets. In other words we were able to give a partial ordering on the Weyl subgroups and then defined, where \(W = W(A_1) \) or \(W(C_1) \) and \(W_1 \) is a Weyl subgroup of \(W \),

\[\chi(W_1) = \begin{cases} \text{irred. character } \chi : (1_{W_1}^W, \chi) \neq 0 \text{ but } (1_{W_2}^W, \chi) = 0 \\
\text{for all Weyl subgroups } W \text{ such that } W_1 > W. \end{cases} \]
The map X turned out to be a bijection.

We would like to find an ordering of the Weyl subgroups and/or irreducible characters of $W(D_1)$ so that if we were to define X as above, then X would be almost a bijection. We certainly could not expect X to be a bijection as the number of Weyl subgroups of $W(D_1)$ is, in general, less than the number of irreducible characters. Thus the set $X(W_i)$ will sometimes contain more than one irreducible character. However, if we could also find a partial ordering on the irreducible characters, then we would choose to associate with W_i, the (we hope) unique character which is the lowest in $X(W_i)$ with respect to the ordering, and call this a dominant character.

This leaves us with a set of non-dominant characters. We would then like to associate each of these with a semi-Coxeter type $D_1(a_j)$ or $D_1(b_j)$ (see [5]) in a consistent way. Indeed, we would hope that the resulting bijection between irreducible characters and Weyl subgroups or semi-Coxeter types is consistent in the following manner (cf. §2.5 and 3.6.1):

Let χ be an irreducible character of $W(D_1)$ associated with a Weyl subgroup or semi-Coxeter type W, and suppose

$$\chi_{W(D_{1+1})} = \sum_{i=1}^{r} a_i \chi_i$$

(χ_i irreducible characters of $W(D_{1+1})$).

Then we would like there to be a unique lowest character χ_i (say) of the set $\{\chi_1, \ldots, \chi_r\}$, with respect to the partial ordering on the irreducible characters, such that $a_1 = 1$ and χ_i is associated with W inside $W(D_{1+1})$.

It is for this reason that we have included the section §4.6 on maximal Weyl subgroups.

It turns out that it is possible to give such a bijection in Weyl groups of type D of low rank (i.e. $1 \leq 7$) and we list the results for $l = 4$ and $l = 5$ in §4.8.

A study of these low rank groups reveals the following facts:
suppose $W_{\lambda,\mu}$ is a Weyl subgroup of $K = W(D_l)$ ($1 \leq 7$) and $\chi_{\lambda,\mu}$ is an irreducible character associated with $W(\lambda,\mu)$. It seems that we may obtain $(\alpha;\beta)$ (an unordered pair) from $(\lambda;\mu)$ (which is ordered and no part of μ is 1) by the map Θ where

$$\Theta(\lambda;\mu) = (\lambda^*,\mu;\lambda^{**})$$

where λ^*, λ^{**} are obtained by splitting each of the parts of λ almost evenly (depending on μ). Note that $(\lambda;\mu) \rightarrow (\lambda^*,\mu;\lambda^{**})$ but no moving up is required in this operation.

If λ has all its parts even so that $\lambda = 2\nu$ then $\Theta(\lambda;\nu) = (\nu;\nu)$ and the two Weyl subgroups $W_{\lambda,\nu}$ (see 4.2.1 and remark p 107) seem to be associated with the two irreducible components Θ and $\chi_{\lambda,\nu}$ of $\chi_{\nu}^{(\nu;\nu)}$.

Also it seems that $\chi_{\nu}^{(\nu;\nu)}$ should be associated with $D_1(a_j)$ in $W(D_1)$ ($1 \leq j \leq l/2$).

If $(\alpha;\beta)$ and $(\gamma;\delta)$ are two pairs of partitions of 1 such that $|\alpha| = |\gamma|$ and $|\beta| = |\delta|$ and $\alpha < \beta$, $\beta < \delta$ then it appears that the ordering of the characters satisfies $\chi_{\lambda,\mu}^{(\alpha;\beta)} < \chi_{\lambda,\mu}^{(\gamma;\delta)}$.

To show that the problem is not solely due to the
fact that, with the characters of $W(D_1)$, we are dealing with unordered pairs of partitions, we have included a chapter on $W(B_1)$, which contains $W(D_1)$ as a regular Weyl subgroup. It will be seen that here, although the characters are parameterized by ordered pairs of partitions, the problem seems to be equivalent to that for $W(D_1)$, as the operation \rightarrow_B defined in that chapter is very similar to \rightarrow_D.

§4.8 The groups $W(D_4)$ and $W(D_5)$

We list the bijection, found by direct calculation, between the irreducible characters of $W(D_4)$ and $W(D_5)$ and their Weyl subgroups and semi-Coxeter types. The tables were used for the calculations for $W(F_4)$ and $W(E_6)$ in chapter six.

