Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Cyclic bordism and rack spaces

Tools
- Tools
+ Tools

Flower, Jean Alison (1995) Cyclic bordism and rack spaces. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Flower_1995.pdf - Submitted Version - Requires a PDF viewer.

Download (5Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1399732~S1

Request Changes to record.

Abstract

This thesis falls into two parts, the first explores a cyclic version of bordism and the second studies the homotopy groups of rack spaces.

In chapters 2-5 we begin by reviewing some theory of cyclic homology but we present it in a topological framework. Then cyclic bordism is introduced as a parallel theory. In particular we prove the equivalence of cyclic and equivariant theories. This enables us to reduce the question of representation of cyclic homology by cyclic bordism to that of representation of ordinary homology by bordism. Finally, we state a fixed point theorem of periodic bordism.

In chapters 6-10 we study rack spaces, or the classifying spaces of racks. The homotopy groups of rack spaces are invariants of the rack up to rack isomorphism, and give invariants of semiframednon-split (irreducible) links ill the three-sphere. We describe methods for calculating the second homotopy group in chapter 7 and in the next chapter we apply one of the methods to find generators for the second homotopy of a class of racks, the finite Alexander quotients. Chapter 9 discusses topological racks. The classifying spaces of racks with a non-discrete topology have a cell structure and, although it fails to be a CVV cell structure, it can be used to calculate homotopy groups. The third homotopy group of a rack space is seen to be in one-to-one correspondence with bordism classes of framed labelled immersed surfaces in the three-sphere. We finish in chapter 10 by simplifying such surfaces within bordism to calculate the third homotopy group of the trivial rack and the cyclic racks, [pie]3(B(Cn))=Z2.

Item Type: Thesis (PhD)
Subjects: Q Science > QA Mathematics
Library of Congress Subject Headings (LCSH): Homology theory
Official Date: March 1995
Dates:
DateEvent
March 1995Submitted
Institution: University of Warwick
Theses Department: Mathematics Institute
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Sanderson, Brian
Sponsors: Engineering and Physical Sciences Research Council
Extent: x, 119 leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us