Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Angiotensin II induces calcium-dependent rhythmic activity in a Subpopulation of rat hypothalamic median preoptic nucleus neurons

Tools
- Tools
+ Tools

UNSPECIFIED (2005) Angiotensin II induces calcium-dependent rhythmic activity in a Subpopulation of rat hypothalamic median preoptic nucleus neurons. JOURNAL OF NEUROPHYSIOLOGY, 93 (4). pp. 1970-1976. doi:10.1152/jn.00769.2004 ISSN 0022-3077.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1152/jn.00769.2004

Request Changes to record.

Abstract

Whole cell patch-clamp recordings revealed a subpopulation (16%, n = 18/112) of rat median preoptic nucleus (MnPO) neurons responded to bath-applied angiotensin II (Ang II; 100 nNl to 5 mu M; 30-90 s) with a prolonged TTX-resistant membrane depolarization and rhythmic bursting activity. At rest, cells characteristically displayed relatively low input resistance and negative resting potentials. Ang-II-induced responses featured increased input resistance, a reversal potential of -95 2 mV, an increase in action potential duration from 2.9 +/- 0.5 to 4.3 +/- 0.8 ms, and the appearance of a rebound excitation at the offset of membrane responses to hyperpolarizing current injection. The latter was sensitive to Ni2+ (0.5-1 mM; n = 5), insensitive to extracellular Cs+ (1 mM, n = 7), and intracellular QX-314 (4 mM, n = 5), consistent with activation of a T-type Ca2+ conductance. Coincident with the Ang-II-induced depolarization was the appearance of rhythmic depolarizing shifts at a frequency of 0.14 +/- 0.09 Hz with superimposed bursts of 4-22 action potentials interspersed with silent periods persisting for >1 h after washout. These TTX-resistant depolarizing shifts increased in amplitude and decreased in frequency with membrane hyperpolarization with activity ceasing beyond approximately -80mV, and were abolished in low-Ca2+/high-Mg2+ bathing medium (n = 6), Co2+ (1 mM; n = 6), or Ni2+ (0.5-1 mM; n = 8). Thus in a subpopulation of MnPO neurons, Ang II induces "pacemaker-like" activity by reducing a K+-dependent leak conductance that contributes to resting membrane potential and promoting of Ca2+-dependent regenerative auto-excitation mediated, in part, by a T-type Ca2+ conductance.

Item Type: Journal Article
Subjects: R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Q Science > QP Physiology
Journal or Publication Title: JOURNAL OF NEUROPHYSIOLOGY
Publisher: AMER PHYSIOLOGICAL SOC
ISSN: 0022-3077
Official Date: April 2005
Dates:
DateEvent
April 2005UNSPECIFIED
Volume: 93
Number: 4
Number of Pages: 7
Page Range: pp. 1970-1976
DOI: 10.1152/jn.00769.2004
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us