The notation is as follows:

the first column gives the type of the Weyl subgroup or semi-Coxeter type; the second column gives the pair of partitions $(\lambda; \mu)$ parameterizing the Weyl subgroup $W(\lambda; \mu)$ (where appropriate); the last column gives the pair of partitions $(\kappa; \lambda)$ parameterizing the character $\chi^{(\kappa; \lambda)}_k$, (we shall write this so that $|\kappa| > |\lambda|$).
\[K = W(D_4) \]

<table>
<thead>
<tr>
<th>Type</th>
<th>(W(\lambda; \rho))</th>
<th>(\chi^{(\kappa; \eta)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_4)</td>
<td>(- ; 4)</td>
<td>(4 ; -)</td>
</tr>
<tr>
<td>(D_4 (a_1))</td>
<td>-</td>
<td>(3 ; 1)</td>
</tr>
<tr>
<td>(D_3)</td>
<td>(1 ; 3)</td>
<td>(31 ; -)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(4 ; -)</td>
<td>(2 ; 2)</td>
</tr>
<tr>
<td>(D_2 + D_2)</td>
<td>(- ; 2^2)</td>
<td>(2^2 ; -)</td>
</tr>
<tr>
<td>(A_1 + D_2)</td>
<td>(2 ; 2)</td>
<td>(21 ; 1)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(31 ; -)</td>
<td>(2 ; 1^2)</td>
</tr>
<tr>
<td>(D_2)</td>
<td>(1^2 ; 2)</td>
<td>(21^2 ; -)</td>
</tr>
<tr>
<td>(A_1 + A_1)</td>
<td>(2^2 ; -)</td>
<td>(1^2 ; 1^2)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>(21^2 ; -)</td>
<td>(1^3 ; 1)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(1^4 ; -)</td>
<td>(1^4 ; -)</td>
</tr>
</tbody>
</table>
TABLE 2

\[K = W(D_5) \]

<table>
<thead>
<tr>
<th>Type</th>
<th>(W_{(\lambda;\mu)})</th>
<th>(\chi_{(\kappa;n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_5)</td>
<td>(- ; 5)</td>
<td>(5 ; -)</td>
</tr>
<tr>
<td>(D_5(a_1))</td>
<td>-</td>
<td>(4 ; 1)</td>
</tr>
<tr>
<td>(D_4)</td>
<td>(1 ; 4)</td>
<td>(41 ; -)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(5 ; -)</td>
<td>(3 ; 2)</td>
</tr>
<tr>
<td>(D_3 + D_2)</td>
<td>(- ; 32)</td>
<td>(32 ; -)</td>
</tr>
<tr>
<td>(A_1 + D_3)</td>
<td>(2 ; 3)</td>
<td>(31 ; 1)</td>
</tr>
<tr>
<td>(D_4(a_1))</td>
<td>-</td>
<td>(3 ; 1^2)</td>
</tr>
<tr>
<td>(D_3)</td>
<td>(1^2 ; 3)</td>
<td>(31^2 ; -)</td>
</tr>
<tr>
<td>(A_2 + D_2)</td>
<td>(3 ; 2)</td>
<td>(2^2 ; 1)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(41 ; -)</td>
<td>(31 ; 2)</td>
</tr>
<tr>
<td>(D_2 + D_2)</td>
<td>(1 ; 2^2)</td>
<td>(2^21 ; -)</td>
</tr>
<tr>
<td>(A_2 + A_1)</td>
<td>(32 ; -)</td>
<td>(21 ; 1^2)</td>
</tr>
<tr>
<td>(A_1 + D_2)</td>
<td>(21 ; 2)</td>
<td>(21^2 ; 1)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(31^2 ; -)</td>
<td>(1^3 ; 2)</td>
</tr>
<tr>
<td>(A_1 + A_1)</td>
<td>(2^21 ; -)</td>
<td>(1^3 ; 1^2)</td>
</tr>
<tr>
<td>(D_2)</td>
<td>(1^3 ; 2)</td>
<td>(1^3 ; -)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>(21^3 ; -)</td>
<td>(1^4 ; 1)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>(1^5 ; -)</td>
<td>(1^5 ; -)</td>
</tr>
</tbody>
</table>
Chapter five WEYL GROUPS OF TYPE B

For the sake of completeness, we give an algorithm for Weyl groups of type B, similar to ones in types C and D (§3.3 and §4.2), and include some results on inducing up irreducible characters from maximal Weyl subgroups of this group.

$W(B_1)$ is isomorphic to $W(C_1)$ and hence has the same characters. However the Weyl subgroups are different, which would lead to a different association of irreducible characters to Weyl subgroups (cf. §4.7).

We let $G = W(B_1)$ and, as far as the character theory goes, use the same notation as in chapters three and four.

