Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The use of ligand field molecular mechanics and related tools in the design of novel spin crossover complexes

Tools
- Tools
+ Tools

Houghton, Benjamin J. (2015) The use of ligand field molecular mechanics and related tools in the design of novel spin crossover complexes. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Houghton_2015.pdf - Submitted Version - Requires a PDF viewer.

Download (3179Kb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2827439~S1

Request Changes to record.

Abstract

The aim of the work presented in this thesis is to explore computational approaches to the modelling and discovery of spin crossover (SCO) transition metal complexes. Both ‘ab initio’ methods, based mainly on density functional theory, and empirical force fields based on ligand field molecular mechanics (LFMM) have been considered. It is shown that whilst a user can choose a functional and basis set combination through validation to experimental data which will yield accurate results for a series of related systems this combination is not necessarily transferable to other metal-ligand combinations.

The ability of density functional approaches to model remote substituent effects is explored. Using the iron(II) R,R’pytacn complexes2 as a case study it is shown that whilst density functional approaches predict the correct trend for these substituted pyridine complexes there are occasional outliers.
Traditional quantum approaches to the study of SCO, whilst accurate, are too time-consuming for the discovery of new complexes. Several LFMM parameter sets are optimised within this work. It is shown that this approach can accurately reproduce spin state energetics and geometries of iron(II) and cobalt(II) amines. A mixed donor type iron(II) amine/pyridine force field is also proposed.

Through the utilisation of the drug discovery tools of the Molecular Operating Environment high throughput screening of cobalt(II) tetramine complexes is carried out. It is shown that ligands derived from macrocyclic rings display the most promise. These complexes, which are predicted to adopt a sawhorse geometry, show promise as SCO candidates are proposed as potential synthetic targets. This work illustrates the many exciting possibilities LFMM provides in the field transition metal computational chemistry allowing for theory to lead experiment rather than follow

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
Library of Congress Subject Headings (LCSH): Transition metal complexes, Ligand field theory
Official Date: April 2015
Dates:
DateEvent
April 2015Submitted
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Deeth, Robert
Extent: iii, 208 leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us