§5.1 An algorithm for $W(B_1)$

Remark

As in chapter three, we shall only be interested in the regular Weyl subgroups, although in this case they do not form a complete set of conjugates. For example in $W(B_4)$, the Weyl subgroup of type $B_2 + B_2$ is not conjugate to any regular one. In the rest of this chapter we shall assume all Weyl subgroups are regular.

The Weyl subgroups of G have the form

$$S_{\lambda_1} \times \cdots \times S_{\lambda_r} \times W(D_{\mu_1}) \times \cdots \times W(D_{\mu_s}) \times W(B_t)$$

where

$$\sum \lambda_i + \sum \mu_i + t = 1 \quad \text{and} \quad \mu_i \neq 1, \ t \geq 0.$$

We shall write this subgroup as $W(\lambda; \mu; t)$ where
Thus the Weyl subgroups may be parameterized by triples of partitions \((\lambda; \mu; t)\) where no part of \(\mu\) is 1 and \(t \geq 0\) (we shall write \(t\) for the partition \((t)\), and interpret \(W(B_t) = 1\) when \(t = 0\)).

As in previous chapters, \(W(\lambda; \mu; t)\) may be regarded as the row stabilizer of a diagram \(D_{(\lambda; \mu; t)}\), where a row permutation of \(D_{(\lambda; \mu; t)}\) permutes the symbols in each row of \(D_\lambda\), \(D_\mu\), \(D_t\) (a single row), changes the sign of an even number of symbols in \(D_\mu\) and changes the sign of any number of symbols in \(D_t\).

We shall be interested in giving an algorithm which determines which pair of partitions \((\alpha; \beta)\) of 1 satisfy

\[
1_{W(\lambda; \mu; t)}, \chi^{(\alpha; \beta)} \neq 0
\]

Definition

Let \((\lambda; \mu; t)\) be a triple of partitions of 1 such that no part of \(\mu\) is 1 and \(t \geq 0\), and let \((\alpha; \beta)\) be an (ordered) pair of partitions of 1. Write \((\lambda; \mu; t) \Rightarrow (\alpha; \beta)\) if \((\alpha; \beta)\) may be obtained from \((\lambda; \mu; t)\) by

(a) removing connected squares from the end of a row of \(\lambda\) and placing them, in the same order, at the bottom of \(\mu\);

(b) repeating (a) with squares from different rows of \(\lambda\);

and at the same time, but independently, (so no square is moved twice)
(c) transferring complete rows of \(\mu \) and placing them at the bottom of \(\lambda \);

and again at the same time, but independently,

(d) transferring the whole of \(t \) across to the bottom of \(\lambda \);

then

(e) reordering the resulting rows so as to give a pair of partitions \((\sigma; \delta)\) say;

and finally

(f) moving up inside \(\sigma \) and \(\delta \), according to the usual partial ordering on partitions, so as to obtain \(\alpha \) and \(\beta \) respectively (so \(\sigma \leq \alpha \) and \(\delta \leq \beta \)).

Remark

If \(t = 0 \) then \((\lambda; \mu; \cdot) \xrightarrow{B} (\alpha; \beta) \iff (\lambda; \mu) \xrightarrow{D} (\alpha; \beta)\).

Indeed, for \(t = 0 \), \(W(\lambda; \mu; \cdot) \) is a Weyl subgroup of type \(W(\lambda; \mu) \) of \(W(D_1) \) and as

\[
\left(1_{W(\lambda; \mu)}^G, \chi^{(\kappa; \delta)} \right) = \left(1_{\mathcal{K}}^W(\lambda; \mu), \chi^{(\kappa; \delta)} \right) \text{ by Frobenius}
\]

we would expect to get the same algorithm, in this case, as in \(W(D_1) \).

It is for this reason that it appears that the problem of associating irreducible characters to Weyl subgroups in \(W(B_1) \) seems to be equivalent to that for \(W(D_1) \) (see §4.7).

Theorem 5.1.1

\[
\left(1_{W(\lambda; \mu; \cdot)}^G, \chi^{(\kappa; \delta)} \right) \neq 0 \iff (\lambda; \mu; t) \xrightarrow{B} (\alpha; \beta)
\]
The following lemma is proved in precisely the same way as 3.3.2

Lemma 5.1.2

Let \(W = R(\Delta; \kappa; \tau) \). Then

(a) \(W = (N \cap W)(H \cap W) \) and \((N \cap W) \cap (H \cap W) = 1 \)

If also \(g \in H, c = C_H(\zeta) \) for some irreducible character \(\zeta \) of \(N \)

(b) \(W^G = (N \cap W^G)(H \cap W^G) \) and \((N \cap W^G) \cap (H \cap W^G) = 1 \)

(c) \(NC \cap W^G = (N \cap W^G)(C \cap W^G) \) and \((N \cap W^G) \cap (C \cap W^G) = 1 \)

Proof of 5.1.1

Let \(W = W(\lambda; \kappa; \tau) \). Then we suppose \((1^G, \chi^{(\kappa; \tau)}) \neq 0\). Hence, with the usual notation,

\[
0 = (1^G, \chi^{(\kappa; \tau)}) = (1^G, \phi^G) = \sum_{g \in [g_1]} (1^{W^GNC}, \phi^{W^GNC})
\]

where \([g_1]\) is a set of \((W, NC)\)-double coset representatives and each \(g_1 \in H \). Thus there exists \(g \in [g_1] \) such that

\[
0 \neq (1^{W^GNC}, \phi^{W^GNC}) = (1^{W^GNC}, \zeta^{W^GNC})(1^{W^GNC}, \psi^{W^GNC})
\]

by 5.1.2, and so \(1^{W^GNC} = \zeta^{W^GNC} \).

Let \(|\alpha| = m, \ |\beta| = n \) and we have that \(\zeta \) takes the value 1 on all sign changes in \(W^G \). Now \(W^G \) defines a diagram \(D(\lambda; \kappa; \tau) \), and therefore in any row of \(D_\kappa \) all the symbols are of the same type, and all the symbols in \(D_\tau \) are of the same type. Hence we may transfer those complete rows of \(D_\kappa \) which contain symbols of the first type to \(D_\lambda \), independently move the squares of \(D_\lambda \) (so that moved
squares in the same row stay in the same row) containing
the symbols of the second type to D_μ and, again
independently, move the whole of D_ν across to D_λ. On
reordering we obtain a diagram $D_{(\gamma; \delta)}$ of a pair of partitions $(\gamma; \delta)$
of 1 such that D_γ contains all the symbols of the first
type and D_δ all the symbols of the second type. This
corresponds to operations (a), (b), (c), (d) and (e) on
p 134-5. So to show $(\lambda; \nu; t) \xrightarrow{B} (\alpha; \beta)$ we only have to
to show $\gamma < \alpha$, $\delta < \beta$.

By construction, $|\gamma| = m = |\alpha|$, $|\delta| = n = |\beta|$
and $(1_{G \cap W}, \psi_{G \cap W}) \neq 0$. Again, just as in 3.3.1, we obtain

$0 \neq (1_{G \cap W}, \psi_{G \cap W}) = ((1_{W_\nu})^{S_m}, \chi^\alpha)((1_{W_\delta})^{S_n}, \chi^\beta)$

so $\gamma < \alpha$ and $\delta < \beta$.

Hence $(\lambda; \nu; t) \xrightarrow{B} (\alpha; \beta)$.

Conversely, suppose $(\lambda; \nu; t) \xrightarrow{B} (\alpha; \beta)$. Therefore we
may move parts of rows of λ across to μ, complete
rows of μ across to λ, and the whole of t across to
λ, to obtain a pair of partitions $(\nu; \delta)$ of 1 such that
$\gamma < \alpha$ and $\delta < \beta$. Hence we may define a diagram $D_{(\lambda; \nu; t)}$

filled with the symbols $[1, \ldots, 1]$ such that each row of
D_μ contains only symbols of one type, and D_ν only contains
symbols of the first type.

Let $W = R(D_{(\lambda; \mu; t)})$ so all pairs of sign changes
in $N \cap W$ consist of symbols which are of the same type
i.e. $\zeta_{N \cap W} = 1$. Also, by 2.3.6, since $\gamma < \alpha$ and
$\delta < \beta$

$(1_{N \cap W}, \zeta_{N \cap W})((1_{W})^{S_m}, \chi^\alpha)((1_{W})^{S_n}, \chi^\beta) \neq 0$

and this is by the proof of the first part of the theorem,
the first summand in the Mackey formula for \((1^G_W, \chi^{(\kappa; \lambda)}) \).
Hence \((1^G_W, \chi^{(\kappa; \lambda)}) \neq 0 \).

§5.2 The maximal Weyl subgroups of \(W(B_1) \)

The maximal Weyl subgroups of \(G \) are of type
\(B_{1-1}, D_1, \) and \(D_{1-1} + B_1 \) for \(1 \leq i \leq 1-2 \).

Inducing up irreducible characters from the maximal Weyl subgroups we obtain the following results. All the theorems follow almost straight-away from those for \(W(C_1) (§3.6) \) in the same manner as we proved them for \(W(D_1) (§4.6) \); thus we shall omit the proofs.

Theorem 5.2.1 (Inducing up from \(B_{1-1} \))

Let \((\lambda; \mu) \) be a pair of partitions of \(1-1 \) and let
\((\lambda; \mu)^* = (\lambda^*; \mu) = (\lambda_1; \mu) \). Then
\[
(\chi^{(\lambda; \mu)})^G = \chi^{(\lambda; \mu^*)} + \sum \chi^{(\kappa; \lambda)}
\]
summed over all those pairs of partitions \((\kappa; \beta) (\neq (\lambda; \mu))^* \)
of \(1 \) obtained from \((\lambda; \mu) \) by adding a square to the end of a row of \(\lambda \) or by adding a square to the end of a row of \(\mu \).

Theorem 5.2.2 (Inducing up from \(D_1 \))

Let \((\lambda; \mu) \) and \((\beta; \gamma) \) be pairs of partitions of \(1 \) and \(K = W(D_1) \). Then
\[
((\chi^{(\lambda; \gamma)})^G, \chi^{(\kappa; \beta)}) \neq 0 \iff (\lambda; \mu) = (\kappa; \beta) \) or \((\kappa; \lambda) = (\kappa; \beta) \)
\]
If \(1 \) is even, \((\theta^G, \chi^{(\kappa; \beta)}) \neq 0 \iff (\alpha = \lambda = \beta)
\]
where \(\theta = \theta_\alpha \) or \(\chi_{\theta_\lambda} \).
In particular, all non-zero multiplicities are 1.
Theorem 5.2.3 (Inducing up from $B_i + D_{i-1}$)

Let $(\lambda;\mu)$ be a pair of partitions of i, $(\nu;\sigma)$ a pair of partitions of j, where $i + j = l$. Let $X_j = W(D_j)$, and $(\alpha;\beta)$ be a pair of partitions of l. Then

$$((\chi^{(\lambda;\mu)} \cdot \chi^{(\nu;\sigma)})^\sigma, \chi^{(\alpha;\beta)}) \neq 0 \implies$$

either $(\alpha;\beta) \xrightarrow{C} (\lambda;\nu) \xrightarrow{C} (-;\alpha)$ and $(\beta;\nu) \xrightarrow{C} (\mu;\sigma) \xrightarrow{C} (-;\beta)$
or $(\alpha;\beta) \xrightarrow{C} (\lambda;\nu) \xrightarrow{C} (-;\alpha)$ and $(\beta;\nu) \xrightarrow{C} (\mu;\sigma) \xrightarrow{C} (-;\beta)$
In this chapter we give an association between the irreducible characters and the Weyl subgroups of the Weyl groups of type G_2, F_4 and E_6.

Using a computer, similar results ought to be obtainable for Weyl groups of type E_7 and E_8.

As the number of Weyl subgroups differs from the number of irreducible characters in each case, we could not expect this association to be a bijection.

We shall use the notation in [5].

§6.1 Construction of the mapping X

The details given in this section are similar to those in §4.7.

Let W be a Weyl group of type G_2, F_4 or E_6, and suppose W' is a Weyl subgroup of W. We first calculate the irreducible characters occurring in 1^W_W, using the information on the conjugacy classes given in [5], and the character tables in [9] and [14] (the Weyl group of type G_2 is the dihedral group of order 12 and so is easy to work with).

From this we wish to associate a set of irreducible characters to the Weyl subgroup W' using a partial ordering \prec on the Weyl subgroups

\[
X(W') = \begin{cases}
\text{irred. character of } W : (1^W_W, \chi) \neq 0 \text{ but } \\
W, \\
(1^W_W, \chi) = 0 \text{ for all Weyl subgroups } W'' > W
\end{cases}
\]
In defining the partial ordering we work from the highest Weyl subgroup downwards (highest means with respect to the ordering). We let W be the highest Weyl subgroup so 1^W is the principal character. Inductively, suppose $W=W_1, \ldots, W_n$ have been ordered and so $X(W_1), \ldots, X(W_n)$ determined. Let $\bigcup_{i=1}^n X(W_i) = \{ \chi_1, \ldots, \chi_r \}$. Then we look at those Weyl subgroups W' of W for which 1^W contains the minimal number of irreducible characters not in the set $\{ \chi_1, \ldots, \chi_r \}$. Then these Weyl subgroups are defined to be the next in the partial ordering and $X(W')$ as the set of irreducible characters occurring in 1^W but not in $\{ \chi_1, \ldots, \chi_r \}$. The unique lowest (with respect to the ordering) Weyl subgroup is 1 since inducing up to W from it gives the regular character, which contains all the irreducible characters of W.

Thus for each Weyl subgroup W' we have defined $X(W')$. We are then able to give a partial ordering \leq on the irreducible characters of W. Let χ', χ'' be irreducible characters of W and suppose $\chi' \in X(W'), \chi'' \in X(W'')$. Define

$$\chi' \leq \chi'' \iff W' \leq W''$$

By construction of X, if $X(W') \cap X(W'') \neq \emptyset$, then W' and W'' are not comparable with respect to \leq, but $W' \leq W'' \iff W' \leq W''$, so that the above definition is well-defined.

The Weyl groups of each type then have their own particular problems, so we deal with each separately.
(a) $W(G_2)$

It turns out that $|X(W')| = 1$ for each Weyl subgroup W' of $W(G_2)$, and we define a reverse mapping from the set of irreducible characters to the set of Weyl subgroups of $W(G_2)$:

$$Y(\chi) = \{ W' : \chi \in X(W') \}$$

The results are given in table 3, along with the ordering on the Weyl subgroups.

(b) $W(E_6)$

In this case, the number of irreducible characters of $W(E_6)$ (i.e. 25) equals the number of Weyl subgroups (i.e. 21) plus the number of semi-Coxeter types (i.e. 4). It is therefore desirable to obtain a bijection between these sets.

Now the semi-Coxeter types in E_6 are $E_6(a_1), E_6(a_2), D_6(a_1), D_4(a_1)$ (see [5]) and the last two lie inside the maximal Weyl subgroup $W(D_6^-)$ of $W(E_6)$.

Inside $W(D_6)$ we have associated to $D_5(a_1)$ and $D_4(a_1)$ irreducible characters of $W(D_5)$ (see table 2), call them χ_1, χ_2 respectively. In order to obtain a consistent association of irreducible characters to Weyl subgroups and semi-Coxeter types (as in §4.7), we calculate $\chi_1^{W(E_6)}$ and $\chi_2^{W(E_6)}$. Then, inside $W(E_6)$, we associate to $D_5(a_1)$ and $D_4(a_1)$ the lowest irreducible character of $W(E_6)$ occurring in $\chi_1^{W(E_6)}$ and $\chi_2^{W(E_6)}$.

Similarly, for those Weyl subgroups W' for which $|X(W')| > 1$, we associate to W' the lowest irreducible character in $X(W')$ (which is unique except for one case).

Finally, to $E_6(a_1)$ and $E_6(a_2)$, we associate (arbitrarily) the remaining two irreducible characters.
We thus obtain a bijection X_1 between the Weyl subgroups and semi-Coxeter types and the irreducible characters. Note that the final result is not unique i.e. there are two ways of defining X_1 satisfying the given conditions (see table 4).

The reverse mapping

$$Y(\chi) = \{ W' : \chi \in X_1(W') \}$$

is just $Y = X_1^{-1}$ since X_1 is a bijection (W' may be a semi-Coxeter type here).

The result is given in table 4.

(c) $W(F_4)$

In $W(F_4)$, the number of Weyl subgroups is 37, the number of semi-Coxeter types is 3 (given by $F_4(a_1)$, $D_4(a_1)$ and $\tilde{D}_4(a_1)$, where ~ denotes a short root system), but the number of irreducible characters is 25. Thus we cannot hope to get anything like a bijection.

As in $W(E_6)$, to each Weyl subgroup W' we associate the set of lowest characters in $X(W')$. Using table 1, we induce up to $W(F_4)$ the irreducible characters χ_1, χ_1 of D_4, \tilde{D}_4 respectively, which correspond to $D_4(a_1)$, $\tilde{D}_4(a_1)$ respectively. Then, in $W(F_4)$, we associate to each of $D_4(a_1)$ and $\tilde{D}_4(a_1)$ the set of lowest irreducible characters of $W(F_4)$ in $\chi_1^W(F_4)$ and $\chi_1^W(F_4)$ respectively.

This still leaves some choice, so the final criterion applied is the idea of duality between long and short roots.

Let W' be any Weyl subgroup or semi-Coxeter type in $W(F_4)$ and \tilde{W}' its dual (possibly W' and \tilde{W}' are conjugate inside $W(F_4)$). Then given any irreducible character χ
of $W(F_4)$, we define the dual character $\tilde{\chi}$ to be that irreducible character of $W(F_4)$ which satisfies

$$(1_{W_1}^{W(F_4)}, \chi) \neq 0 \iff (1_{W_1}^{W(F_4)}, \tilde{\chi}) \neq 0$$

(such duals exist by inspecting $1_{W_1}^{W(F_4)}$, $1_{W_1}^\sim W(F_4)$ and are unique). A character is often self-dual i.e. $\chi = \tilde{\chi}$.

We then demand that in the association X_1 of characters to Weyl subgroups and semi-Coxeter types,

$$\chi \in X_1(W') \iff \tilde{\chi} \in X_1(\tilde{W}')$$

where W' is a Weyl subgroup or semi-Coxeter type.

It then follows that $|X_1(W')| = 1$, and we associate the one remaining irreducible character to $F_4(a_1)$.

In table 5 we give the unique result, using the reverse mapping

$$Y(\chi) = \{W' : \chi \in X_1(W')\}$$

§6.2 Some further remarks

In $W(G_2)$ and $W(F_4)$, because of the existence of roots of different lengths, two Weyl subgroups may have the same Coxeter element and so be conjugate; similarly, semi-Coxeter classes may be representable in various ways. Thus we have equivalent Weyl subgroups or semi-Coxeter types which represent the same conjugacy class.

These are listed below; types are equivalent if and only if they are written on the same line.

$W(G_2)$:

$$A_2 \quad \tilde{A}_2$$
$W(F_4)$:

\[
\begin{array}{ccc}
2A_1 & 2\tilde{A}_1 \\
3A_1 & 2\tilde{A}_1 + A_1 \\
2A_1 + \tilde{A}_1 & 3\tilde{A}_1 \\
A_3 & B_2 + \tilde{A}_1 \\
B_2 + A_1 & \tilde{A}_3 \\
4A_1 & 2A_1 + 2\tilde{A}_1 + 4\tilde{A}_1 \\
A_3 + \tilde{A}_1 & B_2 + 2A_1 + B_2 + 2\tilde{A}_1 + \tilde{A}_3 + A_1 \\
D_4 & B_3 + \tilde{A}_1 \\
\tilde{D}_4 & C_3 + A_1 \\
D_4(a_1) & 2B_2 + \tilde{D}_4(a_1) \\
B_4 & C_4
\end{array}
\]

However, a different sort of equivalence may be defined using the characters:

W' and W'' are equivalent if and only if there exists an irreducible character χ such that $W', W'' \in Y(\chi)$ (W', W'' are Weyl subgroups or semi-Coxeter types).

The form this equivalence takes is evident in the tables, and in both $W(G_2)$ and $W(F_4)$ we get a completely different equivalence from that defined using the conjugacy classes.

§6.3 **The tables**

The notation used in the tables is as follows:

In $W(G_2)$ and $W(F_4)$, \sim denotes a system of short roots, without \sim the system consists of long roots.

The first column of each of the tables gives the irreducible characters of the Weyl group; the second
column gives the Weyl subgroups or semi-Coxeter types given by the mapping Y defined in §6.1.

In $W(\mathfrak{g}_2)$, $\chi_1, \chi_2, \chi_3, \chi_4$ are the characters of degree 1 (\(\chi_1\) the principal character, \(\chi_2\) the sign character) and χ_5, χ_6 the characters of degree 2.

In $W(\mathfrak{e}_6)$ we give in the third column Frame's notation for the characters in [9].

In $W(\mathfrak{f}_4)$, the characters are numbered consecutively on p 152 of [14] (\(\chi_i\) is the principal character etc.).
TABLE 3

<table>
<thead>
<tr>
<th>χ</th>
<th>$T(\chi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>G_2</td>
</tr>
<tr>
<td>χ_2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>χ_3</td>
<td>A_2</td>
</tr>
<tr>
<td>χ_4</td>
<td>\tilde{A}_2</td>
</tr>
<tr>
<td>χ_5</td>
<td>$A_1 + \tilde{A}_1$</td>
</tr>
<tr>
<td>χ_6</td>
<td>A_1 , \tilde{A}_1</td>
</tr>
</tbody>
</table>

The ordering of the Weyl subgroups in $W(G_2)$:

![Diagram of Weyl subgroups in $W(G_2)$]
<table>
<thead>
<tr>
<th>(\chi)</th>
<th>(\chi(\chi))</th>
<th>Frame's notation for (\chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_1)</td>
<td>(E_6)</td>
<td>(1_p)</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>(D_5)</td>
<td>(6_p)</td>
</tr>
<tr>
<td>(\chi_3)</td>
<td>(D_5(a_1))</td>
<td>(15_p)</td>
</tr>
<tr>
<td>(\chi_4)</td>
<td>(E_6(a_1))</td>
<td>(20_p)</td>
</tr>
<tr>
<td>(\chi_5)</td>
<td>(A_5)</td>
<td>(30_p)</td>
</tr>
<tr>
<td>(\chi_6)</td>
<td>(A_4 + A_1 \text{ or } E_6(a_2))</td>
<td>(64_p)</td>
</tr>
<tr>
<td>(\chi_7)</td>
<td>(A_4)</td>
<td>(81_p)</td>
</tr>
<tr>
<td>(\chi_8)</td>
<td>(A_5 + A_1)</td>
<td>(15_q)</td>
</tr>
<tr>
<td>(\chi_9)</td>
<td>(D_4)</td>
<td>(24_p)</td>
</tr>
<tr>
<td>(\chi_{10})</td>
<td>(E_6(a_2) \text{ or } A_4 + A_1)</td>
<td>(60_p)</td>
</tr>
<tr>
<td>(\chi_{11})</td>
<td>(D_4(a_1))</td>
<td>(20_s)</td>
</tr>
<tr>
<td>(\chi_{12})</td>
<td>(A_3 + A_1)</td>
<td>(90_s)</td>
</tr>
<tr>
<td>(\chi_{13})</td>
<td>(2A_2 + A_1)</td>
<td>(80_s)</td>
</tr>
<tr>
<td>(\chi_{14})</td>
<td>(A_3 + 2A_1)</td>
<td>(60_s)</td>
</tr>
<tr>
<td>(\chi_{15})</td>
<td>(3A_2)</td>
<td>(10_s)</td>
</tr>
<tr>
<td>(\chi_{16})</td>
<td>(\emptyset)</td>
<td>(1_n)</td>
</tr>
<tr>
<td>(\chi_{17})</td>
<td>(A_1)</td>
<td>(6_n)</td>
</tr>
<tr>
<td>(\chi_{18})</td>
<td>(A_2)</td>
<td>(15_n)</td>
</tr>
<tr>
<td>(\chi_{19})</td>
<td>(2A_2)</td>
<td>(20_n)</td>
</tr>
<tr>
<td>(\chi_{20})</td>
<td>(3A_1)</td>
<td>(30_n)</td>
</tr>
<tr>
<td>(\chi_{21})</td>
<td>(A_2 + A_1)</td>
<td>(64_n)</td>
</tr>
<tr>
<td>(\chi_{22})</td>
<td>(A_3)</td>
<td>(81_n)</td>
</tr>
<tr>
<td>(\chi_{23})</td>
<td>(4A_1)</td>
<td>(15_m)</td>
</tr>
<tr>
<td>(\chi_{24})</td>
<td>(2A_2)</td>
<td>(24_n)</td>
</tr>
<tr>
<td>(\chi_{25})</td>
<td>(A_2 + 2A_1)</td>
<td>(60_n)</td>
</tr>
<tr>
<td>χ</td>
<td>$\chi(\chi)$</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>χ_1</td>
<td>F_4</td>
<td></td>
</tr>
<tr>
<td>χ_2</td>
<td>D_4</td>
<td></td>
</tr>
<tr>
<td>χ_3</td>
<td>D_4</td>
<td></td>
</tr>
<tr>
<td>χ_4</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>χ_5</td>
<td>B_4</td>
<td></td>
</tr>
<tr>
<td>χ_6</td>
<td>$4 \tilde{A}_1$</td>
<td></td>
</tr>
<tr>
<td>χ_7</td>
<td>C_4</td>
<td></td>
</tr>
<tr>
<td>χ_8</td>
<td>$4A_1$</td>
<td></td>
</tr>
<tr>
<td>χ_9</td>
<td>$2B_2$</td>
<td></td>
</tr>
<tr>
<td>χ_{10}</td>
<td>$B_3 + \tilde{A}_1$, $C_3 + A_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{11}</td>
<td>$B_2 + 2A_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{12}</td>
<td>$B_2 + 2\tilde{A}_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{13}</td>
<td>$2\tilde{A}_1$, $A_1 + \tilde{A}_1$, $2A_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{14}</td>
<td>$A_2 + \tilde{A}_2$</td>
<td></td>
</tr>
<tr>
<td>χ_{15}</td>
<td>A_2, \tilde{A}_2</td>
<td></td>
</tr>
<tr>
<td>χ_{16}</td>
<td>$2A_1 + 2\tilde{A}_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{17}</td>
<td>$F_4(a_1)$</td>
<td></td>
</tr>
<tr>
<td>χ_{18}</td>
<td>$A_3 + A_1$, A_3, $D_4(a_1)$</td>
<td></td>
</tr>
<tr>
<td>χ_{19}</td>
<td>$\tilde{A}_3 + A_1$, \tilde{A}_3, $\tilde{D}_4(a_1)$</td>
<td></td>
</tr>
<tr>
<td>χ_{20}</td>
<td>A_1, \tilde{A}_1</td>
<td></td>
</tr>
<tr>
<td>χ_{21}</td>
<td>B_2</td>
<td></td>
</tr>
<tr>
<td>χ_{22}</td>
<td>$2\tilde{A}_1 + A_1$, $3\tilde{A}_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{23}</td>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>χ_{24}</td>
<td>$2A_1 + \tilde{A}_1$, $3A_1$</td>
<td></td>
</tr>
<tr>
<td>χ_{25}</td>
<td>$B_2 + A_1$, B_2, $\tilde{A}_1 + A_2$, $B_2 + \tilde{A}_1$, $A_1 + \tilde{A}_2$</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

1. H. BOERNER, Representations of groups, North-Holland, 1963

3. N. BOURBAKI, Groupes et algèbres de Lie, Chapters 4, 5 and 6, Hermann, 1968

5. R.W. CARTER, Conjugacy classes in the Weyl group, to appear in Compositio Mathematica

7. E.B. DYNKIN, Semisimple subalgebras of Semisimple Lie algebras, A.M.S. Translations (2) 6 (1957) 111-244

11 P.X. GALLAGHER, Group characters and normal Hall subgroups, Nagoya Math. J. 21 (1962) 223-230

12 B. HUPPERT, Endliche gruppen I, Springer-Verlag, 1957

13 N. JACOBSON, Lie algebras, Interscience, 1962

17 L. SOLOMON, A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968) 220-239
